1
|
Simmasalam R, Zuniga MC, Hinson HE. Neurological Health in Sexual and Gender Minority Individuals. Semin Neurol 2024; 44:193-204. [PMID: 38485126 DOI: 10.1055/s-0043-1778637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Despite representing a significant proportion of the U.S. population, there is a paucity of population-based research on the health status and health needs of sexual and gender minority (SGM) individuals in neurology. Compared with heterosexual peers, some SGM populations have a higher burden of chronic health conditions. In parallel, SGM individuals are more likely to experience stigma and discrimination producing psychological distress, which may contribute to and be compounded by reduced health care access and utilization. In this narrative review, we summarize the existing literature on common neurological health conditions such as stroke, headache, epilepsy, movement disorders, and traumatic brain injury through the lens of intersection of SGM identity. Special focus is attuned to social determinants of health and gender-affirming hormonal therapy. Given the limitations in the available literature, there is an urgent unmet need for datasets that include sexual orientation and gender identity information, as well as funding for research that will characterize the prevalence of neurological conditions, unique risk factors, and health outcomes in SGM populations. In the health care community, providers should address deficiencies in their professional training and integrate inclusive language into their clinical skillset to build trust with SGM patients. There is an opportunity in neurology to proactively engage SGM communities, collaborate to remove barriers to care, promote resilience, and develop targeted interventions to ensure high-quality, culturally competent care for SGM populations to improve neurological health for all.
Collapse
Affiliation(s)
- Rubinee Simmasalam
- Department of Neurology, University of California, San Francisco, California
| | - Mary C Zuniga
- Department of Neurology, University of California, San Francisco, California
| | - H E Hinson
- Department of Neurology, University of California, San Francisco, California
| |
Collapse
|
2
|
Vaajala M, Liukkonen R, Kuitunen I, Ponkilainen V, Kekki M, Mattila VM. Multifetal gestations after traumatic brain injury: a nationwide register-based cohort study in Finland. BMC Pregnancy Childbirth 2023; 23:228. [PMID: 37016336 PMCID: PMC10074790 DOI: 10.1186/s12884-023-05539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND There is a paucity of information regarding the association between traumatic brain injuries (TBIs) and subsequent multifetal gestations. Since TBIs are known to negatively affect the neuroendocrine system, we hypothesized that the functions of the whole reproductive system might be disturbed as a result. The aim of this study is to determine the association between previous TBIs and the risk of multifetal gestations using nationwide registers. METHODS In this retrospective register-based cohort study, data from the National Medical Birth Register (MBR) were combined with data from the Care Register for Health Care. All fertile-aged women (15-49 years) who had sustained a TBI before pregnancy were included in the patient group. Women with prior fractures of the upper extremity, pelvis, and lower extremity were included in the control group. A logistic regression model was used to assess the risk for multifetal gestation after TBI. Odds ratios (ORs) and adjusted odds ratios (aOR) with 95% confidence intervals (CIs) between the groups were compared. The model was adjusted by maternal age and maternal BMI during pregnancy and previous births. The risk for multifetal gestations were evaluated during different periods following the injury (0-3 years, 3-6 years, 6-9 years, and 9 + years). RESULTS A total of 14 153 pregnancies occurred after the mother had sustained a TBI, and 23 216 pregnancies occurred after the mother had sustained fractures of the upper extremity, pelvis, or lower extremity. Of these, 201 (1.4%) women had multifetal gestations after TBI and 331 (1.4%) women had multifetal gestations after fractures of the upper extremity, pelvis, or lower extremity. Interestingly, the total odds of multifetal gestations were not higher after TBI when compared to fractures of the upper extremity, pelvis, and lower extremity (aOR 1.04, CI 0.86-1.24). The odds were highest at 6-9 years (aOR 1.54, 1.03-2.29) and lowest at 0-3 years (aOR 0.84, CI 0.59-1.18). CONCLUSION The risk for multifetal gestations after TBIs was not higher than after the other traumas included in this study. Our results provide good baseline information on the effects of TBIs on the risk for multifetal gestations, but further research is required on this topic.
Collapse
Affiliation(s)
- Matias Vaajala
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Rasmus Liukkonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilari Kuitunen
- Department of Pediatrics, Mikkeli Central Hospital, Mikkeli, Finland
- Institute of Clinical Medicine and Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Ville Ponkilainen
- Department of Surgery, Central Finland Central Hospital Nova, Jyväskylä, Finland
| | - Maiju Kekki
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ville M Mattila
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Orthopaedics and Traumatology, Tampere University Hospital Tampere, Tampere, Finland
| |
Collapse
|
3
|
Cao W, Zhang X, Qiu H. Rehabilomics: A state-of-the-art review of framework, application, and future considerations. Front Neurol 2023; 14:1103349. [PMID: 36970504 PMCID: PMC10032373 DOI: 10.3389/fneur.2023.1103349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Rehabilomics is an important research framework that allows omics research built upon rehabilitation practice, especially in function evaluation, outcome prediction, and individualized rehabilitation. In the field of rehabilomics, biomarkers can serve as objectively measured indicators for body functioning, so as to complement the International Classification of Functioning, Disability, and Health (ICF) assessment. Studies on traumatic brain injury (TBI), stroke, and Parkinson's disease have shown that biomarkers (such as serum markers, MRI, and digital signals derived from sensors) are correlated with diagnosis, disease severity, and prognosis. Rehabilomics also examines a wide range of individual biological characteristics in order to develop personalized rehabilitation programs. Secondary prevention and rehabilitation of stroke have already adopted a rehabilomic approach to individualize treatment programs. Mechanisms of non-pharmacological therapies are expected to be unveiled in light of rehabilomics research. When formulating the research plan, learning from established databases is recommended and a multidisciplinary collaborative team is warranted. Although still in its infancy, the advancement and incorporation of rehabilomics has the potential to make a significant impact on public health.
Collapse
Affiliation(s)
- Wenyue Cao
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, China
| | - Xiuwei Zhang
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, China
| | - Huaide Qiu
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, China
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Huaide Qiu
| |
Collapse
|
4
|
Foecking EM, Segismundo AB, Lotesto KM, Westfall EJ, Bolduan AJ, Peter TK, Wallace DG, Kozlowski DA, Stubbs EB, Marzo SJ, Byram SC. Testosterone treatment restores vestibular function by enhancing neuronal survival in an experimental closed-head repetitive mild traumatic brain injury model. Behav Brain Res 2022; 433:113998. [PMID: 35809692 DOI: 10.1016/j.bbr.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI) results in a myriad of symptoms, including vestibular impairment. The mechanisms underlying vestibular dysfunction in rmTBI patients remain poorly understood. Concomitantly, acute hypogonadism occurs following TBI and can persist chronically in many patients. Using a repetitive mild closed-head animal model of TBI, the role of testosterone on vestibular function was tested. Male Long Evans Hooded rats were randomly divided into sham or rmTBI groups. Significant vestibular deficits were observed both acutely and chronically in the rmTBI groups. Systemic testosterone was administered after the development of chronic vestibular dysfunction. rmTBI animals given testosterone showed improved vestibular function that was sustained for 175 days post-rmTBI. Significant vestibular neuronal cell loss was, however, observed in the rmTBI animals compared to Sham animals at 175 days post-rmTBI and testosterone treatment significantly improved vestibular neuronal survival. Taken together, these data demonstrate a critical restorative role of testosterone in vestibular function following rmTBI. This study has important clinical implications because it identifies testosterone treatment as a viable therapeutic strategy for the long-term recovery of vestibular function following TBI.
Collapse
Affiliation(s)
- Eileen M Foecking
- Loyola University Chicago, Department of Otolaryngology, Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| | - Arthur B Segismundo
- Loyola University of Chicago, Biomedical Graduate School, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Krista M Lotesto
- Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Edward J Westfall
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Alyssa J Bolduan
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Tony K Peter
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Douglas G Wallace
- Northern Illinois University, Department of Psychology, 1425 Lincoln Hwy, DeKalb, IL 60115, the United States of America.
| | - Dorothy A Kozlowski
- DePaul University, Department of Biological Sciences and Neuroscience Program, 2325 N., Chicago, IL 60604, the United States of America.
| | - Evan B Stubbs
- Edward Hines Jr. VA Research Service, Hines, IL 60141, the United States of America; Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Sam J Marzo
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Susanna C Byram
- Loyola University Medical Center, Department of Anesthesiology and Perioperative Medicine, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| |
Collapse
|
5
|
McGovern AJ, González J, Ramírez D, Barreto GE. Identification of HMGCR, PPGARG and prohibitin as potential druggable targets of dihydrotestosterone for treatment against traumatic brain injury using system pharmacology. Int Immunopharmacol 2022; 108:108721. [PMID: 35344815 DOI: 10.1016/j.intimp.2022.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) has long-term devastating effects for which there is no accurate and effective treatment for inflammation and chronic oxidative stress. As a disease that affects multiple signalling pathways, the search for a drug with a broader spectrum of pharmacological action is of clinical interest. The fact that endocrine disruption (e.g hypogonadism) has been observed in TBI patients suggests that endogenous therapy with testosterone, or its more androgenic derivative, dihydrotestosterone (DHT), may attenuate, at least in part, the TBI-induced inflammation, but the underlying molecular mechanisms by which this occurs are still not completely clear. AIMS AND METHODS In this study, the main aim was to investigate proteins that may be related to the pathophysiological mechanism of TBI and also be pharmacological targets of DHT in order to explore a possible therapy with this androgen using network pharmacology. RESULTS AND CONCLUSIONS We identified 2.700 proteins related to TBI and 1.567 that are potentially molecular targets of DHT. Functional enrichment analysis showed that steroid (p-value: 2.1-22), lipid metabolism (p-value: 2.8-21) and apoptotic processes (p-value: 5.2-21) are mainly altered in TBI. Furthermore, being mitochondrion an organelle involved on these molecular processes we next identified that out of 32 mitochondrial-related proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), peroxisome proliferator activated receptor gamma (PPGARG) and prohibitin are those found highly regulated in the network and potential targets of DHT in TBI. In conclusion, the identification of these cellular nodes may prove to be essential as targets of DHT for therapy against post-TBI inflammation.
Collapse
Affiliation(s)
- Andrew J McGovern
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
6
|
Integration of Metabolomic and Clinical Data Improves the Prediction of Intensive Care Unit Length of Stay Following Major Traumatic Injury. Metabolites 2021; 12:metabo12010029. [PMID: 35050151 PMCID: PMC8780653 DOI: 10.3390/metabo12010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Recent advances in emergency medicine and the co-ordinated delivery of trauma care mean more critically-injured patients now reach the hospital alive and survive life-saving operations. Indeed, between 2008 and 2017, the odds of surviving a major traumatic injury in the UK increased by nineteen percent. However, the improved survival rates of severely-injured patients have placed an increased burden on the healthcare system, with major trauma a common cause of intensive care unit (ICU) admissions that last ≥10 days. Improved understanding of the factors influencing patient outcomes is now urgently needed. We investigated the serum metabolomic profile of fifty-five major trauma patients across three post-injury phases: acute (days 0–4), intermediate (days 5–14) and late (days 15–112). Using ICU length of stay (LOS) as a clinical outcome, we aimed to determine whether the serum metabolome measured at days 0–4 post-injury for patients with an extended (≥10 days) ICU LOS differed from that of patients with a short (<10 days) ICU LOS. In addition, we investigated whether combining metabolomic profiles with clinical scoring systems would generate a variable that would identify patients with an extended ICU LOS with a greater degree of accuracy than models built on either variable alone. The number of metabolites unique to and shared across each time segment varied across acute, intermediate and late segments. A one-way ANOVA revealed the most variation in metabolite levels across the different time-points was for the metabolites lactate, glucose, anserine and 3-hydroxybutyrate. A total of eleven features were selected to differentiate between <10 days ICU LOS vs. >10 days ICU LOS. New Injury Severity Score (NISS), testosterone, and the metabolites cadaverine, urea, isoleucine, acetoacetate, dimethyl sulfone, syringate, creatinine, xylitol, and acetone form the integrated biomarker set. Using metabolic enrichment analysis, we found valine, leucine and isoleucine biosynthesis, glutathione metabolism, and glycine, serine and threonine metabolism were the top three pathways differentiating ICU LOS with a p < 0.05. A combined model of NISS and testosterone and all nine selected metabolites achieved an AUROC of 0.824. Differences exist in the serum metabolome of major trauma patients who subsequently experience a short or prolonged ICU LOS in the acute post-injury setting. Combining metabolomic data with anatomical scoring systems allowed us to discriminate between these two groups with a greater degree of accuracy than that of either variable alone.
Collapse
|
7
|
Geddes RI, Kapoor A, Hayashi K, Rauh R, Wehber M, Bongers Q, Jansen AD, Anderson IM, Farquhar G, Vadakkadath‐Meethal S, Ziegler TE, Atwood CS. Hypogonadism induced by surgical stress and brain trauma is reversed by human chorionic gonadotropin in male rats: A potential therapy for surgical and TBI-induced hypogonadism? Endocrinol Diabetes Metab 2021; 4:e00239. [PMID: 34277964 PMCID: PMC8279618 DOI: 10.1002/edm2.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/14/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Hypogonadotropic hypogonadism (HH) is an almost universal, yet underappreciated, endocrinological complication of traumatic brain injury (TBI). The goal of this study was to determine whether the developmental hormone human chorionic gonadotropin (hCG) treatment could reverse HH induced by a TBI. METHODS Plasma samples were collected at post-surgery/post-injury (PSD/PID) days -10, 1, 11, 19 and 29 from male Sprague-Dawley rats (5- to 6-month-old) that had undergone a Sham surgery (craniectomy alone) or CCI injury (craniectomy + bilateral moderate-to-severe CCI injury) and treatment with saline or hCG (400 IU/kg; i.m.) every other day. RESULTS Both Sham and CCI injury significantly decreased circulating testosterone (T), 11-deoxycorticosterone (11-DOC) and corticosterone concentrations to a similar extent (79.1% vs. 80.0%; 46.6% vs. 48.4%; 56.2% vs. 32.5%; respectively) by PSD/PID 1. hCG treatment returned circulating T to baseline concentrations by PSD/PID 1 (8.9 ± 1.5 ng/ml and 8.3 ± 1.9 ng/ml; respectively) and was maintained through PSD/PID 29. hCG treatment significantly, but transiently, increased circulating progesterone (P4) ~3-fold (30.2 ± 10.5 ng/ml and 24.2 ± 5.8 ng/ml) above that of baseline concentrations on PSD 1 and PID 1, respectively. hCG treatment did not reverse hypoadrenalism following either procedure. CONCLUSIONS Together, these data indicate that (1) craniectomy is sufficient to induce persistent hypogonadism and hypoadrenalism, (2) hCG can reverse hypogonadism induced by a craniectomy or craniectomy +CCI injury, suggesting that (3) craniectomy and CCI injury induce a persistent hypogonadism by decreasing hypothalamic and/or pituitary function rather than testicular function in male rats. The potential role of hCG as a cheap, safe and readily available treatment for reversing surgery or TBI-induced hypogonadism is discussed.
Collapse
Affiliation(s)
- Rastafa I. Geddes
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kentaro Hayashi
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Ryan Rauh
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Marlyse Wehber
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Quinn Bongers
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Alex D. Jansen
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Icelle M. Anderson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Gabrielle Farquhar
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Sivan Vadakkadath‐Meethal
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
| | - Toni E. Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core LaboratoryNational Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig S. Atwood
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWIUSA
- Geriatric Research, Education and Clinical CenterVeterans Administration HospitalMadisonWIUSA
- School of Exercise, Biomedical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| |
Collapse
|
8
|
Treelet transform analysis to identify clusters of systemic inflammatory variance in a population with moderate-to-severe traumatic brain injury. Brain Behav Immun 2021; 95:45-60. [PMID: 33524553 PMCID: PMC9004489 DOI: 10.1016/j.bbi.2021.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory cascades following traumatic brain injury (TBI) can have both beneficial and detrimental effects on recovery. Single biomarker studies do not adequately reflect the major arms of immunity and their relationships to long-term outcomes. Thus, we applied treelet transform (TT) analysis to identify clusters of interrelated inflammatory markers reflecting major components of systemic immune function for which substantial variation exists among individuals with moderate-to-severe TBI. METHODS Serial blood samples from 221 adults with moderate-to-severe TBI were collected over 1-6 months post-injury (n = 607 samples). Samples were assayed for 33 inflammatory markers using Millipore multiplex technology. TT was applied to standardized mean biomarker values generated to identify latent patterns of correlated markers. Treelet clusters (TC) were characterized by biomarkers related to adaptive immunity (TC1), innate immunity (TC2), soluble molecules (TC3), allergy immunity (TC4), and chemokines (TC5). For each TC, a score was generated as the linear combination of standardized biomarker concentrations and cluster load for each individual in the cohort. Ordinal logistic or linear regression was used to test associations between TC scores and 6- and 12-month Glasgow Outcome Scale (GOS), Disability Rating Scale (DRS), and covariates. RESULTS When adjusting for clinical covariates, TC5 was significantly associated with 6-month GOS (odds ratio, OR = 1.44; p-value, p = 0.025) and 6-month DRS scores (OR = 1.46; p = 0.013). TC5 relationships were attenuated when including all TC scores in the model (GOS: OR = 1.29, p = 0.163; DRS: OR = 1.33, p = 0.100). When adjusting for all TC scores and covariates, only TC3 was associated with 6- and 12-month GOS (OR = 1.32, p = 0.041; OR = 1.39, p = 0.002) and also 6- and 12-month DRS (OR = 1.38, p = 0.016; OR = 1.58, p = 0.0002). When applying TT to inflammation markers significantly associated with 6-month GOS, multivariate modeling confirmed that TC3 remained significantly associated with GOS. Biomarker cluster membership remained consistent between the GOS-specific dendrogram and overall dendrogram. CONCLUSIONS TT effectively characterized chronic, systemic immunity among a cohort of individuals with moderate-to-severe TBI. We posit that chronic chemokine levels are effector molecules propagating cellular immune dysfunction, while chronic soluble receptors are inflammatory damage readouts perpetuated, in part, by persistent dysfunctional cellular immunity to impact neuro-recovery.
Collapse
|
9
|
Knutson KM, Gotts SJ, Wassermann EM, Lewis JD. Testosterone and Resting State Connectivity of the Parahippocampal Gyrus in Men With History of Deployment-Related Mild Traumatic Brain Injury. Mil Med 2021; 185:e1750-e1758. [PMID: 32776114 DOI: 10.1093/milmed/usaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The purpose of this study was to explore the effect of low testosterone level on whole-brain resting state (RS) connectivity in male veterans with symptoms such as sleep disturbance, fatiguability, pain, anxiety, irritability, or aggressiveness persisting after mild traumatic brain injury (mTBI). Follow-up analyses were performed to determine if sleep scores affected the results. MATERIALS AND METHODS In our cross-sectional design study, RS magnetic resonance imaging scans on 28 veterans were performed, and testosterone, sleep quality, mood, and post-traumatic stress symptoms were measured. For each participant, we computed the average correlation of each voxel's time-series with the rest of the voxels in the brain, then used AFNI's 3dttest++ on the group data to determine whether the effects of testosterone level on whole-brain connectivity were significant. We then performed follow-up region of interest-based RS analyses of testosterone, with and without sleep quality as a covariate. The study protocol was approved by the National Institute of Health's Combined Neuroscience Institutional Review Board. RESULTS Sixteen participants reported repeated blast exposure in theater, leading to symptoms; the rest reported exposure to a single blast or a nonblast TBI. Thirty-three percent had testosterone levels <300 ng/dL. Testosterone level was lower in participants who screened positive for post-traumatic stress disorder compared to those who screened negative, but it did not reach statistical significance. Whole-brain connectivity and testosterone level were positively correlated in the left parahippocampal gyrus (LPhG), especially in its connectivity with frontal areas, the lingual gyrus, cingulate, insula, caudate, and right parahippocampal gyrus. Further analysis revealed that the effect of testosterone on LPhG connectivity is only partially mediated by sleep quality. Sleep quality by itself had an effect on connectivity of the thalamus, cerebellum, precuneus, and posterior cingulate. CONCLUSION Lower testosterone levels were correlated with lower connectivity of the LPhG. Weaknesses of this study include a retrospective design based on self-report of mTBI and the lack of a control group without TBI. Without a control group or pre-injury testosterone measures, we were not able to attribute the rate of low testosterone in our participants to TBI per se. Also testosterone levels were checked only once. The high rate of low testosterone level that we found suggests there may be an association between low testosterone level and greater post-traumatic stress disorder symptoms following deployment, but the causality of the relationships between TBI and deployment stress, testosterone level, behavioral symptomatology, and LPhG connectivity remains to be determined. Our study on men with persistent symptoms postdeployment and post-mTBI may help us understand the role of low testosterone and sleep quality in persistent symptoms and may be important in developing therapeutic interventions. Our results highlight the role of the LPhG, as we found that whole-brain connectivity in that region was positively associated with testosterone level, with only a limited portion of that effect attributable to sleep quality.
Collapse
Affiliation(s)
- Kristine M Knutson
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Room 7D41, MSC 1440, 10 Center Dr, Bethesda, MD 20892-1440
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Room 4C217, 10 Center Dr, Bethesda, MD 20814
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Room 7D41, MSC 1440, 10 Center Dr, Bethesda, MD 20892-1440
| | - Jeffrey D Lewis
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Room 7D41, MSC 1440, 10 Center Dr, Bethesda, MD 20892-1440.,Mental Health Clinic, 88th Medical Group, Wright Patterson Medical Center, 4881 Sugar Maple Drive, Wright-Patterson AFB OH 45433
| |
Collapse
|
10
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
11
|
Giordano KR, Rojas-Valencia LM, Bhargava V, Lifshitz J. Beyond Binary: Influence of Sex and Gender on Outcome after Traumatic Brain Injury. J Neurotrauma 2020; 37:2454-2459. [PMID: 32808570 DOI: 10.1089/neu.2020.7230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of individuals each year and is a leading cause of death and disability worldwide. TBI is heterogeneous and outcome is influenced by a combination of factors that include injury location, severity, genetics, and environmental factors. More recently, sex as a biological variable has been incorporated into TBI research, although there is conflicting literature regarding clinical outcomes in males versus females after TBI. We review the current clinical literature investigating sex differences after TBI. We focus our discussion on differences within contemporary gender categories to suggest that binary categories of male and female are not sufficient to guide clinical decisions for neurotrauma. Some studies have considered physiological variables that influence sex such as hormone cycles and stages in males and females pre- and post-TBI. These data suggest that there are phasic differences within male populations and within female populations that influence an individual's outcome after TBI. Finally, we discuss the impact of gender identity and expression on outcome after TBI and highlight the lack of neurotrauma research that includes non-binary individuals. Social constructs regarding gender impact an individual's vulnerability to violence and consequent TBI, including the successful reintegration to society after TBI. We call for incorporation of gender beyond the binary in TBI education, research, and clinical care. Precision medicine necessarily must progress beyond the binary to treat individuals after TBI.
Collapse
Affiliation(s)
- Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA
| | - Luisa M Rojas-Valencia
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA
| | - Vedanshi Bhargava
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA.,Phoenix VA Health Care System, Phoenix, Arizona, USA
| |
Collapse
|
12
|
Ashley MJ. Testosterone, sex steroids, and aging in neurodegenerative disease after acquired brain injury: a commentary. Brain Inj 2020; 34:983-987. [PMID: 32497444 DOI: 10.1080/02699052.2020.1763461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PRIMARY OBJECTIVE Traumatic brain injury (TBI) is associated with higher incidence of neurodegenerative disease and the effects of aging appear more pronounced after TBI. This paper examines the potential interaction of aging, TBI, and change in male testosterone production. METHODS AND PROCEDURES An abbreviated review of literature documenting hypogonadism after TBI is provided. Potential mechanisms of endocrine dysgrasia associated with aging are reviewed as they relate and interact with endocrine change after TBI in males. These factors align to suggest the need for development of surveillance guidelines for male individuals living with TBI. OUTCOMES AND RESULTS The neuroprotectant, neuroactivation, growth, and cell therapy characteristics of testosterone in the central nervous system are considerable. Age-related decrements in testosterone production may be accelerated after TBI. CONCLUSIONS Testosterone deficiency in male individuals after TBI can be present after TBI or can develop during aging. Age-related decreases in testosterone production after TBI may act to amplify endocrine dysfunction after TBI. Ongoing clinical surveillance for testosterone deficiency associated with both TBI and aging may be reasonable.
Collapse
Affiliation(s)
- Mark J Ashley
- Centre for Neuro Skills , Bakersfield, CA, USA.,School of Health Sciences, Southern Illinois University , Carbondale, IL, USA.,Department of Physical Therapy, Virginia Commonwealth University , Richmond, USA
| |
Collapse
|
13
|
Vijapur SM, Yang Z, Barton DJ, Vaughan L, Awan N, Kumar RG, Oh BM, Berga SL, Wang KK, Wagner AK. Anti-Pituitary and Anti-Hypothalamus Autoantibody Associations with Inflammation and Persistent Hypogonadotropic Hypogonadism in Men with Traumatic Brain Injury. J Neurotrauma 2020; 37:1609-1626. [PMID: 32111134 DOI: 10.1089/neu.2019.6780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and can lead to persistent hypogonadotropic hypogonadism (PHH) and poor outcomes. We hypothesized that autoimmune and inflammatory mechanisms contribute to PHH pathogenesis. Men with moderate-to-severe TBI (n = 143) were compared with healthy men (n = 39). The TBI group provided blood samples 1-12 months post-injury (n = 1225). TBI and healthy control (n = 39) samples were assayed for testosterone (T) and luteinizing hormone (LH) to adjudicate PHH status. TBI samples 1-6 months post-injury and control samples were assayed for immunoglobulin M (IgM)/immunoglobulin G (IgG) anti-pituitary autoantibodies (APA) and anti-hypothalamus autoantibodies (AHA). Tissue antigen specificity for APA and AHA was confirmed via immunohistochemistry (IHC). IgM and IgG autoantibodies for glial fibrillary acid protein (GFAP) (AGA) were evaluated to gauge APA and AHA production as a generalized autoimmune response to TBI and to evaluate the specificity of APA and AHA to PHH status. An inflammatory marker panel was used to assess relationships to autoantibody profiles and PHH status. Fifty-one men with TBI (36%) had PHH. An age-related decline in T levels by both TBI and PHH status were observed. Injured men had higher APA IgM, APA IgG, AHA IgM, AHA IgG, AGA IgM, and AGA IgG than controls (p < 0.0001 all comparisons). However, only APA IgM (p = 0.03) and AHA IgM (p = 0.03) levels were lower in the PHH than in the non-PHH group in multivariate analysis. There were no differences in IgG levels by PHH status. Multiple inflammatory markers were positively correlated with IgM autoantibody production. PHH was associated with higher soluble tumor-necrosis-factor receptors I/II, (sTNFRI, sTNFRII), regulated on activation, normal T-cell expressed and secreted (RANTES) and soluble interleukin-2-receptor-alpha (sIL-2Rα) levels. Higher IgM APA, and AHA, but not AGA, in the absence of PHH may suggest a beneficial or reparative role for neuroendocrine tissue-specific IgM autoantibody production against PHH development post-TBI.
Collapse
Affiliation(s)
- Sushupta M Vijapur
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida / South Georgia Veterans Health System, Gainesville, Florida, USA.,Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - David J Barton
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leah Vaughan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raj G Kumar
- Mount Sinai, Icahn School of Medicine, New York, New York, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University, Seoul, South Korea
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Kevin K Wang
- Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA.,Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Ntali G, Tsagarakis S. Traumatic brain injury induced neuroendocrine changes: acute hormonal changes of anterior pituitary function. Pituitary 2019; 22:283-295. [PMID: 30746590 DOI: 10.1007/s11102-019-00944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE It is estimated that approximately 69 million individuals worldwide will sustain a TBI each year, which accounts for substantial morbidity and mortality in both children and adults. TBI may lead to significant neuroendocrine changes, if the delicate pituitary is ruptured. In this review, we focus on the anterior pituitary hormonal changes in the acute post-TBI period and we present the evidence supporting the need for screening of anterior pituitary function in the early post-TBI time along with current suggestions regarding the endocrine assessment and management of these patients. METHODS Original systematic articles with prospective and/or retrospective design studies of acute TBI were included, as were review articles and case series. RESULTS Although TBI may motivate an acute increase of stress hormones, it may also generate a wide spectrum of anterior pituitary hormonal deficiencies. The frequency of post-traumatic anterior hypopituitarism (PTHP) varies according to the severity, the type of trauma, the time elapsed since injury, the study population, and the methodology used to diagnose pituitary hormone deficiency. Early neuroendocrine abnormalities may be transient, but additional late ones may also appear during the course of rehabilitation. CONCLUSIONS Acute hypocortisolism should be diagnosed and managed promptly, as it can be life-threatening, but currently there is no evidence to support treatment of acute GH, thyroid hormones or gonadotropins deficiencies. However, a more comprehensive assessment of anterior pituitary function should be undertaken both in the early and in the post-acute phase, since ongoing hormone deficiencies may adversely affect the recovery and quality of life of these patients.
Collapse
Affiliation(s)
- Georgia Ntali
- Department of Endocrinology and Diabetes, Evangelismos Hospital, Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology and Diabetes, Evangelismos Hospital, Athens, Greece.
| |
Collapse
|
15
|
A Repeated Measures Pilot Comparison of Trajectories of Fluctuating Endogenous Hormones in Young Women with Traumatic Brain Injury, Healthy Controls. Behav Neurol 2019; 2019:7694503. [PMID: 30891100 PMCID: PMC6390250 DOI: 10.1155/2019/7694503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Objective To compare baseline and 72-hour hormone levels in women with traumatic brain injury (TBI) and controls. Setting Hospital emergency department. Participants 21 women ages 18-35 with TBI and 21 controls. Design Repeated measures. Main Measures Serum samples at baseline and 72 hours; immunoassays for estradiol (E2), progesterone (PRO), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and cortisol (CORT); and health history. Results Women with TBI had lower E2 (p = 0.042) and higher CORT (p = 0.028) levels over time. Lower Glasgow Coma Scale (GSC) and OCs were associated with lower FSH (GCS p = 0.021; OCs p = 0.016) and higher CORT (GCS p = 0.001; OCs p = 0.008). Conclusion Acute TBI may suppress E2 and increase CORT in young women. OCs appeared to independently affect CORT and FSH responses. Future work is needed with a larger sample to characterize TBI effects on women's endogenous hormone response to injury and OC use's effects on post-TBI stress response and gonadal function, as well as secondary injury.
Collapse
|
16
|
Fortress AM, Avcu P, Wagner AK, Dixon CE, Pang KCH. Experimental traumatic brain injury results in estrous cycle disruption, neurobehavioral deficits, and impaired GSK3β/β-catenin signaling in female rats. Exp Neurol 2019; 315:42-51. [PMID: 30710530 DOI: 10.1016/j.expneurol.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
An estimated 2.8 million traumatic brain injuries (TBI) occur within the United States each year. Approximately 40% of new TBI cases are female, however few studies have investigated the effects of TBI on female subjects. In addition to typical neurobehavioral sequelae observed after TBI, such as poor cognition, impaired behavior, and somatic symptoms, women with TBI report amenorrhea or irregular menstrual cycles suggestive of disruptions in the hypothalamic-pituitary-gonadal (HPG) axis. HPG dysfunction following TBI has been linked to poor functional outcome in men and women, but the mechanisms by which this may occur or relate to behavior has not been fully developed or ascertained. The present study determined if TBI resulted in HPG axis perturbations in young adult female Sprague Dawley rats, and whether TBI was associated with cognitive and sensorimotor deficits. Following lateral fluid percussion injury, injured females spent significantly more time in diestrus compared to sham females, consistent with a persistent low sex-steroid hormone state. Injured females displayed significantly reduced 17β-estradiol (E2) and luteinizing hormone levels. Concomitantly, injured females were impaired in spatial working memory compared to shams. Impaired GSK3β/β-catenin signaling related to synaptic changes was evident one-week post-injury in the hippocampus among injured females compared to sham females, and this impairment paralleled the deficits in spatial working memory. Sensorimotor function, as evidenced by suppression of the acoustic startle response, was chronically impaired even after normal estrous cycling resumed. These data demonstrate that TBI results in estrous cycle impairments, memory dysfunction, and perturbations in GSK3β/β-catenin signaling, suggesting a potential mechanism for HPG-mediated cognitive impairment following TBI.
Collapse
Affiliation(s)
- Ashley M Fortress
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; VA Pittsburgh Healthcare System, Mailstop 151, University Drive C, Pittsburgh, PA 15240, USA.
| | - Pelin Avcu
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, 65 Bergen Street, Newark, NJ 07103, USA
| | - Amy K Wagner
- Safar Center for Resuscitation Research, Center for Neuroscience, 3471 Fifth Avenue Suite 202, Kaufman BuildingUniversity of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - C Edward Dixon
- VA Pittsburgh Healthcare System, Mailstop 151, University Drive C, Pittsburgh, PA 15240, USA; Safar Center for Resuscitation Research, Center for Neuroscience, 3471 Fifth Avenue Suite 202, Kaufman BuildingUniversity of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, 65 Bergen Street, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Science, Newark, NJ, USA.
| |
Collapse
|
17
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
18
|
Booij HA, Gaykema WDC, Kuijpers KAJ, Pouwels MJM, den Hertog HM. Pituitary dysfunction and association with fatigue in stroke and other acute brain injury. Endocr Connect 2018; 7:R223-R237. [PMID: 29748174 PMCID: PMC6000755 DOI: 10.1530/ec-18-0147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Poststroke fatigue (PSF) is a highly prevalent and debilitating condition. However, the etiology remains incompletely understood. Literature suggests the co-prevalence of pituitary dysfunction (PD) with stroke, and the question raises whether this could be a contributing factor to the development of PSF. This study reviews the prevalence of PD after stroke and other acquired brain injuries and its association with fatigue. SUMMARY We performed a bibliographic literature search of MEDLINE and EMBASE databases for English language studies on PD in adult patients with stroke, traumatic brain injury (TBI) or aneurysmatic subarachnoid hemorrhage (aSAH). Forty-two articles were selected for review. Up to 82% of patients were found to have any degree of PD after stroke. Growth hormone deficiency was most commonly found. In aSAH and TBI, prevalences up to 49.3% were reported. However, data differed widely between studies, mostly due to methodological differences including the diagnostic methods used to define PD and the focus on the acute or chronic phase. Data on PD and outcome after stroke, aSAH and TBI are conflicting. No studies were found investigating the association between PD and PSF. Data on the association between PD and fatigue after aSAH and TBI were scarce and conflicting, and fatigue is rarely been investigated as a primary end point. KEY MESSAGES Data according to the prevalence of PD after stroke and other acquired brain injury suggest a high prevalence of PD after these conditions. However, the clinical relevance and especially the association with fatigue need to be established.
Collapse
Affiliation(s)
- H A Booij
- Department of NeurologyMedisch Spectrum Twente, Enschede, the Netherlands
| | - W D C Gaykema
- Roessingh Rehabilitation CenterEnschede, the Netherlands
| | - K A J Kuijpers
- Roessingh Rehabilitation CenterEnschede, the Netherlands
| | - M J M Pouwels
- Department of EndocrinologyMedisch Spectrum Twente, Enschede, the Netherlands
| | - H M den Hertog
- Department of NeurologyMedisch Spectrum Twente, Enschede, the Netherlands
| |
Collapse
|
19
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
20
|
Wagner AK. TBI Rehabilomics Research: an Exemplar of a Biomarker-Based Approach to Precision Care for Populations with Disability. Curr Neurol Neurosci Rep 2017; 17:84. [PMID: 28929311 DOI: 10.1007/s11910-017-0791-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize how "-omics" technologies can inform rehabilitation-relevant outcomes for a range of populations with neurologically related disability by including outcome metrics linked to the World Health Organization's International Classification of Functioning, Disability, and Health (WHO-ICF) domains of impairments in body function, activity limitations, and participation restrictions. RECENT FINDINGS To date, nearly every area of medicine uses biomarkers in some capacity to aid in understanding how personal biology informs clinical care. "-Omics"-based approaches use high throughput genomics, proteomics, and transcriptomics assay platforms to tailor and personalize treatments for subgroups of similar individuals based on these results. The recent Precision Medicine Initiative (PMI), sponsored by the National Institutes of Health (NIH), has propelled biomarker-based and genomics research to the forefront of many translational research and care programs addressing a variety of medical populations. Yet, the literature is sparse on precision medicine approaches for those with neurologically related and other disability. We demonstrate how the Rehabilomics Research model represents a translational framework for programs of precision rehabilitation research and care focused on linking personal biology to the biopsychosocial constructs that represent the WHO-ICF model and multidimensional outcome. We provide multiple exemplars from our own research program involving individuals with moderate-to-severe traumatic brain injury (TBI) to demonstrate how genomics and other biomarkers can be identified and assessed for their capacity to assist with personalized (precision) neurorehabilitation care and management.
Collapse
Affiliation(s)
- Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Avenue Suite 202, Kaufman Building, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Un traumatisme bien enfoui… déterré. Rev Med Interne 2017; 38:488-490. [DOI: 10.1016/j.revmed.2017.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/21/2022]
|
22
|
Interventions for Posttraumatic Brain Injury Fatigue: An Updated Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2017. [DOI: 10.1007/s40141-017-0147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Geddes RI, Hayashi K, Bongers Q, Wehber M, Anderson IM, Jansen AD, Nier C, Fares E, Farquhar G, Kapoor A, Ziegler TE, VadakkadathMeethal S, Bird IM, Atwood CS. Conjugated Linoleic Acid Administration Induces Amnesia in Male Sprague Dawley Rats and Exacerbates Recovery from Functional Deficits Induced by a Controlled Cortical Impact Injury. PLoS One 2017; 12:e0169494. [PMID: 28125600 PMCID: PMC5268708 DOI: 10.1371/journal.pone.0169494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/16/2016] [Indexed: 12/05/2022] Open
Abstract
Long-chain polyunsaturated fatty acids like conjugated linoleic acids (CLA) are required for normal neural development and cognitive function and have been ascribed various beneficial functions. Recently, oral CLA also has been shown to increase testosterone (T) biosynthesis, which is known to diminish traumatic brain injury (TBI)-induced neuropathology and reduce deficits induced by stroke in adult rats. To test the impact of CLA on cognitive recovery following a TBI, 5-6 month old male Sprague Dawley rats received a focal injury (craniectomy + controlled cortical impact (CCI; n = 17)) or Sham injury (craniectomy alone; n = 12) and were injected with 25 mg/kg body weight of Clarinol® G-80 (80% CLA in safflower oil; n = 16) or saline (n = 13) every 48 h for 4 weeks. Sham surgery decreased baseline plasma progesterone (P4) by 64.2% (from 9.5 ± 3.4 ng/mL to 3.4 ± 0.5 ng/mL; p = 0.068), T by 74.6% (from 5.9 ± 1.2 ng/mL to 1.5 ± 0.3 ng/mL; p < 0.05), 11-deoxycorticosterone (11-DOC) by 37.5% (from 289.3 ± 42.0 ng/mL to 180.7 ± 3.3 ng/mL), and corticosterone by 50.8% (from 195.1 ± 22.4 ng/mL to 95.9 ± 2.2 ng/mL), by post-surgery day 1. CCI injury induced similar declines in P4, T, 11-DOC and corticosterone (58.9%, 74.6%, 39.4% and 24.6%, respectively) by post-surgery day 1. These results suggest that both Sham surgery and CCI injury induce hypogonadism and hypoadrenalism in adult male rats. CLA treatment did not reverse hypogonadism in Sham (P4: 2.5 ± 1.0 ng/mL; T: 0.9 ± 0.2 ng/mL) or CCI-injured (P4: 2.2 ± 0.9 ng/mL; T: 1.0 ± 0.2 ng/mL, p > 0.05) animals by post-injury day 29, but rapidly reversed by post-injury day 1 the hypoadrenalism in Sham (11-DOC: 372.6 ± 36.6 ng/mL; corticosterone: 202.6 ± 15.6 ng/mL) and CCI-injured (11-DOC: 384.2 ± 101.3 ng/mL; corticosterone: 234.6 ± 43.8 ng/mL) animals. In Sham surgery animals, CLA did not alter body weight, but did markedly increase latency to find the hidden Morris Water Maze platform (40.3 ± 13.0 s) compared to saline treated Sham animals (8.8 ± 1.7 s). In CCI injured animals, CLA did not alter CCI-induced body weight loss, CCI-induced cystic infarct size, or deficits in rotarod performance. However, like Sham animals, CLA injections exacerbated the latency of CCI-injured rats to find the hidden MWM platform (66.8 ± 10.6 s) compared to CCI-injured rats treated with saline (30.7 ± 5.5 s, p < 0.05). These results indicate that chronic treatment of CLA at a dose of 25 mg/kg body weight in adult male rats over 1-month 1) does not reverse craniectomy- and craniectomy + CCI-induced hypogonadism, but does reverse craniectomy- and craniectomy + CCI-induced hypoadrenalism, 2) is detrimental to medium- and long-term spatial learning and memory in craniectomized uninjured rats, 3) limits cognitive recovery following a moderate-severe CCI injury, and 4) does not alter body weight.
Collapse
Affiliation(s)
- Rastafa I. Geddes
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Kentaro Hayashi
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Quinn Bongers
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Marlyse Wehber
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Icelle M. Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Alex D. Jansen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Chase Nier
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Emily Fares
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Gabrielle Farquhar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Toni E. Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Sivan VadakkadathMeethal
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Ian M. Bird
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
| | - Craig S. Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, Wisconsin, United States of America
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
24
|
Ranganathan P, Kumar RG, Davis K, McCullough EH, Berga SL, Wagner AK. Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: A case series analysis. Brain Inj 2016; 30:452-461. [PMID: 26963638 DOI: 10.3109/02699052.2016.1144081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVES To describe hormone profiles for pre-/post-menopausal women, to monitor time to resumption of menstruation among pre-menopausal women and to describe cortisol associated LH suppression and phasic variation in other sex hormones over timeMethods and procedures: This study determined amenorrhea duration and characterized acute (days 0-7) and chronic (months 1-6) gonadotropins [luteinizing hormone and follicle stimulating hormone (LH, FSH)], sex hormones (progesterone, estradiol) and stress hormone (cortisol) profiles. Women were pre-menopausal (n = 3) or post-menopausal (n = 3). Among pre-menopausal women, menstrual cycle resolution and phase association (luteal/follicular) was monitored using self-report monthly reproductive history questionnaires. This study compared post-TBI hormone profiles, stratified by menopausal status, to hormone levels from seven controls and described 6- and 12-month outcomes for these women. MAIN OUTCOMES AND RESULTS Consistent with functional hypothalamic amenorrhea (FHA), menstruation resumption among pre-menopausal women occurred when serum cortisol normalized to luteal phase control levels. For post-menopausal women, serum cortisol reductions corresponded with resolution of suppressed LH levels. CONCLUSIONS The stress of TBI results in anovulation and central hypothalamic-pituitary-ovarian (HPG) axis suppression. Future work will examine acute/chronic consequences of post-TBI hypercortisolemia and associated HPG suppression, the temporal association of HPG suppression with other neuroendocrine adaptations and how HPG suppression impacts multidimensional recovery for women with TBI.
Collapse
Affiliation(s)
- Prerna Ranganathan
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Raj G Kumar
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Kendra Davis
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Emily H McCullough
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Sarah L Berga
- b Department of Obstetrics/Gynecology , Wake Forest University , Winston-Salem , NC , USA
| | - Amy K Wagner
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA.,c University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA.,d Safar Center for Resuscitation Research , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
25
|
Pinto SM, Galang G. Concurrent SCI and TBI: Epidemiology, Shared Pathophysiology, Assessment, and Prognostication. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016. [DOI: 10.1007/s40141-016-0109-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|