1
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024:S1525-0016(24)00677-4. [PMID: 39489915 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10802-7. [PMID: 39422807 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Badwal AK, Singh S. A comprehensive review on the current status of CRISPR based clinical trials for rare diseases. Int J Biol Macromol 2024; 277:134097. [PMID: 39059527 DOI: 10.1016/j.ijbiomac.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
A considerable fraction of population in the world suffers from rare diseases. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its related Cas proteins offer a modern form of curative gene therapy for treating the rare diseases. Hereditary transthyretin amyloidosis, hereditary angioedema, duchenne muscular dystrophy and Rett syndrome are a few examples of such rare diseases. CRISPR/Cas9, for example, has been used in the treatment of β-thalassemia and sickle cell disease (Frangoul et al., 2021; Pavani et al., 2021) [1,2]. Neurological diseases such as Huntington's have also been focused in some studies involving CRISPR/Cas (Yang et al., 2017; Yan et al., 2023) [3,4]. Delivery of these biologicals via vector and non vector mediated methods depends on the type of target cells, characteristics of expression, time duration of expression, size of foreign genetic material etc. For instance, retroviruses find their applicability in case of ex vivo delivery in somatic cells due to their ability to integrate in the host genome. These have been successfully used in gene therapy involving X-SCID patients although, incidence of inappropriate activation has been reported. On the other hand, ex vivo gene therapy for β-thalassemia involved use of BB305 lentiviral vector for high level expression of CRISPR biological in HSCs. The efficacy and safety of these biologicals will decide their future application as efficient genome editing tools as they go forward in further stages of human clinical trials. This review focuses on CRISPR/Cas based therapies which are at various stages of clinical trials for treatment of rare diseases and the constraints and ethical issues associated with them.
Collapse
Affiliation(s)
- Amneet Kaur Badwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
4
|
Vrabič N, Fakin A, Tekavčič Pompe M. Spectrum and frequencies of extraocular features reported in CEP290-associated ciliopathy - A systematic review. J Fr Ophtalmol 2024; 47:104232. [PMID: 39213781 DOI: 10.1016/j.jfo.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the CEP290 gene may result in a broad spectrum of diseases, ranging from lethal neonatal syndromes to isolated retinopathy. A detailed review of the clinical spectrum with the incidence of affected extraocular systems has not yet been published. A review of published papers was carried out to provide a comprehensive report on systemic signs and symptoms associated with CEP290 ciliopathies and to explore the genotype-phenotype correlation. Genetic and clinical data were collected on patients with biallelic variants in the CEP290 gene and the extraocular tissues affected. Genotype-phenotype analysis was performed. Two hundred thirty-five patients were included in the analysis. The most frequently reported organs affected, after the eye, were the central nervous system (82.6%, 194/235), followed by the kidney (53.2%, 125/235), skeletal system (15.3% 36/235), and a large spectrum of other, less frequently reported clinical manifestations. Patients with two variants that together predictably resulted in a low amount of CEP290 protein showed a significant association with having two or more extraocular organ systems affected. This is the most extensive report to date on patients with CEP290-ciliopathy and affected extraocular tissues. Based on these findings and previous publications, systemic screening is proposed, together with a clinical pathway for patients with CEP290-related ciliopathy.
Collapse
Affiliation(s)
- N Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - A Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - M Tekavčič Pompe
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Malka S, Biswas P, Berry AM, Sangermano R, Ullah M, Lin S, D'Antonio M, Jestin A, Jiao X, Quinodoz M, Sullivan L, Gardner JC, Place EM, Michaelides M, Kaminska K, Mahroo OA, Schiff E, Wright G, Cancellieri F, Vaclavik V, Santos C, Rehman AU, Mehrotra S, Azhar Baig HM, Iqbal M, Ansar M, Santos LC, Sousa AB, Tran VH, Matsui H, Bhatia A, Naeem MA, Akram SJ, Akram J, Riazuddin S, Ayuso C, Pierce EA, Hardcastle AJ, Riazuddin SA, Frazer KA, Hejtmancik JF, Rivolta C, Bujakowska KM, Arno G, Webster AR, Ayyagari R. Substitution of a single non-coding nucleotide upstream of TMEM216 causes non-syndromic retinitis pigmentosa and is associated with reduced TMEM216 expression. Am J Hum Genet 2024; 111:2012-2030. [PMID: 39191256 PMCID: PMC11393691 DOI: 10.1016/j.ajhg.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.
Collapse
Affiliation(s)
- Samantha Malka
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Pooja Biswas
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Anne-Marie Berry
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Siying Lin
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Matteo D'Antonio
- Department of Medicine, Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Aleksandr Jestin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Lori Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Emily M Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Department of Ophthalmology, St Thomas' Hospital, London, UK; Section of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Genevieve Wright
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal; Faculdade de Ciências Médicas, NMS, FCM, NOVA Medical School, Universidade NOVA de Lisboa, 7 iNOVA4Health, Lisboa, Portugal
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hafiz Muhammad Azhar Baig
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Muhammad Iqbal
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ansar
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi 74200, Pakistan
| | | | - Ana Berta Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Lisboa Norte (CHULN), Lisboa, Portugal; Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Lisboa, Portugal
| | - Viet H Tran
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Hiroko Matsui
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Anjana Bhatia
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Javed Akram
- Allama Iqbal Medical Research Center, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Center, Jinnah Hospital, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Jinnah Hospital, Lahore, Pakistan; Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Gavin Arno
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Greenwood Genetic Center, Greenwood, SC, USA
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
6
|
Huang XX, Wang YM, Xie MY, Sun YQ, Zhao XH, Chen YH, Chen JQ, Han SY, Zhou MW, Sun XD. Publication trends of Leber congenital amaurosis researches: a bibliometric study during 2002-2022. Int J Ophthalmol 2024; 17:1501-1509. [PMID: 39156783 PMCID: PMC11286431 DOI: 10.18240/ijo.2024.08.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/12/2024] [Indexed: 08/20/2024] Open
Abstract
AIM To analyze the changes in scientific output relating to Leber congenital amaurosis (LCA) and forecast the study trends in this field. METHODS All of the publications in the field of LCA from 2002 to 2022 were collected from Web of Science (WOS) database. We analyzed the quantity (number of publications), quality (citation and H-index) and development trends (relative research interest, RRI) of published LCA research over the last two decades. Moreover, VOSviewer software was applied to define the co-occurrence network of keywords in this field. RESULTS A total of 2158 publications were ultimately examined. We found that the focus on LCA kept rising and peaked in 2015 and 2018, which is consistent with the development trend of gene therapy. The USA has contributed most to this field with 1162 publications, 56 674 citations and the highest H-index value (116). The keywords analysis was divided into five clusters to show the hotspots in the field of LCA, namely mechanism-related, genotype-related, local phenotype-related, system phenotype-related, and therapy-related. We also identified gene therapy and anti-retinal degeneration therapy as a major focus in recent years. CONCLUSION Our study illustrates historical research process and future development trends in LCA field. This may help to guide the orientation for further clinical diagnosis, treatment and scientific research.
Collapse
Affiliation(s)
- Xiao-Xu Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yi-Min Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Min-Yue Xie
- Beijing Tongren Hospital, Capital Medical University, Beijing 100054, China
| | - Yi-Qing Sun
- Eberly College of Science, Penn State University, University Park 16802-1503, United States
| | - Xiao-Huan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Jie-Qiong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Si-Yang Han
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Min-Wen Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Disease, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
7
|
Cerolini S, Bennett J, Leroy BP, Durham T, Coates C, Pletcher MT, Lacey S, Aleman TS. Report From the Second Global Scientific Conference on Clinical Trial Design and Outcome Measures for RDH12-Associated Inherited Retinal Degeneration. Transl Vis Sci Technol 2024; 13:17. [PMID: 39120885 PMCID: PMC11318357 DOI: 10.1167/tvst.13.8.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024] Open
Abstract
Translational Relevance A multi-stakeholder, patient centric approach will be critical to the design of future successful clinical trials with outcome measures relevant to the RDH12-IRD population.
Collapse
Affiliation(s)
| | - Jean Bennett
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart P. Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital and Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Todd Durham
- Foundation Fighting Blindness, Columbia, MD, USA
| | | | | | - Sue Lacey
- Astraea Medical Consulting, Hindhead, UK
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Moya R, Angée C, Hanein S, Jabot-Hanin F, Kaplan J, Perrault I, Rozet JM, Fares Taie L. Four Unique Genetic Variants in Three Genes Account for 62.7% of Early-Onset Severe Retinal Dystrophy in Chile: Diagnostic and Therapeutic Consequences. Int J Mol Sci 2024; 25:6151. [PMID: 38892339 PMCID: PMC11172861 DOI: 10.3390/ijms25116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Leber congenital amaurosis (LCA)/early-onset severe retinal dystrophy (EOSRD) stand as primary causes of incurable childhood blindness. This study investigates the clinical and molecular architecture of syndromic and non-syndromic LCA/EOSRD within a Chilean cohort (67 patients/60 families). Leveraging panel sequencing, 95.5% detection was achieved, revealing 17 genes and 126 variants (32 unique). CRB1, LCA5, and RDH12 dominated (71.9%), with CRB1 being the most prevalent (43.8%). Notably, four unique variants (LCA5 p.Glu415*, CRB1 p.Ser1049Aspfs*40 and p.Cys948Tyr, RDH12 p.Leu99Ile) constituted 62.7% of all disease alleles, indicating their importance for targeted analysis in Chilean patients. This study underscores a high degree of inbreeding in Chilean families affected by pediatric retinal blindness, resulting in a limited mutation repertoire. Furthermore, it complements and reinforces earlier reports, indicating the involvement of ADAM9 and RP1 as uncommon causes of LCA/EOSRD. These data hold significant value for patient and family counseling, pharmaceutical industry endeavors in personalized medicine, and future enrolment in gene therapy-based treatments, particularly with ongoing trials (LCA5) or advancing preclinical developments (CRB1 and RDH12).
Collapse
Affiliation(s)
- Rene Moya
- Department of Ophthalmology, Hospital del Salvador, Universidad de Chile, Santiago 7500922, Chile;
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Sylvain Hanein
- Bioinformatic Platform, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| | - Lucas Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France (I.P.)
| |
Collapse
|
9
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
11
|
Grudzinska Pechhacker MK, Molnar A, Pekkola Pacheco N, Thonberg H, Querat L, Birkeldh U, Nordgren A, Lindstrand A. Reduced cone photoreceptor function and subtle systemic manifestations in two siblings with loss of SCLT1. Ophthalmic Genet 2024; 45:95-102. [PMID: 37246745 DOI: 10.1080/13816810.2023.2215332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The sodium channel and clathrin linker 1 gene (SCLT1) has been involved in the pathogenesis of various ciliopathy disorders such as Bardet-Biedl syndrome, orofaciodigital syndrome type IX, and Senior-Løken syndrome. Detailed exams are warranted to outline all clinical features. Here, we present a family with a milder phenotype of SCLT1-related disease. MATERIAL AND METHODS Comprehensive eye examination including fundus images, OCT, color vision, visual fields and electroretinography were performed. Affected individuals were assessed by a pediatrician and a medical geneticist for systemic features of ciliopathy. Investigations included echocardiography, abdominal ultrasonography, blood work-up for diabetes, liver and kidney function. Genetic testing included NGS retinal dystrophy panel, segregation analysis and transcriptome sequencing. RESULTS Two male children, age 10 and 8 years, were affected with attention deficit hyperactivity disorder (ADHD), obesity and mild photophobia. The ophthalmic exam revealed reduced best-corrected visual acuity (BCVA), strabismus, hyperopia, astigmatism and moderate red-green defects. Milder changes suggesting photoreceptors disease were found on retinal imaging. Electroretinogram confirmed cone photoreceptors dysfunction. Genetic testing revealed a homozygous likely pathogenic, splice-site variant in SCLT1 gene NM_144643.3: c.1439 + 1del in the proband and in the affected brother. The unaffected parents were heterozygous for the SCLT1 variant. Transcriptome sequencing showed retention of intron 16 in the proband. CONCLUSIONS In this report, we highlight the importance of further extensive diagnostics in patients with unexplained reduced vision, strabismus, refractive errors and ADHD spectrum disorders. SCLT1-related retinal degeneration is very rare and isolated reduced function of cone photoreceptors has not previously been observed.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Anna Molnar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Nadja Pekkola Pacheco
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Thonberg
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laurence Querat
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Ulrika Birkeldh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
13
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
15
|
Zhu T, Shen Y, Sun Z, Han X, Wei X, Li W, Lu C, Cheng T, Zou X, Li H, Cao Z, Gao H, Ma X, Luo M, Sui R. Clinical and Molecular Features of a Chinese Cohort With Syndromic and Nonsyndromic Retinal Dystrophies Related to the CEP290 Gene. Am J Ophthalmol 2023; 248:96-106. [PMID: 36493848 DOI: 10.1016/j.ajo.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To reveal the clinical and genetic features of 54 Chinese pedigrees with syndromic or nonsyndromic retinal dystrophies related to CEP290 and to explore the genotype-phenotype correlation. DESIGN Retrospective cohort study. METHODS Patients diagnosed with nonsyndromic inherited retinal dystrophy (IRD) or syndromic ciliopathy (SCP) were enrolled. We identified 61 patients from 54 families carrying biallelic pathogenic CEP290 variants using next-generation sequencing, Sanger sequencing, and co-segregation validation. Genotype-phenotype correlation was evaluated. RESULTS This study included 37 IRD patients from 32 families and 24 patients with SCP from 22 pedigrees. Four retinal dystrophy phenotypes were confirmed: Leber congenital amaurosis (LCA, 46/61), early-onset severe retinal dystrophy (EOSRD, 4/61), retinitis pigmentosa (RP, 10/61), and cone-rod dystrophy (CORD, 1/61). The SCP phenotypes included Joubert syndrome (JS) (23/24) and Bardet-Biedl syndrome (BBS) (1/24). We detected 73 different CEP290 variants, of which 33 (45.2%) were not previously reported. Two novel copy number variations (CNVs) and 1 novel pathogenic synonymous change were identified. The most recurrent alterations in the IRD and SCP were p.Q123* (6/64, 9.4%) and p.I556Ffs*17 (10/44, 22.7%), respectively. IRD patients carried more stop-gain alleles (25/64, 39.1%), whereas SCP patients carried more frameshift alleles (23/44, 52.3%). CONCLUSIONS LCA was the most common retinal dystrophy phenotype, and JS was the most prevalent syndrome in CEP290 patients; RP/CORD and BBS may be present in early adulthood. The hot spot variants and distribution of genotypes were distinct between IRD and SCP. Our study expands the CEP290 variant spectrum and enhances the current knowledge of CEP290 heterogeneity.
Collapse
Affiliation(s)
- Tian Zhu
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Yue Shen
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Zixi Sun
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xiaoxu Han
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xing Wei
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Wuyi Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Chao Lu
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Tingting Cheng
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xuan Zou
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Hui Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Zongfu Cao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Huafang Gao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xu Ma
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Minna Luo
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China.
| | - Ruifang Sui
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.).
| |
Collapse
|
16
|
Skorczyk-Werner A, Sowińska-Seidler A, Wawrocka A, Walczak-Sztulpa J, Krawczyński MR. Molecular background of Leber congenital amaurosis in a Polish cohort of patients-novel variants discovered by NGS. J Appl Genet 2023; 64:89-104. [PMID: 36369640 PMCID: PMC9837007 DOI: 10.1007/s13353-022-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophies and the most frequent cause of congenital blindness in children. To date, 25 genes have been implicated in the pathogenesis of this rare disorder. Performing an accurate molecular diagnosis is crucial as gene therapy is becoming available. This study aimed to report the molecular basis of Leber congenital amaurosis, especially novel and rare variants in 27 Polish families with a clinical diagnosis of LCA fully confirmed by molecular analyses. Whole exome sequencing or targeted next-generation sequencing (NGS) of inherited retinal dystrophies-associated (IRD) genes was applied to identify potentially pathogenic variants. Bidirectional Sanger sequencing and quantitative PCR (qPCR) were carried out for validation and segregation analysis of the variants identified within the families. We identified 28 potentially pathogenic variants, including 11 novel, in 8 LCA genes: CEP290, CRB1, GUCY2D, NMNAT1, RPGRIP1, CRX, LRAT1, and LCA5. This study expands the mutational spectrum of the LCA genes. Moreover, these results, together with the conclusions from our previous studies, allow us to point to the most frequently mutated genes and variants in the Polish cohort of LCA patients.
Collapse
Affiliation(s)
- Anna Skorczyk-Werner
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Maciej Robert Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
17
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) renaissance was catalysed by the discovery that RNA-guided prokaryotic CRISPR-associated (Cas) proteins can create targeted double-strand breaks in mammalian genomes. This finding led to the development of CRISPR systems that harness natural DNA repair mechanisms to repair deficient genes more easily and precisely than ever before. CRISPR has been used to knock out harmful mutant genes and to fix errors in coding sequences to rescue disease phenotypes in preclinical studies and in several clinical trials. However, most genetic disorders result from combinations of mutations, deletions and duplications in the coding and non-coding regions of the genome and therefore require sophisticated genome engineering strategies beyond simple gene knockout. To overcome this limitation, the toolbox of natural and engineered CRISPR-Cas systems has been dramatically expanded to include diverse tools that function in human cells for precise genome editing and epigenome engineering. The application of CRISPR technology to edit the non-coding genome, modulate gene regulation, make precise genetic changes and target infectious diseases has the potential to lead to curative therapies for many previously untreatable diseases.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul B Finn
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Aleman TS, O'Neil EC, Uyhazi KE, Parchinski KM, Santos AJ, Weber ML, Colclough SP, Billek AS, Zhu X, Leroy BP, Bedoukian EC. Fleck-like lesions in CEP290-associated leber congenital amaurosis: a case series. Ophthalmic Genet 2022; 43:824-833. [PMID: 36469661 DOI: 10.1080/13816810.2022.2147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To provide a detailed ophthalmic phenotype of a small cohort of patients with Leber Congenital Amaurosis (LCA) caused by mutations in CEP290 (CEP290-LCA) with a focus on elucidating the origin of yellow-white lesions observed in 30% of patients with this condition. METHODS This is a retrospective review of records of five patients with CEP290-LCA. Patients had comprehensive ophthalmic evaluations. Visual function was assessed with full-field electroretinograms (ffERGs) and full-field sensitivity testing (FST). Multimodal imaging was performed with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation wavelengths. RESULTS All patients showed relative structural preservation of the foveal and near midperipheral retina separated by a pericentral area of photoreceptor loss. Yellow-white, fleck-like lesions in an annular distribution around the near midperiphery co-localized with hyperreflective lesions on SD-OCT. The lesions located between the inner segment ellipsoid signal and the apical retinal pigment epithelium (RPE). The inner retina was normal. Longitudinal observations in one of the patients indicates the abnormalities may represent an intermediate stage in the degenerative process between the near normal appearing retina previously documented in young CEP290-LCA patients and the pigmentary retinopathy observed along the same region in older individuals. CONCLUSIONS We speculate that fleck-like lesions in CEP290-LCA correspond to malformed, rudimentary or degenerated, including shed, photoreceptor outer segments. The topography and possible origin of the abnormalities may inform the planning of evolving genetic therapies for this disease.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine E Uyhazi
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelsey M Parchinski
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene J Santos
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariejel L Weber
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sherice P Colclough
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew S Billek
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaosong Zhu
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bart P Leroy
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Head & Skin, Ghent University, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Emma C Bedoukian
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Individualized Medical Genetics Center of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Altay HY, Ozdemir F, Afghah F, Kilinc Z, Ahmadian M, Tschopp M, Agca C. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Front Neurosci 2022; 16:924917. [PMID: 36340792 PMCID: PMC9630553 DOI: 10.3389/fnins.2022.924917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 09/11/2023] Open
Abstract
Gene editing and gene regulatory fields are continuously developing new and safer tools that move beyond the initial CRISPR/Cas9 technology. As more advanced applications are emerging, it becomes crucial to understand and establish more complex gene regulatory and editing tools for efficient gene therapy applications. Ophthalmology is one of the leading fields in gene therapy applications with more than 90 clinical trials and numerous proof-of-concept studies. The majority of clinical trials are gene replacement therapies that are ideal for monogenic diseases. Despite Luxturna's clinical success, there are still several limitations to gene replacement therapies including the size of the target gene, the choice of the promoter as well as the pathogenic alleles. Therefore, further attempts to employ novel gene regulatory and gene editing applications are crucial to targeting retinal diseases that have not been possible with the existing approaches. CRISPR-Cas9 technology opened up the door for corrective gene therapies with its gene editing properties. Advancements in CRISPR-Cas9-associated tools including base modifiers and prime editing already improved the efficiency and safety profile of base editing approaches. While base editing is a highly promising effort, gene regulatory approaches that do not interfere with genomic changes are also becoming available as safer alternatives. Antisense oligonucleotides are one of the most commonly used approaches for correcting splicing defects or eliminating mutant mRNA. More complex gene regulatory methodologies like artificial transcription factors are also another developing field that allows targeting haploinsufficiency conditions, functionally equivalent genes, and multiplex gene regulation. In this review, we summarized the novel gene editing and gene regulatory technologies and highlighted recent translational progress, potential applications, and limitations with a focus on retinal diseases.
Collapse
Affiliation(s)
- Halit Yusuf Altay
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fatma Ozdemir
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Ferdows Afghah
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Zeynep Kilinc
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Mehri Ahmadian
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
20
|
Kovacs KD, Ciulla TA, Kiss S. Advancements in ocular gene therapy delivery: vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther 2022; 22:1193-1208. [PMID: 36062410 DOI: 10.1080/14712598.2022.2121646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ocular gene therapy represents fertile ground for rapid innovation, with ever-expanding therapeutic strategies, molecular targets, and indications. AREAS COVERED : Potential indications for ocular gene therapy have classically focused on inherited retinal disease (IRD), but more recently include acquired retinal diseases, such as neovascular age-related macular degeneration, geographic atrophy and diabetic retinopathy. Ocular gene therapy strategies have proliferated recently, and include gene augmentation, gene inactivation, gene editing, RNA modulation, and gene-independent gene augmentation. Viral vector therapeutic constructs include adeno-associated virus and lentivirus and continue to evolve through directed evolution and rationale design. Ocular gene therapy administration techniques have expanded beyond pars plana vitrectomy with subretinal injection to intravitreal injection and suprachoroidal injection. EXPERT OPINION : The success of treatment for IRD, paired with the promise of clinical research in acquired retinal diseases and in administration techniques, has raised the possibility of in-office gene therapy for common retinal disorders within the next five to ten years.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | | | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Merkler DJ, Hawley AJ, Eipper BA, Mains RE. Peptidylglycine α-amidating monooxygenase as a therapeutic target or biomarker for human diseases. Br J Pharmacol 2022; 179:3306-3324. [PMID: 35124797 PMCID: PMC9177522 DOI: 10.1111/bph.15815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/20/2024] Open
Abstract
Peptides play a key role in controlling many physiological and neurobiological pathways. Many bioactive peptides require a C-terminal α-amide for full activity. The bifunctional enzyme catalysing α-amidation, peptidylglycine α-amidating monooxygenase (PAM), is the sole enzyme responsible for amidated peptide biosynthesis, from Chlamydomonas reinhardtii to Homo sapiens. Many neuronal and endocrine functions are dependent upon amidated peptides; additional amidated peptides are growth promoters in tumours. The amidation reaction occurs in two steps, glycine α-hydroxylation followed by dealkylation to generate the α-amide product. Currently, most potentially useful inhibitors target the first reaction, which is rate-limiting. PAM is a membrane-bound enzyme that visits the cell surface during peptide secretion. PAM is then used again in the biosynthetic pathway, meaning that cell-impermeable inhibitors or inactivators could have therapeutic value for the treatment of cancer or psychiatric abnormalities. To date, inhibitor design has not fully exploited the structures and mechanistic details of PAM.
Collapse
Affiliation(s)
- David J Merkler
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Aidan J Hawley
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Betty A Eipper
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030 USA
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030 USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030 USA
| |
Collapse
|
22
|
Tian L, Chen C, Song Y, Zhang X, Xu K, Xie Y, Jin ZB, Li Y. Phenotype-Based Genetic Analysis Reveals Missing Heritability of ABCA4-Related Retinopathy: Deep Intronic Variants and Copy Number Variations. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35657619 PMCID: PMC9185996 DOI: 10.1167/iovs.63.6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To identify the missing heritability of ABCA4-related retinopathy in a Chinese cohort. Methods We recruited 33 unrelated patients with ABCA4-related retinopathy carrying a monoallelic variant in ABCA4. All patients underwent ophthalmic examinations. Next-generation sequencing of the whole ABCA4 sequence, including coding and noncoding regions, was performed to detect deep intronic variants (DIVs) and copy number variations (CNVs). Results We identified eight missing pathogenic ABCA4 variants in 60.6% of the patients (20/33), which comprised five DIVs and three CNVs. The five DIVs, including four novel (c.1555-816T>G, c.2919-169T>G, c.2919-884G>T, and c.5461-1321A>G) and one reported (c.4539+1100A>G), accounted for the missing alleles in 51.5% of the patients. Minigene assays showed that four novel DIVs activated cryptic splice sites leading to the insertions of pseudoexons. The three novel CNVs consisted of one gross deletion of 1273 bp (exon 2) and two gross duplications covering 25.2 kb (exons 28-43) and 9.4 kb (exons 38-44). The microhomology domains were identified at the breakpoints and revealed the potential mechanisms of CNV formation. Conclusions DIVs and CNVs explained approximately two-thirds of the unresolved Chinese cases with ABCA4-related retinopathy. Combining results from phenotypic-directed screening, targeting the whole ABCA4 sequencing and in silico tools can help to identify the missing heritability.
Collapse
Affiliation(s)
- Lu Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Chunjie Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yuning Song
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiaohui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| |
Collapse
|
23
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Girach A, Audo I, Birch DG, Huckfeldt RM, Lam BL, Leroy BP, Michaelides M, Russell SR, Sallum JM, Stingl K, Tsang SH, Yang P. RNA-based therapies in inherited retinal diseases. Ther Adv Ophthalmol 2022; 14:25158414221134602. [PMID: 36388727 PMCID: PMC9643766 DOI: 10.1177/25158414221134602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a genetically and phenotypically heterogeneous group of genetic eye disorders. There are more than 300 disease entities, and together this group of disorders affects millions of people globally and is a frequent cause of blindness or low-vision certification. However, each type is rare or ultra-rare. Characteristically, the impaired vision in IRDs is due to retinal photoreceptor dysfunction and loss resulting from mutation in a gene that codes for a retinal protein. Historically, IRDs have been considered incurable and individuals living with these blinding conditions could be offered only supportive care. However, the treatment landscape for IRDs is beginning to evolve. Progress is being made, driven by improvements in understanding of genotype-phenotype relationships, through advances in molecular genetic testing and retinal imaging. Alongside this expanding knowledge of IRDs, the current era of precision medicine is fueling a growth in targeted therapies. This has resulted in the first treatment for an IRD being approved. Several other therapies are currently in development in the IRD space, including RNA-based therapies, gene-based therapies (such as augmentation therapy and gene editing), cell therapy, visual prosthetics, and optogenetics. RNA-based therapies are a novel approach within precision medicine that have demonstrated success, particularly in rare diseases. Three antisense oligonucleotides (AONs) are currently in development for the treatment of specific IRD subtypes. These RNA-based therapies bring several key advantages in the setting of IRDs, and the potential to bring meaningful vision benefit to individuals living with inherited blinding disorders. This review will examine the increasing breadth and relevance of RNA-based therapies in clinical medicine, explore the key features that make AONs suitable for treating genetic eye diseases, and provide an overview of the three-leading investigational AONs in clinical trials.
Collapse
Affiliation(s)
- Aniz Girach
- ProQR Therapeutics, Zernikedreef 9, 2333 CK
Leiden, the Netherlands
| | - Isabelle Audo
- Centre Hospitalier National d’Ophtalmologie des
Quinze-Vingts, Centre de référence maladies rares REFERET and INSERM-DHOS
CIC 1423, CHNO des Quinze-Vingts, Paris, France
- Institute of Ophthalmology, University College
London, London, UK
- Sorbonne Université, INSERM, CNRS, Institut de
la Vision, Paris, France
| | | | - Rachel M. Huckfeldt
- Department of Ophthalmology, Harvard Medical
School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of
Miami Miller School of Medicine, Miami, FL, USA
| | - Bart P. Leroy
- Department of Ophthalmology & Center for
Medical Genetics, Ghent University Hospital & Ghent University, Ghent,
Belgium
- Division of Ophthalmology & Center for
Cellular & Molecular Therapeutics, The Children’s Hospital of
Philadelphia, Philadelphia, PA, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University
College London and Moorfields Eye Hospital, London, UK
| | - Stephen R. Russell
- The University of Iowa Institute for Vision
Research, University of Iowa, Iowa City, IA, USA
| | - Juliana M.F. Sallum
- Department of Ophthalmology, Universidade
Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo,
Brazil
| | - Katarina Stingl
- Center for Ophthalmology, University Eye
Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of
Tübingen, Tübingen, Germany
| | - Stephen H. Tsang
- Jonas Children’s Vision Care and Bernard and
Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Vagelos
College of Physicians and Surgeons, Columbia University, New York, NY,
USA
- Edward S. Harkness Eye Institute, New
York-Presbyterian Hospital, New York, NY, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health &
Science University, Portland, OR, USA
| |
Collapse
|
25
|
Kaur G, Singh NK. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int J Mol Sci 2021; 23:ijms23010386. [PMID: 35008812 PMCID: PMC8745623 DOI: 10.3390/ijms23010386] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
26
|
Huang CH, Yang CM, Yang CH, Hou YC, Chen TC. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:genes12081261. [PMID: 34440435 PMCID: PMC8392113 DOI: 10.3390/genes12081261] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Leber’s congenital amaurosis (LCA), one of the most severe inherited retinal dystrophies, is typically associated with extremely early onset of visual loss, nystagmus, and amaurotic pupils, and is responsible for 20% of childhood blindness. With advances in molecular diagnostic technology, the knowledge about the genetic background of LCA has expanded widely, while disease-causing variants have been identified in 38 genes. Different pathogenetic mechanisms have been found among these varieties of genetic mutations, all of which result in the dysfunction or absence of their encoded proteins participating in the visual cycle. Hence, the clinical phenotypes also exhibit extensive heterogenicity, including the course of visual impairment, involvement of the macular area, alteration in retinal structure, and residual function of the diseased photoreceptor. By reviewing the clinical course, fundoscopic images, optical coherent tomography examination, and electroretinogram, genotype-phenotype correlations could be established for common genetic mutations in LCA, which would benefit the timing of the diagnosis and thus promote early intervention. Gene therapy is promising in the management of LCA, while several clinical trials are ongoing and preliminary success has been announced, focusing on RPE65 and other common disease-causing genes. This review provides an update on the genetics, clinical examination findings, and genotype-phenotype correlations in the most well-established causative genetic mutations of LCA.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chih Hou
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Correspondence: ; Tel.: +886-2-23123456
| |
Collapse
|
27
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|