1
|
Ambrosio L, Perepelkina T, Elhusseiny AM, Fulton AB, Gonzalez Monroy JE. Advancing Insights into Pediatric Macular Diseases: A Comprehensive Review. J Clin Med 2025; 14:614. [PMID: 39860622 PMCID: PMC11765775 DOI: 10.3390/jcm14020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Pediatric macular disorders are a diverse group of inherited retinal diseases characterized by central vision loss due to dysfunction and degeneration of the macula, the region of the retina responsible for high-acuity vision. Common disorders in this category include Stargardt disease, Best vitelliform macular dystrophy, and X-linked retinoschisis. These conditions often manifest during childhood or adolescence, with symptoms such as progressive central vision loss, photophobia, and difficulty with fine visual tasks. Underlying mechanisms involve genetic mutations that disrupt photoreceptor and retinal pigment epithelium function, accumulating toxic byproducts, impaired ion channel activity, or structural degeneration. Advances in imaging modalities like optical coherence tomography and fundus autofluorescence have improved diagnostic accuracy and disease monitoring. Emerging therapies are transforming the treatment landscape. Gene therapy and genome editing hold promise for addressing the genetic basis of these disorders, while stem cell-based approaches and pharmacological interventions aim to restore retinal function and mitigate damage. Personalized medicine, driven by genomic sequencing, offers the potential for tailored interventions. Despite current challenges, ongoing research into molecular mechanisms, advanced imaging, and innovative therapies provides hope for improving outcomes and quality of life in children with macular disorders.
Collapse
Affiliation(s)
- Lucia Ambrosio
- Department of Ophthalmology, University of Naples Federico II, 80138 Naples, Italy
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| | | | - Abdelrahman M. Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, Little Rock, AR 72205, USA;
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Anne B. Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Efren Gonzalez Monroy
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kiel C, Biasella F, Stöhr H, Rating P, Spital G, Kellner U, Hufendiek K, Huchzermeyer C, Jaegle H, Ruether K, Weber BHF. 18-Years of single-centre DNA testing in over 7000 index cases with inherited retinal dystrophies and optic neuropathies. Sci Rep 2024; 14:25529. [PMID: 39462066 PMCID: PMC11513943 DOI: 10.1038/s41598-024-77014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are characterized by distinct genetic causes and molecular mechanisms that can lead to varying degrees of visual impairment. The discovery of pathogenic variants in numerous genes associated with these conditions has deepened our understanding of the molecular pathways that influence both vision and disease manifestation and may ultimately lead to novel therapeutic approaches. Over the past 18 years, our DNA diagnostics unit has been performing genetic testing on patients suspected of having IRD or ION, using state-of-the-art mutation detection technologies that are continuously updated. This report presents a retrospective analysis of genetic data from 6237 IRD and 780 ION patients. Out of these, 3054 IRD patients (49.0%) and 211 ION patients (27.1%) received a definitive molecular diagnosis, with disease-causing variants identified in 139 different genes. The genes most implicated in disease pathologies are ABCA4, accounting for 23.8% of all IRD/ION index cases, followed by BEST1 (7.8%), USH2A (6.2%), PRPH2 (5.7%), RPGR (5.6%), RS1 (5.5%), OPA1 (4.3%), and RHO (3.1%). Our study has compiled the most extensive dataset in combined IRD/ION diagnostics to date and offers valuable insights into the frequencies of mutant alleles and the efficiency of mutation detection in various inherited retinal conditions.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Philipp Rating
- Department of Ophthalmology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Georg Spital
- Augenzentrum am St. Franziskus-Hospital, Hohenzollernring 74, 48145, Münster, Germany
| | - Ulrich Kellner
- Center for Rare Retinal Diseases, AugenZentrum Siegburg, Europaplatz 3, 53721, Siegburg, Germany
- RetinaScience, Postfach 301212, 53192, Bonn, Germany
| | - Karsten Hufendiek
- Hannover Medical School, University Clinic of Ophthalmology, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Herbert Jaegle
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Klaus Ruether
- Specialist Practice Ophthalmology, Dorotheenstraße 56, 10117, Berlin, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Heath Jeffery RC, Mukhtar SA, McAllister IL, Morgan WH, Mackey DA, Chen FK. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet 2021; 42:431-439. [PMID: 33939573 PMCID: PMC8315212 DOI: 10.1080/13816810.2021.1913610] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: This study examined the frequency of inherited retinal diseases (IRDs) as the reason for blindness registrations over the last two decades and the demographic and clinical phenotypes of inherited retinal disease (IRD)-related registrations. Materials and methods: Retrospective, observational study of individuals registered with a state-wide blind and vision-impaired registry. Low-vision or blindness-only (≤20/200 or ≤20°) certificates issued to children (0-15 years), working-age (16-64 years) and older-age (65 and older) adults were assessed. Sex and age distributions were examined for the top 20 reasons for certification. Demographic and clinical features of specific phenotypes of IRDs listed in the registry were examined. Results: Amongst 11824 low-vision certificates issued between July 1995 and January 2017, 679 (5.7%) listed an IRD as the reason for registration. In individuals with blindness-only certification (N=4919), IRDs was the second most common diagnosis (8.3%), overtaking glaucoma (8.1%) and diabetic retinopathy (5.4%). IRD was the second most common reason for low-vision certification amongst children (11.6%) and the most common reason amongst working-age population (23.3%). The mean±SD age for IRD-related blindness-only certification was 46±20 years. The top three phenotypes of IRD-related low-vision certification were non-syndromic retinitis pigmentosa (54%), Stargardt disease (12%) and macular dystrophy (8%). Conclusion: Our findings of IRDs as a common cause of blindness in all ages justify continued funding for providing low-vision services and developing treatments for these conditions.
Collapse
Affiliation(s)
- Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Australia
| | - Syed Aqif Mukhtar
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Australia
| | - Ian L McAllister
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Australia
| | - William H Morgan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Australia
| |
Collapse
|
4
|
O'Hare F, Edwards TL, Hu ML, Hickey DG, Zhang AC, Wang JH, Liu Z, Ayton LN. An optometrist's guide to the top candidate inherited retinal diseases for gene therapy. Clin Exp Optom 2021; 104:431-443. [PMID: 33689629 DOI: 10.1080/08164622.2021.1878851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
This review presents the phenotypic and genotypic profiles of a select group of inherited retinal diseases (IRDs) that are currently the focus of retinal gene therapy trials globally. Research progress in IRD treatment trials may soon lead to their availability in Australia and New Zealand, as either approved treatment or a clinical trial. The salient clinical characteristics of retinitis pigmentosa-the largest IRD category-are highlighted, with specific reference to RPE65-associated Leber congenital amaurosis, followed by other specific IRDs, namely choroideremia and ABCA4-associated Stargardt disease. These IRDs are selected based on their candidacy for gene therapy. Guidance on the clinical diagnostic tests that support each of these diagnoses will be presented. More broadly, the most useful structure and function measures to monitor IRD progression is discussed, along with the key assessments that offer differential diagnostic insight. This review is intended to be a clinical guide for optometrists, to assist in assessment and management of individuals who may be eligible for current and future gene therapies. A companion article in this issue will provide an overview of the basic principles of gene therapy and its development as a new treatment for inherited retinal diseases.
Collapse
Affiliation(s)
- Fleur O'Hare
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Alexis C Zhang
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhengyang Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Collison FT, Lee W, Fishman GA, Park JC, Zernant J, McAnany JJ, Allikmets R. CLINICAL CHARACTERIZATION OF STARGARDT DISEASE PATIENTS WITH THE p.N1868I ABCA4 MUTATION. Retina 2020; 39:2311-2325. [PMID: 30204727 DOI: 10.1097/iae.0000000000002316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the Stargardt disease phenotype associated with an unusually common and "extremely hypomorphic" ABCA4 variant, p.N1868I. METHODS The charts of 27 patients with p.N1868I on one allele and a severe/deleterious mutation on the other allele were reviewed. Subjective age of onset, best-corrected visual acuity, and stage of disease were recorded for all 27 patients, 18 of whom had multiple visits. When available, fundus photography, spectral domain optical coherence tomography, fundus autofluorescence, full-field electroretinograms, Goldmann visual fields, and fluorescein angiography were included. Five families with multiple affected members were analyzed. RESULTS The median age at symptom onset was 41.5 years, and 3 p.N1868I patients had not developed visual symptoms as of the most recent eye examination. Median best-corrected visual acuity in the better-seeing eye at baseline was 20/25, and the median duration from symptom onset to legal blindness was 25 years. The five families described in this study demonstrated clinically significant intrafamilial variability, and affected family members who did not share the p.N1868I variant had relatively more severe phenotypes. CONCLUSION This study demonstrates the consistency of foveal sparing, the variation in age at onset, the intrafamilial variability, and the prognosis with regard to visual acuity in p.N1868I-associated Stargardt disease.
Collapse
Affiliation(s)
- Frederick T Collison
- The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York
| | - Gerald A Fishman
- The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois.,Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, Illinois
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, Illinois
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, Illinois
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
6
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Cicinelli MV, Battista M, Starace V, Battaglia Parodi M, Bandello F. Monitoring and Management of the Patient with Stargardt Disease. CLINICAL OPTOMETRY 2019; 11:151-165. [PMID: 31819694 PMCID: PMC6886536 DOI: 10.2147/opto.s226595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/16/2019] [Indexed: 05/10/2023]
Abstract
Stargardt disease (STGD1) represents one of the major common causes of inherited irreversible visual loss. Due to its high phenotypic and genotypic heterogeneity, STGD1 is a complex disease to understand. Non-invasive imaging, biochemical, and genetic advances have led to substantial improvements in unveiling the disease processes and novel promising therapeutic landscapes have been proposed. This review recapitulates the modalities for monitoring patients with STGD1 and the therapeutic options currently under investigation for the different stages of the disease.
Collapse
Affiliation(s)
- Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
- Correspondence: Maria Vittoria Cicinelli Department of Ophthalmology, San Raffaele Vita-Salute University, Via Olgettina, 60, Milano20132, ItalyTel +39 02 26432648Fax +39 02 26483643 Email
| | - Marco Battista
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Starace
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Francesco Bandello
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|