1
|
Li T, Wu S, Wen Y, Zhang X, Dai Q. Mutation analysis of the TGFBI gene in pedigrees of lattice corneal dystrophy in Eastern China. Ophthalmic Genet 2022; 43:594-601. [PMID: 35484844 DOI: 10.1080/13816810.2022.2068616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND To delineate the mutations of the TGFBI gene in Eastern China by whole-exome sequencing (WES) in eight Chinese families with lattice corneal dystrophy (LCD). MATERIALS AND METHODS This retrospective study included eight families with LCD from Eastern China. Clinical features were examined using slit-lamp examination, anterior segment optical coherence tomography, and in vivo confocal microscopy. Peripheral blood samples of probands were collected for WES, and saliva samples from family members were collected for TGFBI screening using Sanger sequencing. The physicochemical effects of mutations were investigated using bioinformatics tools. RESULTS Family 1 presented a classic LCD I with a p.R124C mutation of the TGFBI gene, while the other seven families were diagnosed with LCD IIIA. Six of the seven LCD IIIA families had heterozygous single-gene mutations (p.A546D, p.L565 H, p.T621P), and one had a compound heterozygous (cis) mutation (p.P501T and p.N622 H). The mutation of p.L565 H was the first time of integrated family report in contrast to the cases reported in 2019, and the p.T621P mutation was first reported in a Chinese population. Notably, the family with the compound mutation was associated with an obvious early-onset (in the 2nd decade of life) compared to the LCD IIIA patients with each single mutation (p.P501T or p.N622 H) showing late-onset (in the 7th decade of life). CONCLUSIONS WES is efficient for the genomic testing of LCD and genetic relationship identification in different families with the same mutated gene. We identified a compound heterozygous mutation (p.P501T and p.N622 H) and two mutations (p.T621P and p.L565 H) uncommon in China.
Collapse
Affiliation(s)
- Tiankun Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shuangqing Wu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yajing Wen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xin Zhang
- Zhejiang Maternal Child and Reproductive Health Center, Hangzhou, China
| | - Qi Dai
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Benbouchta Y, Cherkaoui Jaouad I, Tazi H, Elorch H, Ouhenach M, Zrhidri A, Sadki K, Sefiani A, Lyahyai J, Berraho A. Novel mutation in the TGFBI gene in a Moroccan family with atypical corneal dystrophy: a case report. BMC Med Genomics 2021; 14:9. [PMID: 33407479 PMCID: PMC7789668 DOI: 10.1186/s12920-020-00861-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, noninflammatory bilateral corneal diseases that are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths in the cornea. Clinical symptoms revealed bilateral multiple superficial, epithelial, and stromal anterior granular opacities in different stages of severity among three patients of this family. A total of 99 genes are involved in CDs. The aim of this study was to identify pathogenic variants causing atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with severely different stages of evolution. CASE PRESENTATION In this study, we report a large Moroccan family with CD. Whole-exome sequencing (WES) was performed in the three affected members who shared a phenotype of corneal dystrophy in different stages of severity. Variant validation and familial segregation were performed by Sanger sequencing in affected sisters and mothers and in two unaffected brothers. Whole-exome sequencing showed a novel heterozygous mutation (c.1772C > A; p.Ser591Tyr) in the TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities in different stages of severity among three patients in this family. CONCLUSIONS This report describes a novel mutation in the TGFBI gene found in three family members affected by different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy; therefore, it could be considered a novel phenotype genotype correlation, which will help in genetic counselling for this family.
Collapse
Affiliation(s)
- Yahya Benbouchta
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn, BP 769 Agdal, 10 090 Rabat, Morocco
- Laboratory of Human Pathology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Imane Cherkaoui Jaouad
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn, BP 769 Agdal, 10 090 Rabat, Morocco
| | - Habiba Tazi
- Ophtalmology Department, Hôpital Des Spécialités, Rabat, Morocco
| | - Hamza Elorch
- Ophtalmology Department, Hôpital Des Spécialités, Rabat, Morocco
| | - Mouna Ouhenach
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Abdelali Zrhidri
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Khalid Sadki
- Laboratory of Human Pathology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelaziz Sefiani
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn, BP 769 Agdal, 10 090 Rabat, Morocco
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomic Center of Human Pathologies, Medical School and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Amina Berraho
- Ophtalmology Department, Hôpital Des Spécialités, Rabat, Morocco
| |
Collapse
|
3
|
Mohammadi A, Ahmadi Shadmehri A, Taghavi M, Yaghoobi G, Pourreza MR, Tabatabaiefar MA. A pathogenic variant in the transforming growth factor beta I ( TGFBI) in four Iranian extended families segregating granular corneal dystrophy type II: A literature review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1020-1027. [PMID: 32952948 PMCID: PMC7478261 DOI: 10.22038/ijbms.2020.36763.8757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Granular and lattice corneal dystrophies (GCDs & LCDs) are autosomal dominant inherited disorders of the cornea. Due to genetic heterogeneity and large genes, unraveling the mutation is challenging. MATERIALS AND METHODS Patients underwent comprehensive clinical examination, and targeted next-generation sequencing (NGS) was used for mutation detection. Co-segregation and in silico analysis was accomplished. RESULTS Patients suffered from GCD. NGS disclosed a known pathogenic variant, c.371G>A (p.R124H), in exon 4 of TGFBI. The variant co-segregated with the phenotype in the family. Homozygous patients manifested with more severe phenotypes. Variable expressivity was observed among heterozygous patients. CONCLUSION The results, in accordance with previous studies, indicate that the c.371G>A in TGFBI is associated with GCD. Some phenotypic variations are related to factors such as modifier genes, reduced penetrance and environmental effects.
Collapse
Affiliation(s)
- Aliasgar Mohammadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Ahmadi Shadmehri
- Department of Genetics, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Gholamhossein Yaghoobi
- Department of Ophthalmology, Birjand University of Medical Science, South Khorasan, Iran
- Social Detrimental Health Center, Birjand University of Medical Science, South Khorasan, Iran
| | - Mohammad Reza Pourreza
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Lv Y, Li XJ, Wang HP, Liu B, Chen W, Zhang L. TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1012-1019. [PMID: 32952947 PMCID: PMC7478252 DOI: 10.22038/ijbms.2020.42396.10019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs). MATERIALS AND METHODS Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were used to elucidate the related mechanisms by which TGF-β1 adjusts myocardial differentiation in rat BMSCs. RESULTS Immunocytochemistry revealed that cTnI and Cx43 expressed positively in the cells that were transduced with TGF-β1. The results of Western blot (WB) test showed that the levels of intranuclear β-catenin and total β-catenin were all significantly decreased. However, the cytoplasmic β-catenin level was largely unchanged. Moreover, the levels of GSK-3β were largely unchanged in BMSCs, whereas phosphorylated GSK-3β was significantly decreased in BMSCs. When given the activator of Wnt/β-catenin pathway (lithium chloride, LiCl) to BMSCs transducted with TGF-β1, β-catenin was increased, while phosphorylated β-catenin was decreased. In addition, cyclinD1, MMP-7, and c-Myc protein in BMSCs transducted with Lenti-TGF-β1-GFP were significantly lower. CONCLUSION These results indicate that TGF-β1 promotes BMSCs cardiomyogenic differentiation by promoting the phosphorylation of β-catenin and inhibiting cyclinD1, MMP-7, and c-Myc expression in Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yang Lv
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiu-juan Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China
| | - Hai-Ping Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei, China
| | - Bo Liu
- Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Wei Chen
- Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TC, Otzen DE, Hjortdal J, Enghild JJ. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 2020; 77:100843. [DOI: 10.1016/j.preteyeres.2020.100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
|
6
|
Campos-Mollo E, Varela-Conde Y, Arriola-Villalobos P, Cabrera-Beyrouti R, Benítez-Del-Castillo JM, Maldonado MJ, Escribano J. Transforming growth factor beta-induced p.(L558P) variant is associated with autosomal dominant lattice corneal dystrophy type IV in a large cohort of Spanish patients. Clin Exp Ophthalmol 2019; 47:871-880. [PMID: 31056827 DOI: 10.1111/ceo.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 11/27/2022]
Abstract
IMPORTANCE Rare transforming growth factor beta-induced (TGFBI) gene variants are involved in autosomal dominant corneal dystrophies (CDs) with heterogeneous clinical features. BACKGROUND The purpose of this study was to analyse TGFBI gene variants and genotype-phenotype correlations in a cohort affected by atypical stromal CD. DESIGN Retrospective cohort study (from May 2014 to September 2017). PARTICIPANTS Thirty-five individuals from 10 unrelated South European families presenting atypical lattice CD (LCD) were included. METHODS Corneal phenotypes were assessed by slit-lamp examination and optical coherence tomography (OCT). Contrast sensitivity was measured under mesopic conditions. Genomic DNA was obtained from blood samples, and all 17 TGFBI exons were screened for variants by Sanger sequencing. MAIN OUTCOME MEASURES p.(L558P) variant of TGFBI gene. RESULTS The p.(L558P) variant was identified in 22 members of the 10 families diagnosed with atypical LCD, characterized by late-onset and absence of recurrent erosion syndrome. OCT revealed punctiform deposits in the deep-mid stroma and normal anterior stroma. This variant was demonstrated to be transmitted with the disease according to autosomal dominant inheritance in most families. CONCLUSIONS AND RELEVANCE To the best of our knowledge, we describe a detailed clinical characterization of the largest CD cohort carrying the TGFBI p.(L558P) variant. We propose that the atypical phenotype of this recently reported alteration can be classified as a form of LCD type IV. The results show that OCT and anterior-posterior analysis of the stromal location of the opacities, along with a genetic analysis of TGFBI, are required to ensure accurate diagnosis and management of CDs.
Collapse
Affiliation(s)
- Ezequiel Campos-Mollo
- Ophthalmology Department, Hospital Virgen de los Lirios, Alcoy, Spain.,Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain
| | - Yago Varela-Conde
- Ophthalmology Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Pedro Arriola-Villalobos
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain.,Institute of Health Research, Hospital Clínico San Carlos, Madrid, Spain
| | | | - José-Manuel Benítez-Del-Castillo
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain.,Institute of Health Research, Hospital Clínico San Carlos, Madrid, Spain.,Immunology, Ophthalmology and Otorhinolaryngology Department, Complutense University, Madrid, Spain.,Rementería Clinic, Madrid, Spain
| | - Miguel J Maldonado
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Institute of Applied Ophthalmobiology (IOBA-Eye Institute), University of Valladolid, Valladolid, Spain
| | - Julio Escribano
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Institute of Health Carlos III, Madrid, Spain.,Genetics Area, Faculty of Medicine/IDINE, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
7
|
Kheir V, Cortés-González V, Zenteno JC, Schorderet DF. Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies. Hum Mutat 2019; 40:675-693. [PMID: 30830990 DOI: 10.1002/humu.23737] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Human transforming growth factor β-induced (TGFBI), is a gene responsible for various corneal dystrophies. TGFBI produces a protein called TGFBI, which is involved in cell adhesion and serves as a recognition sequence for integrins. An alteration in cell surface interactions could be the underlying cause for the progressive accumulation of extracellular deposits in different layers of the cornea with the resulting changes of refractive index and transparency. To this date, 69 different pathogenic or likely pathogenic variants in TGFBI have been identified in a heterozygous or homozygous state in various corneal dystrophies, including a novel variant reported here. All disease-associated variants were inherited as autosomal-dominant traits but one; this latter was inherited as an autosomal recessive trait. Most corneal dystrophy-associated variants are located at amino acids Arg124 and Arg555. To keep the list of corneal dystrophy-associated variant current, we generated a locus-specific database for TGFBI (http://databases.lovd.nl/shared/variants/TGFBI) containing all pathogenic and likely pathogenic variants reported so far. Non-disease-associated variants are described in specific databases, like gnomAD and ExAC but are not listed here. This article presents the most recent up-to-date list of disease-associated variants.
Collapse
Affiliation(s)
- Valeria Kheir
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vianney Cortés-González
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
García-Castellanos R, Nielsen NS, Runager K, Thøgersen IB, Lukassen MV, Poulsen ET, Goulas T, Enghild JJ, Gomis-Rüth FX. Structural and Functional Implications of Human Transforming Growth Factor β-Induced Protein, TGFBIp, in Corneal Dystrophies. Structure 2017; 25:1740-1750.e2. [PMID: 28988748 DOI: 10.1016/j.str.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
Abstract
A major cause of visual impairment, corneal dystrophies result from accumulation of protein deposits in the cornea. One of the proteins involved is transforming growth factor β-induced protein (TGFBIp), an extracellular matrix component that interacts with integrins but also produces corneal deposits when mutated. Human TGFBIp is a multi-domain 683-residue protein, which contains one CROPT domain and four FAS1 domains. Its structure spans ∼120 Å and reveals that vicinal domains FAS1-1/FAS1-2 and FAS1-3/FAS1-4 tightly interact in an equivalent manner. The FAS1 domains are sandwiches of two orthogonal four-stranded β sheets decorated with two three-helix insertions. The N-terminal FAS1 dimer forms a compact moiety with the structurally novel CROPT domain, which is a five-stranded all-β cysteine-knot solely found in TGFBIp and periostin. The overall TGFBIp architecture discloses regions for integrin binding and that most dystrophic mutations cluster at both molecule ends, within domains FAS1-1 and FAS1-4.
Collapse
Affiliation(s)
- Raquel García-Castellanos
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Kasper Runager
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Marie V Lukassen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Ebbe T Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, 10, 8000 Aarhus C, Denmark
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence), Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants. Sci Rep 2016; 6:23836. [PMID: 27030015 PMCID: PMC4814907 DOI: 10.1038/srep23836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4th_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic and non-amyloidogenic phenotypes, we expressed the 4th_FAS1 domains of TGFβIp carrying the mutations R555W (non-amyloidogenic) and H572R (amyloidogenic) along with the wild-type (WT). R555W was more susceptible to acidic pH compared to H572R and displayed varying chemical stabilities with decreasing pH. Thermal denaturation studies at acidic pH showed that while WT did not undergo any conformational transition, the mutants exhibited a clear pH-dependent irreversible conversion from αβ conformation to β-sheet oligomers. The β-oligomers of both mutants were stable at physiological temperature and pH. Electron microscopy and dynamic light scattering studies showed that β-oligomers of H572R were larger compared to R555W. The β-oligomers of both mutants were cytotoxic to primary human corneal stromal fibroblast (pHCSF) cells. The β-oligomers of both mutants exhibit variations in their morphologies, sizes, thermal and chemical stabilities, aggregation patterns and cytotoxicities.
Collapse
|
10
|
Pathogenesis and treatments of TGFBI corneal dystrophies. Prog Retin Eye Res 2015; 50:67-88. [PMID: 26612778 DOI: 10.1016/j.preteyeres.2015.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022]
Abstract
Transforming growth factor beta-induced (TGFBI) corneal dystrophies are a group of inherited progressive corneal diseases. Accumulation of transforming growth factor beta-induced protein (TGFBIp) is involved in the pathogenesis of TGFBI corneal dystrophies; however, the exact molecular mechanisms are not fully elucidated. In this review article, we summarize the current knowledge of TGFBI corneal dystrophies including clinical manifestations, epidemiology, most common and recently reported associated mutations for each disease, and treatment modalities. We review our current understanding of the molecular mechanisms of granular corneal dystrophy type 2 (GCD2) and studies of other TGFBI corneal dystrophies. In GCD2 corneal fibroblasts, alterations of morphological characteristics of corneal fibroblasts, increased susceptibility to intracellular oxidative stress, dysfunctional and fragmented mitochondria, defective autophagy, and alterations of cell cycle were observed. Other studies of mutated TGFBIp show changes in conformational structure, stability and proteolytic properties in lattice and granular corneal dystrophies. Future research should be directed toward elucidation of the biochemical mechanism of deposit formation, the relationship between the mutated TGFBIp and the other materials in the extracellular matrix, and the development of gene therapy and pharmaceutical agents.
Collapse
|