1
|
Mateo-Orobia AJ, Farrant S, Del-Prado-Sanz E, Blasco-Martínez A, Idoipe-Corta M, Lafuente-Ojeda N, Pablo-Júlvez LE. A Preservative-Free Combination of Sodium Hyaluronate and Trehalose Improves Dry Eye Signs and Symptoms and Increases Patient Satisfaction in Real-Life Settings: The TEARS Study. Ophthalmol Ther 2024; 13:3123-3134. [PMID: 39432158 PMCID: PMC11564544 DOI: 10.1007/s40123-024-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Dry eye disease (DED) is a frequently observed condition characterized by ocular discomfort and visual disturbance. It is highly prevalent and impairs patients' quality of life (QoL). This study assessed the benefit of a preservative-free bioprotectant eye drop formulation containing sodium hyaluronate and trehalose (SH-trehalose) with regards to DED, as well as patient satisfaction, through a large-scale real-life survey. METHODS In a multi-center, international, prospective observational study, subjects with DED received SH-trehalose for 84 days. Ocular Surface Disease Index (OSDI), Dry Eye Questionnaire-5 items (DEQ-5), and patient satisfaction were assessed at baseline, day 28, and day 84, and clinical evaluations included ocular surface staining, Schirmer test, tear film break-up time (TBUT), and conjunctival hyperemia at baseline and day 84. RESULTS A total of 312 patients were evaluated, of whom 82.4% were women. The mean age was 57.9 ± 15.2 years. The mean OSDI score at baseline was 41.7 ± 20.6. After 84 days, the mean OSDI score was 27.3 ± 19.8 (p < 0.001). The percentage of patients with a severe OSDI score decreased from 60.3 to 34.5%. The DEQ-5 score significantly (p < 0.001) improved after 28 and 84 days, as did patient satisfaction. Ocular surface staining, Schirmer test, TBUT, and conjunctival hyperemia scores improved significantly (all p < 0.001) for both eyes with SH-trehalose between baseline and day 84. Tolerance of SH-trehalose was good. CONCLUSIONS SH-trehalose significantly improved the clinical signs and symptoms of DED after 84 days. Moreover, it significantly increased patient satisfaction and was well tolerated. TRIAL REGISTRATION NCT04803240.
Collapse
Affiliation(s)
| | - Sarah Farrant
- Earlam and Christopher Optometrists Ltd, Taunton, TA1 1TW, UK
| | | | | | | | | | | |
Collapse
|
2
|
Coco G, Buffon G, Taloni A, Giannaccare G. Recent Advances in Nanotechnology for the Treatment of Dry Eye Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:669. [PMID: 38668163 PMCID: PMC11053557 DOI: 10.3390/nano14080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Dry eye disease (DED) incidence is continuously growing, positioning it to become an emergent health issue over the next few years. Several topical treatments are commonly used to treat DED; however, reports indicate that only a minor proportion of drug bioavailability is achieved by the majority of eye drops available on the market. In this context, enhancing drug ability to overcome ocular barriers and prolonging its residence time on the ocular surface represent a new challenge in the field of ocular carrier systems. Therefore, research has focused on the development of multi-functional nanosystems, such as nanoemulsions, liposomes, dendrimers, hydrogels, and other nanosized carriers. These systems are designed to improve topical drug bioavailability and efficacy and, at the same time, require fewer daily administrations, with potentially reduced side effects. This review summarizes the different nanotechnologies developed, their role in DED, and the nanotechnology-based eyedrops currently approved for DED treatment.
Collapse
Affiliation(s)
- Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (G.B.)
| | - Giacinta Buffon
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (G.B.)
| | - Andrea Taloni
- Department of Ophthalmology, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
3
|
Kawahara A. Treatment of Dry Eye Disease (DED) in Asia: Strategies for Short Tear Film Breakup Time-Type DED. Pharmaceutics 2023; 15:2591. [PMID: 38004570 PMCID: PMC10674215 DOI: 10.3390/pharmaceutics15112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder in which tear fluid homeostasis is lost, resulting in increased tear film osmolarity and ocular surface irritation. In Asia, the short tear film breakup time-type DED, which has become a global problem in recent years, is common. While the mainstay of DED treatment in the West is the suppression of inflammation, the first goal of treatment is the stabilization of the tear film in Asia. To date, artificial tears and steroid eye drops have been the main treatment for DED. However, artificial tears require frequent administration of eye drops and thus pose adherence problems, while steroids have problems with side-effects (cataracts, increased intraocular pressure). This review evaluates the new generation therapies in Asia based on what is known about them and demonstrates that they are more effective for DED than traditional therapies such as artificial tears and steroids. Based on considerations, it is proposed that the optimal treatment for the short tear film breakup time-type DED is the initial application of mucin-secretion-enhancing eye drops (long-acting diquafosol) and oral supplements; and if additional treatment is needed, cyclosporine eye drops and the adjunctive therapies presented in this review are added.
Collapse
Affiliation(s)
- Atsushi Kawahara
- Yoshida Eye Hospital, 2-31-8, Hondori, Hakodate 041-0851, Hokkaido, Japan
| |
Collapse
|
4
|
Baghban R, Talebnejad MR, Meshksar A, Heydari M, Khalili MR. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J Nanobiotechnology 2023; 21:402. [PMID: 37919748 PMCID: PMC10621182 DOI: 10.1186/s12951-023-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Despite the existence of numerous eye drops in the market, most of them are not sufficiently effective because of quick clearance and the barriers within the eye. To increase the delivery of the drugs to the eye, various new formulations have been explored in recent decades. These formulations aim to enhance drug retention and penetration, while enabling sustained drug release over extended periods. One such innovative approach is the utilization of contact lenses, which were originally designed for cosmetic purposes and vision correction. Contact lenses have appeared as a promising formulation for ocular drug delivery, as they can increase the bioavailability of drugs in the eye and diminish unwanted side effects. They are specifically appropriate for treating chronic eye conditions, making them an area of interest for researchers in the field of ophthalmology. This review outlines the promising potential of nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma. It classifies therapeutic approaches based on nanomaterial type, summarizes diagnostic advances, discusses improvement of contact lenses properties, covers marketing perspectives, and acknowledges the challenges of these innovative contact lenses for glaucoma management.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aidin Meshksar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Urbánek P, Šuly P, Ševčík J, Hanulíková B, Kuřitka I, Šopík T, Stodůlka P. Controlled Drug Delivery Device for Cornea Treatment and Novel Method for Its Testing. Pharmaceuticals (Basel) 2023; 16:ph16040505. [PMID: 37111260 PMCID: PMC10143253 DOI: 10.3390/ph16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
A new solution for local anesthetic and antibiotic delivery after eye surgery is presented. A contact lens-shaped collagen drug carrier was created and loaded by Levofloxacin and Tetracaine with a riboflavin crosslinked surface layer, thus impeding diffusion. The crosslinking was confirmed by Raman spectroscopy, whereas the drug release was investigated using UV-Vis spectrometry. Due to the surface barrier, the drug gradually releases into the corneal tissue. To test the function of the carrier, a 3D printed device and a new test method for a controlled drug release, which mimics the geometry and physiological lacrimation rate of the human eye, were developed. The experimental setup with simple geometry revealed that the prepared drug delivery device can provide the prolonged release profile of the pseudo-first-order for up to 72 h. The efficiency of the drug delivery was further demonstrated using a dead porcine cornea as a drug recipient, without the need to use live animals for testing. Our drug delivery system significantly surpasses the efficiency of antibiotic and anesthetic eyedrops that would have to be applied approximately 30 times per hour to achieve the same dose as that delivered continuously by our device.
Collapse
Affiliation(s)
- Pavel Urbánek
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
- Correspondence:
| | - Pavol Šuly
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Jakub Ševčík
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Tomáš Šopík
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Pavel Stodůlka
- Gemini Eye Clinic, U Gemini 360, 76001 Zlin, Czech Republic
| |
Collapse
|
6
|
Mondal H, Kim HJ, Mohanto N, Jee JP. A Review on Dry Eye Disease Treatment: Recent Progress, Diagnostics, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15030990. [PMID: 36986851 PMCID: PMC10051136 DOI: 10.3390/pharmaceutics15030990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Dry eye disease is a multifactorial disorder of the eye and tear film with potential damage to the ocular surface. Various treatment approaches for this disorder aim to alleviate disease symptoms and restore the normal ophthalmic environment. The most widely used dosage form is eye drops of different drugs with 5% bioavailability. The use of contact lenses to deliver drugs increases bioavailability by up to 50%. Cyclosporin A is a hydrophobic drug loaded onto contact lenses to treat dry eye disease with significant improvement. The tear is a source of vital biomarkers for various systemic and ocular disorders. Several biomarkers related to dry eye disease have been identified. Contact lens sensing technology has become sufficiently advanced to detect specific biomarkers and predict disease conditions accurately. This review focuses on dry eye disease treatment with cyclosporin A-loaded contact lenses, contact lens biosensors for ocular biomarkers of dry eye disease, and the possibility of integrating sensors in therapeutic contact lenses.
Collapse
Affiliation(s)
- Himangsu Mondal
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Nijaya Mohanto
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Pil Jee
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
7
|
Kim TY, Lee GH, Mun J, Cheong S, Choi I, Kim H, Hahn SK. Smart Contact Lens Systems for Ocular Drug Delivery and Therapy. Adv Drug Deliv Rev 2023; 196:114817. [PMID: 37004938 DOI: 10.1016/j.addr.2023.114817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs. Here, we review smart contact lens systems which can be classified into two groups of drug-eluting contact lens and ocular device contact lens. More specifically, this review covers smart contact lens systems with nanocomposite-laden systems, polymeric film-incorporated systems, micro and nanostructure systems, iontophoretic systems, electrochemical systems, and phototherapy systems for ocular drug delivery and therapy. After that, we discuss the future opportunities, challenges and perspectives of smart contact lens systems for ocular drug delivery and therapy.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI BIOMED Co., 168 Yeoksam-ro, Gangnamgu, Seoul 06248, Republic of Korea.
| |
Collapse
|
8
|
Thacker M, Singh V, Basu S, Singh S. Biomaterials for dry eye disease treatment: Current overview and future perspectives. Exp Eye Res 2023; 226:109339. [PMID: 36470431 DOI: 10.1016/j.exer.2022.109339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/09/2022]
Abstract
Dry eye disease (DED) is an emerging health problem affecting millions of individuals every year. The current treatments for DED include lubricating eye drops and anti-inflammatory agents. These agents have to be used frequently and contain preservatives, which can damage the ocular surface. A substantially long-acting treatment with better bioavailability on the ocular surface might reduce the frequency of drug use and its side effects. This review summarizes the current state of different biomaterials-nanosystems, hydrogels, and contact lenses used as drug delivery systems in DED. The explored drugs in biomaterial formulation are cyclosporin, ocular lubricants, and topical steroids. Most of the data is from animal models where increased drug delivery and desired therapeutic effects could be obtained; however, trials involving human participants are yet to happen. There is no published study comparing the different types of biomaterials for DED use. Long-term studies evaluating their ocular toxicity and biocompatibility would enhance their transition to human use. Overall they look promising for DED treatment, but they are still in the stage of technological advancement and clinical studies.
Collapse
Affiliation(s)
- Minal Thacker
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Vivek Singh
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sayan Basu
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; The Cornea Institute, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Ophthalmic Plastic Surgery Services, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India.
| |
Collapse
|
9
|
Management of Sjogren's Dry Eye Disease-Advances in Ocular Drug Delivery Offering a New Hope. Pharmaceutics 2022; 15:pharmaceutics15010147. [PMID: 36678777 PMCID: PMC9861012 DOI: 10.3390/pharmaceutics15010147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Sjögren's syndrome is a chronic and insidious autoimmune disease characterized by lymphocyte infiltration of exocrine glands. Patients typically present with dry eye, dry mouth, and other systemic manifestations. Currently, the available molecules and drug-delivery systems for the treatment of Sjögren's syndrome dry eye (SSDE) have limited efficacy since they are not specific to SSDE but to dry eye disease (DED) in general. The current treatment modalities are based on a trial-and-error approach using primarily topical agents. However, this approach gives time for the vicious cycle of DED to develop which eventually causes permanent damage to the lacrimal functional unit. Thus, there is a need for more individualized, specific, and effective treatment modalities for SSDE. The purpose of this article is to describe the current conventional SSDE treatment modalities and to expose new advances in ocular drug delivery for treating SSDE. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. Our current understanding of SSDE pathophysiology combined with advances in ocular drug delivery and novel therapeutics will allow the translation of innovative molecular therapeutics from the bench to the bedside.
Collapse
|
10
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
11
|
Qin R, Guo Y, Ren H, Liu Y, Su H, Chu X, Jin Y, Lu F, Wang B, Yang P. Instant Adhesion of Amyloid-like Nanofilms with Wet Surfaces. ACS CENTRAL SCIENCE 2022; 8:705-717. [PMID: 35756378 PMCID: PMC9228557 DOI: 10.1021/acscentsci.2c00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The adhesion and modification of wet surfaces by an interfacial adlayer remain a key challenge in chemistry and materials science. Herein, we report a transparent and biocompatible amyloid-like nanofilm that breaks through the hydration layer of a wet surface and achieves strong adhesion with a hydrogel/tissue surface within 2 s. This process is facilitated by fast amyloid-like protein aggregation at the air/water interface and the resultant exposure of hydrophobic groups. The resultant protein nanofilm adhered to a hydrogel surface presents an adhesion strength that is 20 times higher than the maximum friction force between the upper eyelid and eyeball. In addition, the nanofilm exhibits controllable tunability to encapsulate and release functional molecules without significant activity loss. As a result, therapeutic contact lenses (CLs) could be fabricated by adhering the functionalized nanofilm (carrying drug) on the CL surface. These therapeutic CLs display excellent therapeutic efficacy, showing an increase in cyclosporin A (CsA) bioavailability of at least 82% when compared to the commercial pharmacologic treatment for dry eye syndrome. Thus, this work underlines the finding that the bioinspired amyloid-like aggregation of proteins at interfaces drives instant adhesion onto a wet surface, enabling the active loading and controllable release of functional building blocks.
Collapse
Affiliation(s)
- Rongrong Qin
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yishun Guo
- School
of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Ren
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yongchun Liu
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Hao Su
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xiaoying Chu
- School
of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Jin
- School
of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Lu
- School
of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bailiang Wang
- School
of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Yang
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
12
|
Rykowska I, Nowak I, Nowak R. Soft Contact Lenses as Drug Delivery Systems: A Review. Molecules 2021; 26:5577. [PMID: 34577045 PMCID: PMC8472272 DOI: 10.3390/molecules26185577] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review describes the role of contact lenses as an innovative drug delivery system in treating eye diseases. Current ophthalmic drug delivery systems are inadequate, particularly eye drops, which allow about 95% of the active substance to be lost through tear drainage. According to the literature, many interdisciplinary studies have been carried out on the ability of contact lenses to increase the penetration of topical therapeutic agents. Contact lenses limit drug loss by releasing the medicine into two layers of tears on either side of the contact lens, eventually extending the time of contact with the ocular surface. Thanks to weighted soft contact lenses, a continuous release of the drug over an extended period is possible. This article reviewed the various techniques to deliver medications through contact lenses, examining their advantages and disadvantages. In addition, the potential of drug delivery systems based on contact lenses has been extensively studied.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Rafał Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
13
|
Yu Y, Chow DWY, Lau CML, Zhou G, Back W, Xu J, Carim S, Chau Y. A bioinspired synthetic soft hydrogel for the treatment of dry eye. Bioeng Transl Med 2021; 6:e10227. [PMID: 34589602 PMCID: PMC8459603 DOI: 10.1002/btm2.10227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Natural soft hydrogels are unique elastic soft materials utilized by living organisms for protecting delicate tissues. Under a theoretical framework derived from the Blob model, we chemically crosslinked high molecular weight hyaluronic acid at a concentration close to its overlap concentration (c*), and created synthetic soft hydrogels that exhibited unique rheological properties similar to a natural soft hydrogel: being dominantly elastic under low shear stress while being viscous when the stress is above a small threshold. We explored a potential application of the hyaluronic acid-based soft hydrogel as a long-acting ocular surface lubricant and evaluated its therapeutic effects for dry eye. The soft hydrogel was found to be biocompatible after topical instillation on experimental animals' and companion dogs' eyes. In a canine clinical study, twice-a-day ocular instillation of the soft hydrogel in combination with cyclosporine for 1 month improved the clinical signs in more than 65% of dog patients previously unresponsive to cyclosporine treatment.
Collapse
Affiliation(s)
- Yu Yu
- Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
- Pleryon Therapeutics LimitedShenzhenChina
| | | | - Chi Ming Laurence Lau
- Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
- The Hong Kong University of Science and Technology Shenzhen Research InstituteShenzhenChina
| | | | - Woojin Back
- Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
| | - Jing Xu
- Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
| | - Sean Carim
- Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
| | - Ying Chau
- Chemical and Biological EngineeringHong Kong University of Science and TechnologyHong KongChina
- The Hong Kong University of Science and Technology Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
14
|
CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Cont Lens Anterior Eye 2021; 44:157-191. [DOI: 10.1016/j.clae.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
|
15
|
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci 2021; 288:102342. [PMID: 33444845 DOI: 10.1016/j.cis.2020.102342] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa 56100, Italy
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy/Dep. of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
17
|
Abstract
Glaucoma is an optical neuropathy associated to a progressive degeneration of retinal ganglion cells with visual field loss and is the main cause of irreversible blindness in the world. The treatment has the aim to reduce intraocular pressure. The first therapy option is to instill drugs on the ocular surface. The main limitation of this is the reduced time of the drug staying on the cornea. This means that high doses are required to ensure its therapeutic effect. A drug-loaded contact lens can diffuse into the post lens tear film in a constant and prolonged flow, resulting in an increased retention of the drug on the surface of the cornea for up to 30 min and thus providing a higher drug bioavailability, increasing the therapeutic efficacy, reducing the amount of administered drug, and thereby provoking fewer adverse events. Several different systems of drug delivery have been studied in recent decades; ranging from more simple methods of impregnating the lenses, such as soaking, to more complex ones, such as molecular imprinting have been proposed. Moreover, different drugs, from those already commercially available to new substances such as melatonin have been studied to improve the glaucoma treatment efficacy. This review describes the role of contact lenses as an innovative drug delivery system to treat glaucoma.
Collapse
|
18
|
A Novel Eyes Topical Drug Delivery System: CsA-LNC for the Treatment of DED. Pharm Res 2020; 37:146. [PMID: 32666340 DOI: 10.1007/s11095-020-02872-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE The objective of the present work was to prepare safe and effective Ciclosporin A Lipid nanocapsule (CsA-LNC) eye-drops for the treatment of DED. METHODS The phase-inversion method was used to prepared different sizes CsA-LNC. CsA biodistribution in ocular after topical administration in rabbits was analyzed by a validated UPLC-MS/MS method. The efficacy of CsA-LNCs (25 nm, 50 nm, 85 nm) was evaluated using the tear breakup time, fluorescein staining, tear production, inflammatory cytokines and histopathology tests. The safety of CsA-LNCs was study by the score of ocular irritation and histological examination study. RESULTS CsA-LNCs(20-100 nm) were successfully prepared, An in vivo PK study showed significant improvement of the bioavailability (4.20-fold (25 nm), 2.15-fold (50 nm) and 2.33-fold (85 nm)) in bulbar conjunctiva, and great permeability was observed in the cornea for CsA-LNCs compared with CsA emulsion. An in vivo PD study showed that CsA-LNCs have great efficacy for DED, and the effect was improved over CsA emulsion. CsA-LNCs were safe and not cause significant irritation to the eyes surface of rabbits. CONCLUSION This work has demonstrated CsA-LNCs, in particular small sizes CsA-LNC, are safe and effective with promising potential to treat DED. Grapical abstract.
Collapse
|
19
|
Nguyen DD, Lai JY. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem 2020. [DOI: 10.1039/d0py00919a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent exploitations of stimuli-responsive polymers as ophthalmic drug delivery systems for the treatment of eye diseases are summarized and discussed.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
- Department of Ophthalmology
| |
Collapse
|
20
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
21
|
Zaki M, Pardo J, Carracedo G. A review of international medical device regulations: Contact lenses and lens care solutions. Cont Lens Anterior Eye 2019; 42:136-146. [DOI: 10.1016/j.clae.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
|
22
|
Bandage Lenses in the Postoperative Care for Cataract Surgery Patients: A Substitute for Eye Patch? J Ophthalmol 2018; 2018:1493967. [PMID: 29887990 PMCID: PMC5977021 DOI: 10.1155/2018/1493967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose To explore whether bandage lenses could be a safe and effective substitute for eye patch in the postoperative care for cataract surgery patients in terms of infection prevention, ocular impacts, and patient satisfaction. Methods Patients who underwent cataract surgery were randomly divided into the eye patch group (Group A) and the bandage lens group (Group B). Bacterial culture samples were collected perioperatively from different sites. Evaluations of anterior segment condition and patient satisfaction were conducted on the first day of postoperative follow-up. Results The positive rate of bacterial cultures in Group A was higher than that in Group B, but the difference was not statistically significant. Group B had significantly longer tear breakup time, higher tear meniscus height, and slightly better patient satisfaction than Group A. Conclusion Bandage lenses can be used as a safe and effective substitute for eye patch in the postoperative care for cataract surgery patients. The Clinical Study registration number is ChiCTR-IOC-17012167.
Collapse
|
23
|
Dominguez-Godinez C, Carracedo G, Pintor J. Diquafosol Delivery from Silicone Hydrogel Contact Lenses: Improved Effect on Tear Secretion. J Ocul Pharmacol Ther 2017; 34:170-176. [PMID: 28700254 DOI: 10.1089/jop.2016.0193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the ability to uptake and to deliver diquafosol from commercial contact lenses (CLs) and its effect on tear secretion. METHODS For both in vitro and in vivo experiments, two commercial silicone hydrogel (Si-Hy) CLs (comfilcon A and balafilcon A) were used. The CLs were soaked overnight for 12 h in diquafosol solution and control CLs were soaked in saline solution (NaCl 0.9%). The CLs were introduced into a new well container with 1 mL of saline solution, and aliquots of 100 μL were extracted at different times during a period of 6 h to measure the diquafosol release. For in vivo experiments, nine male New Zealand white rabbits were used. CLs soaked in diquafosol were inserted in the eye and compared with control CLs and diquafosol topical instillation. Schirmer's tests were performed to evaluate tear secretion and diquafosol release at different times during the 6-h period. RESULTS For in vitro experiments, the largest amount of diquafosol was released during the first 24 h for both CL materials under study, without statistical differences between them (P < 0.05). The topical application showed the maximum release at 1 min after instillation, meanwhile the release from both CL materials was at 30 min of insertion. The effect on tear secretion was higher with CL delivery compared with topical instillation (P < 0.05), being 300 min for both CLs and 90 min for topical application. CONCLUSION The use of CLs increases the residence time of diquafosol on the ocular surface with a concomitant enhancement in tear secretion during longer periods.
Collapse
Affiliation(s)
- Carmen Dominguez-Godinez
- 1 Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 1 Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 2 Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|