1
|
Tekin K, Dulger SC, Horozoglu Ceran T, Inanc M, Ozdal PC, Teke MY. Multimodal imaging and genetic characteristics of autosomal recessive bestrophinopathy. J Fr Ophtalmol 2024; 47:104097. [PMID: 38518704 DOI: 10.1016/j.jfo.2024.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 03/24/2024]
Abstract
PURPOSE To report the ocular manifestations, multimodal imaging characteristics and genetic testing results of six patients with autosomal recessive bestrophinopathy (ARB). METHODS This was an observational case series including 12 eyes of 6 patients who were diagnosed with ARB. All patients underwent a complete ophthalmic examination including refraction, slit-lamp biomicroscopy, dilated fundus examination, fundus autofluorescence, optical coherence tomography and electrooculography. BEST1 gene sequencing was also performed for all patients. RESULTS The mean age was 22.8years and the male-female ratio was 0.50. All ARB patients had a hyperopic refractive error. A spectrum of fundus abnormalities, including multifocal yellowish subretinal deposits in the posterior pole, subfoveal accumulation of vitelliform material and cystoid macular edema, was observed. Fundus autofluorescence imaging demonstrated marked hyperautofluorescence corresponding to the yellowish subretinal deposits. Optical coherence tomography revealed serous retinal detachment, intraretinal cysts, brush border appearance caused by elongation of the outer segments of photoreceptors, and hyperreflective dome-shaped deposits at the level of the retinal pigment epithelium. Fundus fluorescein angiography showed hyperfluorescence with staining of the yellowish subretinal deposits. Electrooculography showed reduced Arden ratio in all patients. In addition, biallelic pathogenic variants in the BEST1 gene were detected in all patients. CONCLUSION ARB is a rare autosomal recessive inherited retinal disorder with biallelic pathogenic variants in the BEST1 gene and may present with a wide range of ocular abnormalities that may not be easily diagnosed. Multimodal retinal imaging in conjunction with EOG is helpful to establish the correct diagnosis.
Collapse
Affiliation(s)
- K Tekin
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey.
| | - S C Dulger
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - T Horozoglu Ceran
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - M Inanc
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - P C Ozdal
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - M Y Teke
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Bianco L, Arrigo A, Antropoli A, Del Fabbro S, Mauro L, Pina A, Bandello F, Battaglia Parodi M. The Retinal Phenotype Associated with the p.Pro101Thr BEST1 Variant. Ophthalmol Retina 2024; 8:288-297. [PMID: 37717827 DOI: 10.1016/j.oret.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE To describe the retinal phenotype associated with the p.Pro101Thr BEST1 variant. DESIGN Retrospective, observational case series. PARTICIPANTS Patients diagnosed with bestrophinopathies in which molecular genetic testing identified the p.Pro101Thr BEST1 as well as healthy carriers among their first-degree relatives. METHODS Medical records were reviewed to obtain data on family history and ophthalmic examinations, including retinal imaging. The imaging protocol included OCT and fundus autofluorescence using Spectralis HRA + OCT (Heidelberg Engineering). Genetic analysis was performed by next-generation sequencing. MAIN OUTCOME MEASURES Results of ophthalmic examinations and multimodal imaging features of retinal phenotypes. RESULTS The c.301C>A, p.Pro101Thr BEST1 missense variant was identified as the causative variant in 8 individuals (all men) from 5 families, accounting for 13% of cases (8/61) and 10% of pathogenic alleles (9/93) in our cohort of patients affected by bestrophinopathies. Seven individuals (14 eyes) had the variant in heterozygous status: all eyes had a hyperopic refractive error (median spherical equivalent of + 3.75 diopters [D]) and 4 individuals had a macular dystrophy with mildly reduced visual acuity (median of 20/25 Snellen), whereas the other 3 were asymptomatic carriers. On multimodal retinal imaging, 5 (36%) out of 14 eyes had subclinical bestrophinopathy, 4 (29%) had typical findings of adult-onset foveomacular vitelliform dystrophy (AOFVD), and the remaining 5 (36%) displayed a pattern dystrophy-like phenotype. Follow-up data were available for 6 subjects, demonstrating clinical stability up to 11 years, in both subclinical and clinical forms. An additional patient with autosomal recessive bestrophinopathy was found to harbor the p.Pro101Thr variant in homozygosity. CONCLUSIONS The p.Pro101Thr BEST1 variant is likely a frequent cause of bestrophinopathy in the Italian population and can result in autosomal dominant macular dystrophies with incomplete penetrance and mild clinical manifestations as well as autosomal recessive bestrophinopathy. The spectrum of autosomal dominant maculopathy includes the typical AOFVD and a pattern dystrophy-like phenotype. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Alessio Antropoli
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Sebastiano Del Fabbro
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Mauro
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Bianco L, Arrigo A, Antropoli A, Saladino A, Aragona E, Bandello F, Parodi MB. Non-vasogenic cystoid maculopathy in autosomal recessive bestrophinopathy: novel insights from NIR-FAF and OCTA imaging. Ophthalmic Genet 2024; 45:44-50. [PMID: 37041716 DOI: 10.1080/13816810.2023.2191711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/11/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Autosomal Recessive Bestrophinopathy (ARB) is an inherited retinal disease caused by biallelic mutations in the BEST1 gene. Herein, we report the multimodal imaging findings of ARB presenting with cystoid maculopathy and investigate the short-term response to combined systemic and topical carbonic anhydrase inhibitors (CAIs). MATERIAL AND METHODS An observational, prospective, case series on two siblings affected by ARB is presented. Patients underwent genetic testing and optical coherence tomography (OCT), blue-light fundus autofluorescence (BL-FAF), near-infrared fundus autofluorescence (NIR-FAF), fluorescein angiography (FA), MultiColor imaging, and OCT angiography (OCTA). RESULTS Two male siblings, aged 22 and 16, affected by ARB resulting from c.598C>T, p.(Arg200*) and c.728C>A, p.(Ala243Glu) BEST1 compound heterozygous variants, presented with bilateral multifocal yellowish pigment deposits scattered through the posterior pole that corresponded to hyperautofluorescent deposits on BL-FAF. Vice versa, NIR-FAF mainly disclosed wide hypoautofluorescent areas in the macula. A cystoid maculopathy and shallow subretinal fluid were evident on structural OCT, albeit without evidence of dye leakage or pooling on FA. OCTA demonstrated disruption of the choriocapillaris throughout the posterior pole and sparing of intraretinal capillary plexuses. Six months of combined therapy with oral acetazolamide and topical brinzolamide resulted in limited clinical benefit. CONCLUSIONS We reported two siblings affected by ARB, presenting as non-vasogenic cystoid maculopathy. Prominent alteration of NIR-FAF signal and concomitant choriocapillaris rarefaction on OCTA were noted in the macula. The limited short-term response to combined systemic and topical CAIs might be explained by the impairment of the RPE-CC complex.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
4
|
Wu W, Xu J, Yin H, Fu C, Yao K, Chen X. Heterozygous variants c.781G>A and c.1066dup of serine protease 56 cause familial nanophthalmos by impairing serine-type endopeptidase activity. Br J Ophthalmol 2023; 107:1750-1756. [PMID: 35383051 DOI: 10.1136/bjophthalmol-2021-320909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Nanophthalmos is a rare developmental, bilateral, sporadic or hereditary form of microphthalmos. In this study, the heterozygous variants c.781G>A and c.1066dup of the PRSS56 gene were identified in two patients with nanophthalmos. This study reports the clinical manifestation and the underlying pathogenic mechanism. METHODS Whole-exome sequencing was performed to identify the pathogenic genes in a Chinese family with nanophthalmos. The molecular simulation was used to predict the structures of wild-type or mutant PRSS56. The PRSS56 wild-type or mutation overexpression cellular models have been constructed accordingly. The subcellular localisation was then observed using immunofluorescence and Western-blot techniques. The Folin-Ciocalteu assay was carried out to evaluate serine-type endopeptidase activity, and a wound-healing assay was used to examine the cellular migratory ability. RESULTS The whole-exome sequencing revealed that heterozygous variants c.781G>A and c.1066dup of the PRSS56 gene might contribute to nanophthalmos. Both variants were not identified in the dbSNP, 1000 Genome project or ESP6500 databases. Furthermore, the variants were highly conserved and were involved in biological functions. The mutations result in destructive protein structure and impede serine-type endopeptidase activity, thereby impairing subcellular localisation and cellular migration. CONCLUSION The c.781G>A and c.1066dup variants of the PRSS56 gene might negatively affect protein structures, subcellular localisation, serine-type endopeptidase activity and cellular migratory ability. Together, these changes could lead to the development of nanophthalmos. This study identifies the PRSS56 gene as a potential target for nanophthalmos diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Houfa Yin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxi Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hu F, Li Q, Shi J, Wang R, Zhang Y, Cao X, Zhang X, Ma Y, Wang G, Peng X. Paradoxical autosomal recessive bestrophinopathy-like phenotypes shown in an autosomal dominant pedigree. Eur J Ophthalmol 2023; 33:2131-2138. [PMID: 37019433 DOI: 10.1177/11206721231167767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
PURPOSE This study aimed to evaluate the clinical and genetic characteristics of eight members from a Chinese Han family who displayed autosomal recessive bestrophinopathy (ARB)-like retinal changes in autosomal dominant (AD) inheritance pattern. METHODS Clinical investigations included slit-lamp, tonometry, fundus photography, spectral-domain optical coherence tomography, fundus autofluorescence, electrooculography, and ultrasound biomicroscopy. Ocular axial length measurements were collected retrospectively. The targeted exome sequencing (TES) was applied for the genetic analysis of the proband. PCR-based Sanger sequencing was performed on the family for validation and co-segregation analysis. RESULTS Eight members in the three-generation pedigree complained about vision loss and seven of them had detailed clinical assessments, demonstrating ocular phenotypes including extramacular and vascular arcades subretinal deposits and Arden ratio decline on electrooculography that resembled ARB. Bilateral anterior chamber structure abnormalities were observed in seven cases and three patients were diagnosed with angle-closure glaucoma. Despite clinical phenotypes supporting ARB, there was only a single heterozygous mutation of c.227T > C (p.Ile76Thr) in the BEST1 gene detected in all eight patients, which showcased AD inheritance. CONCLUSIONS An ARB-like phenotype could be caused by a heterozygous mutation of the BEST1 gene and inherited in an AD fashion.
Collapse
Affiliation(s)
- Feng Hu
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Qian Li
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
| | - Jie Shi
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ru Wang
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an, China
| | - Yongpeng Zhang
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
| | - Xinyang Cao
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Xin Zhang
- Department of Ophthalmology, Beijing Puren Hospital, Beijing, China
| | - Ya Ma
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ge Wang
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Xiaoyan Peng
- Capital Medical University, Beijing Tongren Hospital, Beijing Tongren Eye Center, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| |
Collapse
|
6
|
Shi J, Tian L, Sun T, Zhang X, Xu K, Xie Y, Peng X, Tang X, Jin ZB, Li Y. Comprehensive Genetic Analysis Unraveled the Missing Heritability and a Founder Variant of BEST1 in a Chinese Cohort With Autosomal Recessive Bestrophinopathy. Invest Ophthalmol Vis Sci 2023; 64:37. [PMID: 37747403 PMCID: PMC10528473 DOI: 10.1167/iovs.64.12.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose To describe the genetic landscape of BEST1 for a large Chinese cohort with autosomal recessive bestrophinopathy (ARB), identify the missing heritability, and report a common Chinese founder variant. Methods We recruited 65 patients from 63 families with a clinical diagnosis of ARB. All patients underwent ophthalmic examinations and comprehensive genetic analyses, including Sanger DNA sequencing of BEST1 and whole genome sequencing (WGS). The effects of deep intronic variants (DIVs) on splicing were assessed using in vitro splicing assays in HEK293T cells and patient-derived peripheral blood mononuclear cells. Haplotype mapping was performed for 17 unrelated patients harboring variant c.867+97G>A. Results We identified 54 distinct disease-causing variants of BEST1 in 63 pedigrees, 62 probands with biallelic variants, and one family with monoallelic variants. Sanger DNA sequencing of BEST1 initially detected 51 variants in 61 pedigrees, including 19 probands with one heterozygous variant. Subsequent WGS, combined with supplementary Sanger sequencing, revealed three missing DIVs (c.1101-491A>G, c.867+97G>A, and c.867+97G>T) in 20 families. The novel DIV c.1101-491A>G caused an abnormal splicing resulting in a 204-nt pseudoexon (PE) insertion, whereas c.867+97G>A/T relatively strengthened an alternative donor site, resulting in a 203-nt intron retention (IR). The PE and IR generated a premature termination codon downstream. Haplotype analysis identified c.867+97G>A as a common founder variant with an allele frequency of 16%. Conclusions Our results expand the pathogenic variant spectrum of BEST1, and DIVs can explain almost all of the missing heritability. The c.867+97G>A DIV is a common founder variant for Chinese patients with ARB.
Collapse
Affiliation(s)
- Jie Shi
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Lu Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Tengyang Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiaoyan Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xin Tang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| |
Collapse
|
7
|
Cideciyan AV, Jacobson SG, Sumaroka A, Swider M, Krishnan AK, Sheplock R, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Matsui Y, Kondo M, Heon E. Photoreceptor function and structure in retinal degenerations caused by biallelic BEST1 mutations. Vision Res 2023; 203:108157. [PMID: 36450205 PMCID: PMC9825664 DOI: 10.1016/j.visres.2022.108157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
The only approved retinal gene therapy is for biallelic RPE65 mutations which cause a recessive retinopathy with a primary molecular defect located at the retinal pigment epithelium (RPE). For a distinct recessive RPE disease caused by biallelic BEST1 mutations, a pre-clinical proof-of-concept for gene therapy has been demonstrated in canine eyes. The current study was undertaken to consider potential outcome measures for a BEST1 clinical trial in patients demonstrating a classic autosomal recessive bestrophinopathy (ARB) phenotype. Spatial distribution of retinal structure showed a wide expanse of abnormalities including large intraretinal cysts, shallow serous retinal detachments, abnormalities of inner and outer segments, and an unusual prominence of the external limiting membrane. Surrounding the central macula extending from 7 to 30 deg eccentricity, outer nuclear layer was thicker than expected from a cone only retina and implied survival of many rod photoreceptors. Co-localized however, were large losses of rod sensitivity despite preserved cone sensitivities. The dissociation of rod function from rod structure observed, supports a large treatment potential in the paramacular region for biallelic bestrophinopathies.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yoshitsugu Matsui
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 2L3, Canada
| |
Collapse
|
8
|
Battaglia Parodi M, Bianco L, Arrigo A, Saladino A, Antropoli A, Pina A, Marchese A, Aragona E, Rashid HF, Bandello F. Clinical Correlation Between Optical Coherence Tomography Biomarkers and Retinal Sensitivity in Best Vitelliform Macular Dystrophy. Transl Vis Sci Technol 2022; 11:24. [PMID: 36156730 PMCID: PMC9526372 DOI: 10.1167/tvst.11.9.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the clinical and imaging features associated with retinal sensitivity in Best vitelliform macular dystrophy (BVMD). Methods This was a cross-sectional, single-center, observational study. Each patient underwent optical coherence tomography (OCT), near-infrared fundus autofluorescence, and OCT angiography. Macular integrity assessment microperimetry under mesopic conditions was performed to obtain retinal sensitivity thresholds from 68 testing points in the central macula. Structural OCT was used to classify BVMD lesions into four types according to their composition: vitelliform, mixed, subretinal fluid, and atrophy. Multilevel, mixed-effects linear regression was used to determine the factors associated with retinal sensitivity. Results The study included 57 eyes of 30 patients with BVMD, 48 of which (84%) were in a clinical stage. Mean retinal sensitivity varied according to the composition of the lesion: the vitelliform type registering the highest (22 ± 4.1 dB), followed by mixed (18.73 ± 2.7 dB), subretinal fluid (15.68 ± 4.2 dB), and atrophy types (11.85 ± 4.6 dB). The factors most strongly associated with mean retinal sensitivity in BVMD proved to be the OCT lesion type and outer nuclear layer thickness. Conclusions Retinal sensitivity in BVMD is influenced by lesion composition and outer nuclear layer thickness. Further studies with long-term follow-up are warranted to examine retinal sensitivity over time and to validate retinal sensitivity changes as biomarkers for BVMD. Translational Relevance Assessing retinal sensitivity in BVMD provides a new instrument in the clinical characterization of the disease and offers the opportunity to identify imaging biomarkers for use as outcome measures in future clinical trials.
Collapse
Affiliation(s)
| | - Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Marchese
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hassan Farah Rashid
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Constable PA, Kapoor G. Is white the right light for the clinical electrooculogram? Doc Ophthalmol 2021; 143:297-304. [PMID: 34160736 DOI: 10.1007/s10633-021-09845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate if a lower luminance monochromatic LED stimulus could be used as an alternative to a high luminance white light for the clinical electrooculogram. METHODS Clinical electrooculograms were recorded in color normal participants (N = 23) aged 22.6 ± 1.2 years, 7 male and 16 female using the standard 100 cd.m-2 white illuminant and four monochromatic LEDs with peak wavelengths of 448, 534, 596 and 634 nm at 30 cd.m-2. Pupils were dilated and there was a 30 cd.m-2pre-adaptation to white light for 2 min followed by 15 min dark adaptation and 20 min recording in the light stimulus using a Ganzfeld stimulator. RESULTS The normalized LP:DTratio for the short wavelength LED (448 nm) was equivalent in amplitude and timing to the ISCEV standard EOG (p = .99). The LP:DTratio for the white (100 cd.m-2) and 448 nm (30 cd.m-2) were (median ± SEM): 2.49 ± .11 and 2.47 ± .11. The time to light-rise peak was also equivalent being 9.0 ± .2 and 8.0 ± .4 min (p = .54). CONCLUSIONS Consideration may be given to using a short wavelength monochromatic stimulus that is more comfortable for the subject than the current 100 cd.m-2 illuminant.
Collapse
Affiliation(s)
- Paul A Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, PO Box 2100, Adelaide, SA, 5001, Australia.
| | - Garima Kapoor
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
10
|
Autosomal Recessive Bestrophinopathy: Clinical and Genetic Characteristics of Twenty-Four Cases. J Ophthalmol 2021; 2021:6674290. [PMID: 34012682 PMCID: PMC8105111 DOI: 10.1155/2021/6674290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background To describe ocular manifestations, imaging characteristics, and genetic test results of autosomal recessive bestrophinopathy (ARB). The study design is an observational case series. Methods Forty-eight eyes of 24 patients diagnosed with ARB underwent complete ophthalmic examinations including refraction, anterior and posterior segment examination, enhanced depth imaging optical coherence tomography (EDI-OCT), fluorescein angiography (FA), electroretinography (ERG), and electrooculography (EOG). Optical coherence tomography angiography (OCTA) and BEST1 gene sequencing were performed in selected patients. Results The age at onset was 4–35 years (mean: 18.6 years). The male-to-female ratio was 0.45. All patients were hyperopic, except one with less than one diopter myopia. EOG was abnormal in 18 cases with near-normal ERGs. Six patients did not undergo EOG due to their young age. Eighteen patients (75%) had a thick choroid on EDI-OCT, of which three had advanced angle-closure glaucoma, 15 patients were hyperopic, and eight of them had more than four diopters hyperopia in both eyes. Macular retinoschisis was observed in 46 eyes of 23 patients (95%) with cysts mostly located in the inner nuclear layer (INL) to the outer nuclear layer (ONL). Of the 18 patients who underwent FA, mild peripheral leakage was seen in eight eyes of four patients (22%). Subfoveal choroidal neovascularization (CNV) was seen in three eyes of two patients (6%) that responded well to intravitreal bevacizumab (IVB). Seven mutations of the bestrophin-1 (BEST1) gene were found in this study; however, only two of them (p.Gly34 = and p.Leu319Pro) had been previously reported as the cause of ARB based on ClinVar and other literature studies. Conclusions ARB can be presented with a wide spectrum of ocular abnormalities that may not be easily diagnosed. Pachychoroid can occur alongside retinal schisis and may be the underlying cause of angle-closure glaucoma in ARB. Our study also expands the pathogenic mutation spectrum of the BEST1 gene associated with ARB.
Collapse
|
11
|
Yu X, Sun N, Yang X, Zhao Z, Su X, Zhang J, He Y, Lin Y, Ge J, Fan Z. Nanophthalmos-Associated MYRF Gene Mutation Causes Ciliary Zonule Defects in Mice. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33646289 PMCID: PMC7937999 DOI: 10.1167/iovs.62.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Patients with nanophthalmos who undergo intraocular surgery often present with abnormal ciliary zonules. In a previous study, we reported mutation in MYRF that is implicated in the pathogenesis of nanophthalmos. The aim of this study was to model the mutation in mice to explore the role of MYRF on zonule structure and its major molecular composition, including FBN1 and FBN2. Methods Human MYRF nanophthalmos frameshift mutation was generated in mouse using the CRISPR-Cas9 system. PCR and Sanger sequencing were used for genotype analysis of the mice model. Anterior chamber depth (ACD) was measured using hematoxylin and eosin–stained histology samples. Morphologic analysis of ciliary zonules was carried out using silver staining and immunofluorescence. Transcript and protein expression levels of MYRF, FBN1, and FBN2 in ciliary bodies were quantified using quantitative real-time PCR (qRT-PCR) and Western blot. Results A nanophthalmos frameshift mutation (c.789delC, p.N264fs) of MYRF in mice showed ocular phenotypes similar to those reported in patients with nanophthalmos. ACD was reduced in MYRF mutant mice (MYRFmut/+) compared with that in littermate control mice (MYRF+/+). In addition, the morphology of ciliary zonules showed reduced zonular fiber density and detectable structural dehiscence of zonular fibers. Furthermore, qRT-PCR analysis and Western blot showed a significant decrease in mRNA expression levels of MYRF, FBN1, and FBN2 in MYRFmut/+ mice. Conclusions Changes in the structure and major molecular composition of ciliary zonules accompanied with shallowing anterior chamber were detected in MYRFmut/+ mice. Therefore, MYRF mutant mice strain is a useful model for exploring pathogenesis of zonulopathy, which is almost elusive for basic researches due to lack of appropriate animal models.
Collapse
Affiliation(s)
- Xiaowei Yu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenni Zhao
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoqian Su
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiamin Zhang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuqing He
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yixiu Lin
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhigang Fan
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
MAINTENANCE OF GOOD VISUAL ACUITY IN BEST DISEASE ASSOCIATED WITH CHRONIC BILATERAL SEROUS MACULAR DETACHMENT. Retin Cases Brief Rep 2020; 14:1-5. [PMID: 28806213 DOI: 10.1097/icb.0000000000000618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We describe the long-term follow-up of a patient with multifocal Best disease with chronic bilateral serous macular detachment and unusual peripheral findings associated with a novel mutation in the BEST1 gene. METHODS Case report. RESULTS A 59-year-old white woman was referred for an evaluation of her macular findings in 1992. There was a family history of Best disease in the patient's mother and a male sibling. Her medical history was unremarkable. Best-corrected visual acuity was 20/20 in her right eye and 20/25 in her left eye. The anterior segment examination was normal in both eyes. Funduscopic examination showed multifocal hyperautofluorescent vitelliform deposits with areas of subretinal fibrosis in both eyes. An electrooculogram showed Arden ratios of 1.32 in the right eye and 1.97 in the left eye. Ultra-widefield color and fundus autofluorescence imaging showed degenerative retinal changes in areas throughout the entire fundus in both eyes. Optical coherence tomography, including annual eye-tracked scans from 2005 to 2016, showed persistent bilateral serous macular detachments. Despite chronic foveal detachment, visual acuity was 20/25 in her right eye and 20/40 in her left eye, 24 years after initial presentation. Genetic testing showed a novel c.238T>A (p.Phe80Ile) missense mutation in the BEST1 gene. CONCLUSION Some patients with Best disease associated with chronic serous macular detachment can maintain good visual acuity over an extended follow-up. To our knowledge, this is the first report of Best disease associated with this mutation in the BEST1 gene.
Collapse
|
13
|
Xuan Y, Zhang Y, Zong Y, Wang M, Li L, Ye X, Liu W, Chen J, Sun X, Zhang Y, Chen Y. The Clinical Features and Genetic Spectrum of a Large Cohort of Chinese Patients With Vitelliform Macular Dystrophies. Am J Ophthalmol 2020; 216:69-79. [PMID: 32278767 DOI: 10.1016/j.ajo.2020.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To provide the clinical and genetic characteristics of a large cohort of Chinese patients with vitelliform macular dystrophies. DESIGN Cross-sectional study. METHODS One hundred and thirty-four unrelated Chinese patients diagnosed with Best vitelliform macular dystrophy (BVMD), autosomal recessive bestrophinopathy (ARB), or adult vitelliform macular dystrophy (AVMD) were enrolled. Detailed ophthalmic examinations and genetic testing on vitelliform macular dystrophy-related genes were performed. Genotype and phenotype association were analyzed among different diagnostic groups. RESULTS In total, 87 BVMD, 30 AVMD, and 17 ARB patients were enrolled in this study. Genetic analysis identified 37 BEST1 mutations in 53 patients with BVMD and ARB. Of these, 5 variants (c.254A>C, c.291C>G, c.722C>G, c.848_850del, c.1740-2A>C) were novel. The variant c.898G>A was a hotspot mutation, which was identified in 13 patients with BVMD and 1 patient with ARB. There were significant differences of ocular biometric parameters among patients with homozygous or compound heterozygous mutations, heterozygous mutations, and those without mutations of BEST1. Homozygous or compound heterozygous patients had shortest axial length (AL), shallowest anterior chamber depth (ACD), and highest intraocular pressure (IOP); patients without mutations had longest AL, deepest ACD, and lowest IOP; and heterozygous patients were in between. Moreover, 7 patients harboring heterozygous mutations in BEST1 and 3 patients without BEST1 mutations showed similar clinical appearance to ARB in our cohort. CONCLUSIONS This is the largest sample size study of Chinese vitelliform macular dystrophy patients. Our results indicated that assessment of angle-closure risk is a necessary consideration for all types of BEST1-related vitelliform macular dystrophies. The study expanded both the clinical and genetic findings of 3 common types of vitelliform macular dystrophies in a Chinese population.
Collapse
Affiliation(s)
- Yi Xuan
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai, China
| | - Min Wang
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lei Li
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xiaofeng Ye
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yongjin Zhang
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology & Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
14
|
Shi Y, Tian J, Han Y, Oatts J, Wang N. Pathogenic role of the vitreous in angle-closure glaucoma with autosomal recessive bestrophinopathy: a case report. BMC Ophthalmol 2020; 20:271. [PMID: 32646389 PMCID: PMC7346445 DOI: 10.1186/s12886-020-01543-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Autosomal recessive bestrophinopathy (ARB) is caused by homozygous or compound heterozygous mutations in the BEST1 gene and always accompanied with refractory angle-closure glaucoma (ACG). The exact mechanism for the pan-ocular abnormalities in ARB is still unknown and the management of ACG in these cases is challenging. Case presentation A 26-year-old patient with a novel autosomal–recessively inherited c.1 A > G variant in BEST1 diagnosed as ARB and ACG, presented as widespread vitelliform deposits in the posterior pole, retinoschisis in the macula, vitreoretinal interface abnormalities, shallow anterior chamber depth (ACD) and angle closure with uncontrolled intraocular pressure (IOP). Combined phacoemulsification, intraocular lens implantation and goniosynechialysis did not improve any clinical presentation. However, low dose transscleral cyclophotocoagulation with subsequent vitreous liquefaction effectively lowered IOP, deepened ACD, and rehabilitated retinoschisis in both eyes. Conclusions This case implied vitreous condition may play a pathogenic role in formation of retinoschisis and ACG in the patients with ARB. Treatments that induce vitreous liquefaction could be used to treat young ACG patients with ARB or other kinds of ACG to avoid vision-threatening post-operative complications.
Collapse
Affiliation(s)
- Yan Shi
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, 100730, China
| | - Jiaxin Tian
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, 100730, China
| | - Ying Han
- Department of Ophthalmology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Julius Oatts
- Department of Ophthalmology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, 100730, China. .,Beijing Tongren Hospital, 1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
15
|
Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JWB, Besirli CG, Birch DG, Branham KE, Cideciyan AV, Daiger SP, Dalkara D, Duncan JL, Fahim AT, Flannery JG, Gattegna R, Heckenlively JR, Heon E, Jayasundera KT, Khan NW, Klassen H, Leroy BP, Molday RS, Musch DC, Pennesi ME, Petersen-Jones SM, Pierce EA, Rao RC, Reh TA, Sahel JA, Sharon D, Sieving PA, Strettoi E, Yang P, Zacks DN. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Transl Vis Sci Technol 2020; 9:2. [PMID: 32832209 PMCID: PMC7414644 DOI: 10.1167/tvst.9.7.2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alessandro Iannaccone
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Institute of Ophthalmology, University College London, London, UK
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Isabelle Audo
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven P Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center Houston, Houston, TX, USA
| | - Deniz Dalkara
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France
| | - Jacque L Duncan
- Department of Ophthalmology, University of California-San Francisco, San Francisco, CA, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| | | | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Bart P Leroy
- Department of Ophthalmology and Center Medical Genetics, Ghent University Hospital and University, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert S Molday
- Department of Biochemistry/Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Musch
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jose A Sahel
- Sorbonne Université, Institut de la Vision, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul A Sieving
- Department of Ophthalmology and Center for Ocular Regenerative Therapy, University of California-Davis School of Medicine, Sacramento, CA, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Enrica Strettoi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science Center, Portland, OR, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
16
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
17
|
Birtel J, Gliem M, Herrmann P, MacLaren RE, Bolz HJ, Charbel Issa P. Peripapillary Sparing in Autosomal Recessive Bestrophinopathy. Ophthalmol Retina 2020; 4:523-529. [PMID: 32147488 DOI: 10.1016/j.oret.2019.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE To demonstrate that peripapillary sparing on autofluorescence images is a characteristic feature of autosomal recessive bestrophinopathy (ARB). DESIGN Retrospective, cross-sectional case series and review of previous published cases. PARTICIPANTS Twelve patients with ARB. METHODS Ophthalmic assessment included best-corrected visual acuity testing, electrophysiologic examinations, and multimodal retinal imaging. Retinal imaging included OCT, blue-light autofluorescence imaging, fundus photography, and widefield pseudocolor and autofluorescence fundus imaging. MAIN OUTCOME MEASURES Presence of peripapillary sparing on fundus autofluorescence images. RESULTS Relatively normal-appearing peripapillary autofluorescence was identified in all patients, independent of the disease stage or presence of widespread changes on autofluorescence widefield images. OCT images of the peripapillary region revealed mild structural abnormalities, including a thinned outer nuclear layer and intraretinal or subretinal fluid. A review of previously published cases confirmed peripapillary sparing as consistent feature on fundus autofluorescence images. Genetic analysis revealed 10 previously reported mutations, 1 novel missense (c.83T>A; p.Ile28Asn) and 2 novel truncating (c.658C>T; p.Gln220* and c.1370C>G; p.Ser457*) variants in BEST1. CONCLUSIONS In ARB patients, peripapillary sparing is a consistent feature on fundus autofluorescence images, whereas the same region is less preserved on OCT images.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt, Germany; Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Garnai SJ, Brinkmeier ML, Emery B, Aleman TS, Pyle LC, Veleva-Rotse B, Sisk RA, Rozsa FW, Ozel AB, Li JZ, Moroi SE, Archer SM, Lin CM, Sheskey S, Wiinikka-Buesser L, Eadie J, Urquhart JE, Black GC, Othman MI, Boehnke M, Sullivan SA, Skuta GL, Pawar HS, Katz AE, Huryn LA, Hufnagel RB, Camper SA, Richards JE, Prasov L. Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice. PLoS Genet 2019; 15:e1008130. [PMID: 31048900 PMCID: PMC6527243 DOI: 10.1371/journal.pgen.1008130] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/20/2019] [Accepted: 04/09/2019] [Indexed: 01/11/2023] Open
Abstract
Nanophthalmos is a rare, potentially devastating eye condition characterized by small eyes with relatively normal anatomy, a high hyperopic refractive error, and frequent association with angle closure glaucoma and vision loss. The condition constitutes the extreme of hyperopia or farsightedness, a common refractive error that is associated with strabismus and amblyopia in children. NNO1 was the first mapped nanophthalmos locus. We used combined pooled exome sequencing and strong linkage data in the large family used to map this locus to identify a canonical splice site alteration upstream of the last exon of the gene encoding myelin regulatory factor (MYRF c.3376-1G>A), a membrane bound transcription factor that undergoes autoproteolytic cleavage for nuclear localization. This variant produced a stable RNA transcript, leading to a frameshift mutation p.Gly1126Valfs*31 in the C-terminus of the protein. In addition, we identified an early truncating MYRF frameshift mutation, c.769dupC (p.S264QfsX74), in a patient with extreme axial hyperopia and syndromic features. Myrf conditional knockout mice (CKO) developed depigmentation of the retinal pigment epithelium (RPE) and retinal degeneration supporting a role of this gene in retinal and RPE development. Furthermore, we demonstrated the reduced expression of Tmem98, another known nanophthalmos gene, in Myrf CKO mice, and the physical interaction of MYRF with TMEM98. Our study establishes MYRF as a nanophthalmos gene and uncovers a new pathway for eye growth and development.
Collapse
Affiliation(s)
- Sarah J. Garnai
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Michelle L. Brinkmeier
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Tomas S. Aleman
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Scheie Eye Institute, Department of Ophthalmology, Philadelphia, PA, United States of America
| | - Louise C. Pyle
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Biliana Veleva-Rotse
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Robert A. Sisk
- Cincinnati Eye Institute, Cincinnati, Ohio, United States of America
| | - Frank W. Rozsa
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
- Molecular and Behavior Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Sayoko E. Moroi
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Steven M. Archer
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Cheng-mao Lin
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Sarah Sheskey
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Laurel Wiinikka-Buesser
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - James Eadie
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Jill E. Urquhart
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary’s Hospital, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Graeme C.M. Black
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary’s Hospital, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mohammad I. Othman
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Scot A. Sullivan
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, OK
| | - Gregory L. Skuta
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, OK
| | - Hemant S. Pawar
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Alexander E. Katz
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Laryssa A. Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Sally A. Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Julia E. Richards
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States of America
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
19
|
Nanophthalmos: A Review of the Clinical Spectrum and Genetics. J Ophthalmol 2018; 2018:2735465. [PMID: 29862063 PMCID: PMC5971257 DOI: 10.1155/2018/2735465] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
Nanophthalmos is a clinical spectrum of disorders with a phenotypically small but structurally normal eye. These disorders present significant clinical challenges to ophthalmologists due to a high rate of secondary angle-closure glaucoma, spontaneous choroidal effusions, and perioperative complications with cataract and retinal surgeries. Nanophthalmos may present as a sporadic or familial disorder, with autosomal-dominant or recessive inheritance. To date, five genes (i.e., MFRP, TMEM98, PRSS56, BEST1, and CRB1) and two loci have been implicated in familial forms of nanophthalmos. Here, we review the definition of nanophthalmos, the clinical and pathogenic features of the condition, and the genetics of this disorder.
Collapse
|
20
|
Constable PA, Ngo D, Quinn S, Thompson DA. A meta-analysis of clinical electro-oculography values. Doc Ophthalmol 2017; 135:219-232. [PMID: 29019002 DOI: 10.1007/s10633-017-9616-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND The aim of the meta-analysis was to derive a range of mean normal clinical electrooculogram (EOG) values from a systematic review of published EOG studies that followed the guidelines of the ISCEV standard for clinical electro-oculography. METHODS A systematic literature review was performed using four relevant databases limited to peer-reviewed articles in English between 1967 and February 2017. Studies reporting clinical EOG or FO normal values were included when the report used a standard 30° horizontal saccade, a retinal luminance of between 100 and 250 cd m-2, and had > 10 subjects in their normative values. The search identified 1145 articles after duplicates were removed with subsequent screening of the abstracts excluding a further 1098, resulting in 47 full-text articles that were then assessed by the author (PC) with a final nine articles meeting the inclusion criteria. An overall effect estimate using inverse variance-weighted meta-analysis was performed to estimate the mean values for the light peak/dark trough ratio (LP:DT ratio) (dilated and undilated), the time to the LP, the amplitude of the LP, dark trough (DT) and the fast oscillation (FO) peak-to-trough ratio from the included studies. RESULTS The mean dilated LP:DT ratio was 2.35 (95% CI 2.28-2.42); undilated LP:DT ratio was 2.37 (95% CI 2.28-2.45); LP amplitude was 835 (95% CI 631-1039) µV and the mean time to the LP being 8.2 (95% CI 7.7-8.7) min. The mean DT amplitude was 358 (95% CI 292-424) µV, and the mean FO peak-to-trough ratio was 1.13 (95% CI 1.11-1.16). The results of the LP/DT ratio are drawn from studies with a mean ± standard deviation (SD) age of 34.08 ± 12.93 years for dilated and 33.65 ± 12.28 years for undilated LP/DT ratios. CONCLUSIONS The meta-analysis of EOG studies has generated a reference range of normal mean values for clinicians to refer to when using the ISCEV clinical EOG. It provides a potential method to generate similar data sets from published normal values in related visual electrophysiology tests.
Collapse
Affiliation(s)
- Paul A Constable
- College of Nursing and Health Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - David Ngo
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stephen Quinn
- Department of Statistics, Data Science and Epidemiology, Swinburne University of Technology, Melbourne, Australia
| | - Dorothy A Thompson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute for Child Health, London, UK
| |
Collapse
|
21
|
Kubota D, Gocho K, Akeo K, Kikuchi S, Sugahara M, Matsumoto CS, Shinoda K, Mizota A, Yamaki K, Takahashi H, Kameya S. Detailed analysis of family with autosomal recessive bestrophinopathy associated with new BEST1 mutation. Doc Ophthalmol 2016; 132:233-43. [PMID: 27071392 PMCID: PMC4880638 DOI: 10.1007/s10633-016-9540-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/07/2016] [Indexed: 11/26/2022]
Abstract
Purpose To describe the clinical and genetic findings in a patient with autosomal recessive bestrophinopathy (ARB) and his healthy parents. Methods The patient and his healthy non-consanguineous parents underwent detailed ophthalmic evaluations including electro-oculography (EOG), spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. Mutation analysis of the BEST1 gene was performed by Sanger sequencing. Results The FAF images showed multiple spots of increased autofluorescence, and the sites of these spots corresponded to the yellowish deposits detected by ophthalmoscopy. SD-OCT showed cystoid macular changes and a shallow serous macular detachment. The Arden ratio of the EOG was markedly reduced to 1.1 in both eyes. Genetic analysis of the proband detected two sequence variants of the BEST1 gene in the heterozygous state: a novel variant c.717delG, p.V239VfsX2 and an already described c.763C>T, p.R255W variant associated with Best vitelliform macular dystrophy and ARB. The proband’s father carried the c.717delG, p.V239VfsX2 variant in the heterozygous state, and the mother carried the c.763C>T, p.R255W variant in the heterozygous state. The parents who were heterozygous for the BEST1 variants had normal visual acuity, EOG, SD-OCT, and FAF images. Conclusions In a truncating BEST1 mutation, the phenotype associated with ARB is most likely due to a marked decrease in the expression of BEST1 promoted by the nonsense-mediated decay surveillance mechanism, and it may depend on the position of the premature termination of the codon created.
Collapse
Affiliation(s)
- Daiki Kubota
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Kiyoko Gocho
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Keiichiro Akeo
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Sachiko Kikuchi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Michitaka Sugahara
- Inoue Eye Clinic, 4-3 Surugadai, Kanda, Chiyoda-ku, Tokyo, 101-0062, Japan
- Sugahara Eye Clinic, 1-13-3, Minami-senju, Arakawa-ku, Tokyo, 116-0003, Japan
| | - Celso Soiti Matsumoto
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kunihiko Yamaki
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Hiroshi Takahashi
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.
| |
Collapse
|