1
|
Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, Kim H, Choi K. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res 2021; 30:619-634. [PMID: 34232440 PMCID: PMC8478729 DOI: 10.1007/s11248-021-00271-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the effect of a triple knockout of the genes alpha-1,3-galactosyltransferase (GGTA1), cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and alpha 1,3-galactosyltransferase 2 (A3GALT2) in Yucatan miniature pigs on human immune reactivity. We used the CRISPR/Cas9 system to create pigs lacking GGTA1 (GTKO) and GGTA1/CMAH/A3GALT2 triple gene knockout (TKO). The expression of all three xenoantigens was absent in TKO pigs, but there was no additional reduction in the level of Galα1,3Gal (αGal) epitopes expression in the A3GALT2 gene KO. Peripheral blood mononuclear cells (PBMCs), aorta endothelial cells (AECs), and cornea endothelial cells (CECs) were isolated from these pigs, and their ability to bind human IgM/IgG and their cytotoxicity in human sera were evaluated. Compared to wild type (WT) pigs, the level of human antibody binding of the PBMCs, AECs, and CECs of the transgenic pigs (GTKO and TKO) was significantly reduced. However, there were significant differences in human antibody binding between GTKO and TKO depending on the cell type. Human antibody binding of TKO pigs was less than that of GTKO on PBMCs but was similar between GTKO and TKO pigs for AECs and CECs. Cytotoxicity of transgenic pig (GTKO and TKO) PBMCs and AECs was significantly reduced compared to that of WT pigs. However, TKO pigs showed a reduction in cytotoxicity compared to GTKO pigs on PBMCs, whereas in AECs from both TKO and GTKO pigs, there was no difference. The cytotoxicity of transgenic pig CECs was significantly decreased from that of WT at 300 min, but there was no significant reduction in TKO pigs from GTKO. Our results indicate that genetic modification of donor pigs for xenotransplantation should be tailored to the target organ and silencing of additional genes such as CMAH or A3GALT2 based on GTKO might not be essential in Yucatan miniature pigs.
Collapse
Affiliation(s)
- Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
2
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Yamamoto T, Cui Y, Patel D, Jagdale A, Iwase H, Ayares D, Cooper DKC, Hara H. Effect of intravenous immunoglobulin (IVIg) on primate complement-dependent cytotoxicity of genetically engineered pig cells: relevance to clinical xenotransplantation. Sci Rep 2020; 10:11747. [PMID: 32678137 PMCID: PMC7367287 DOI: 10.1038/s41598-020-68505-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Triple-knockout (TKO) pigs may be ideal sources of organs for clinical xenotransplantation because many humans have no preformed antibody to TKO pig cells. Intravenous immunoglobulin (IVIg) is widely used for severe infection or the treatment/prevention of antibody-mediated rejection in allotransplantation. Anti-pig antibodies in IVIg could be harmful in clinical xenotransplantation. It is unknown whether anti-TKO pig antibodies are present in IVIg. The main aim of this study was to investigate in vitro whether IVIg contains anti-TKO pig antibodies with cytotoxic effect to pig cells. Undiluted pooled human serum (HS) and five different commercial preparations of IVIg were tested for IgM and IgG binding to red blood cells (RBCs) from wild-type (WT), α1,3-galactosyltransferase gene-knockout (GTKO), and TKO pigs by flow cytometry. Complement-dependent lysis of IVIg against these pig pRBCs was measured by hemolytic assay. Pooled HS and 4 of 5 IVIg commercial preparations contained anti-pig IgG that bound to WT and GTKO pRBCs, but not to TKO pRBCs. One preparation of IVIg contained antibodies that bound to TKO pRBCs, but there was no cytotoxicity of IVIg to TKO pRBCs. The results suggest that IVIg administration to human recipients of TKO pig grafts would be safe. However, the specific preparation of IVIg would need to be screened before its administration.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA.
| | - Yehua Cui
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA
- Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Diyan Patel
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham (UAB), LHRB752, 701 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
5
|
Watanabe H, Ariyoshi Y, Pomposelli T, Takeuchi K, Ekanayake-Alper DK, Boyd L, Arn S, Sahara H, Shimizu A, Ayares D, Lorber MI, Sykes M, Sachs DH, Yamada K. Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation 2020; 27:e12552. [PMID: 31544995 PMCID: PMC7007336 DOI: 10.1111/xen.12552] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND We have recently demonstrated that human-CD47 (hCD47) expressed on endothelial cells of porcine lung xenografts extended median graft survival from 3.5 days to 8.7 days in baboons. Intra-bone bone marrow transplantation (IBBMTx) in a pig-to-baboon model was previously shown to markedly prolong the duration of macrochimerism up to 21 days from 1 to 4 days by intravenous BMTx. We now examined whether the use of hCD47 transgenic (Tg) BM further prolonged the duration of chimerism following IBBMTx. We then tested if lung xenograft survival was prolonged following IBBMTx. METHODS Baboons received GalTKO-hCD47/hCD55Tg (n = 5) or -hCD55Tg (n = 1) or -hCD46/HLA-E Tg (n = 1) pig IBBMTx. Macrochimerism, anti-pig T cells and antibody responses were assessed. Animals received lung xenografts from either hCD47+ or hCD47- porcine lungs 1-3 months later. RESULTS All baboons that received hCD47Tg porcine IBBM maintained durable macrochimerism >30 days, and two maintained chimerism for >8 weeks. Notably, anti-pig antibody levels decreased over time and anti-pig cellular unresponsiveness developed following IBBMTx. Lungs from hCD47Tg IBBMTx matched pigs were transplanted at day 33 or day 49 after IBBMTx. These animals showed extended survival up to 13 and 14 days, while animals that received lungs from hCD47 negative pigs displayed no prolonged survival (1-4 days). CONCLUSION This is the first report demonstrating durable macrochimerism beyond 8 weeks, as well as evidence for B cell tolerance in large animal xenotransplantation. Using hCD47Tg pigs as both IBBMTx and lung donors prolongs lung xenograft survival. However, additional strategies are required to control the acute loss of lung xenografts.
Collapse
Affiliation(s)
- Hironosuke Watanabe
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - Yuichi Ariyoshi
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - Thomas Pomposelli
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - Kazuhiro Takeuchi
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | | | - Lennan Boyd
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - Scott Arn
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - Hisashi Sahara
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
- Division of Organ Replacement and Xenotransplantation
Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima
University, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of
Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - David H Sachs
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY
| |
Collapse
|
6
|
|
7
|
Song YW, Pan ZQ. Reducing porcine corneal graft rejection, with an emphasis on porcine endogenous retrovirus transmission safety: a review. Int J Ophthalmol 2019; 12:324-332. [PMID: 30809491 DOI: 10.18240/ijo.2019.02.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Donor cornea shortage is a primary hurdle in the development of corneal transplantation. Of all species, porcine corneas are the ideal transplantation material for humans. However, the xenoimmune rejection induced by porcine corneal xenotransplantation compromises surgical efficacy. Although the binding of IgM/IgG in human serum to a genetically modified porcine cornea is significantly weaker than that of the wild type (WT), genetically modified porcine corneas do not display a prolonged graft survival time in vivo. Conversely, costimulatory blockade drugs, such as anti-CD40 antibodies, can reduce the xenoimmune response and prolong graft survival time in animal experiments. Moreover, porcine endothelial grafts can survive for more than 6mo with only the subconjunctival injection of a steroid-based immunosuppressants regime; therefore, they show great value for treating corneal endothelial disease. In addition, zoonotic transmission is a primary concern of xenotransplantation. Porcine endogenous retrovirus (PERV) is the most significant virus assessed by ophthalmologists. PERV integrates into the porcine genome and infects human cells in vitro. Fortunately, no evidence from in vivo studies has yet shown that PERV can be transmitted to hosts.
Collapse
Affiliation(s)
- Yao-Wen Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| | - Zhi-Qiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing 100730, China
| |
Collapse
|
8
|
Finding an Optimal Corneal Xenograft Using Comparative Analysis of Corneal Matrix Proteins Across Species. Sci Rep 2019; 9:1876. [PMID: 30755666 PMCID: PMC6372616 DOI: 10.1038/s41598-018-38342-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022] Open
Abstract
Numerous animal species have been proposed as sources of corneal tissue for obtaining decellularized xenografts. The selection of an appropriate animal model must take into consideration the differences in the composition and structure of corneal proteins between humans and other animal species in order to minimize immune response and improve outcome of the xenotransplant. Here, we compared the amino-acid sequences of 16 proteins present in the corneal stromal matrix of 14 different animal species using Basic Local Alignment Search Tool, and calculated a similarity score compared to the respective human sequence. Primary amino acid structures, isoelectric point and grand average of hydropathy (GRAVY) values of the 7 most abundant proteins (i.e. collagen α-1 (I), α-1 (VI), α-2 (I) and α-3 (VI), as well as decorin, lumican, and keratocan) were also extracted and compared to those of human. The pig had the highest similarity score (91.8%). All species showed a lower proline content compared to human. Isoelectric point of pig (7.1) was the closest to the human. Most species have higher GRAVY values compared to human except horse. Our results suggest that porcine cornea has a higher relative suitability for corneal transplantation into humans compared to other studied species.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review describes the most recent progress in xeno lung transplantation (XLTx) to date. It describes the potential mechanisms of early xeno lung graft loss, as well as the latest therapeutic strategies to overcome them. RECENT FINDINGS Using ex-vivo perfusion models of porcine lungs with human blood, the use of genetically modified pig lungs along with novel pharmaceutical approaches has recently been studied. Strategies that have demonstrated improved lung survival include the knockout of known xenoantigens (GalTKO and N-glycolylneuraminic acid-KO), genes that regulate complement activation (hCD46 and hCD55), as well as the inflammation/coagulation cascade (human leukocyte antigen-E, human thrombomodulin, human endothelial protein C receptor, hCD47, hCD39, hCD73 and heme oxygenase-1). Furthermore, pharmacologic interventions including the depletion of pulmonary intravascular macrophages or von Willebrand factor, inhibition of thromboxane synthase and blockade of histamine receptors have also demonstrated protective effects on xeno lung grafts. Using in-vivo pig to nonhuman primate lung transplant models, these approaches have been shown to extend pulmonary xenograft survival to 5 days. SUMMARY The development of new multitransgenic GalTKO pigs has demonstrated prolongation of porcine xenograft survival; however, advancement in XLTx has remained frustratingly limited. Further intensive and innovative strategies including genetic manipulation of donors, as well as inflammation/coagulation dysregulation, are required to make XLTx a clinical possibility.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To review the progress in the field of xenotransplantation with special attention to most recent encouraging findings which will eventually bring xenotransplantation to the clinic in the near future. RECENT FINDINGS Starting from early 2000, with the introduction of galactose-α1,3-galactose (Gal)-knockout pigs, prolonged survival especially in heart and kidney xenotransplantation was recorded. However, remaining antibody barriers to non-Gal antigens continue to be the hurdle to overcome. The production of genetically engineered pigs was difficult requiring prolonged time. However, advances in gene editing, such as zinc finger nucleases, transcription activator-like effector nucleases, and most recently clustered regularly interspaced short palindromic repeats (CRISPR) technology made the production of genetically engineered pigs easier and available to more researchers. Today, the survival of pig-to-nonhuman primate heterotopic heart, kidney, and islet xenotransplantation reached more than 900, more than 400, and more than 600 days, respectively. The availability of multiple-gene pigs (five or six genetic modifications) and/or newer costimulation blockade agents significantly contributed to this success. Now, the field is getting ready for clinical trials with an international consensus. SUMMARY Clinical trials in cellular or solid organ xenotransplantation are getting closer with convincing preclinical data from many centers. The next decade will show us new achievements and additional barriers in clinical xenotransplantation.
Collapse
|
11
|
Gao B, Long C, Lee W, Zhang Z, Gao X, Landsittel D, Ezzelarab M, Ayares D, Huang Y, Cooper DKC, Wang Y, Hara H. Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PLoS One 2017; 12:e0180768. [PMID: 28715486 PMCID: PMC5513429 DOI: 10.1371/journal.pone.0180768] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/21/2017] [Indexed: 02/03/2023] Open
Abstract
Our group previously investigated the levels of anti-Gal and anti-nonGal IgM and IgG in a cohort of 75 healthy humans of various backgrounds, and found some significant differences related to factors such as age, gender, ABO blood group, diet, vaccination history, and geographic location during childhood. We have now expanded our cohort (n = 84) to investigate the levels of anti-Neu5Gc and anti-nonGal/nonNeu5Gc antibodies in healthy humans. Anti-nonGal and anti-nonGal/nonNeu5Gc human IgM and IgG binding to pRBCs and pAECs from GTKO/CD46 and GTKO/CD46/Neu5GcKO pigs were measured by flow cytometry. Anti-Gal and anti-Neu5Gc IgM and IgG levels were measured by ELISA. In summary, (i) the great majority (almost 100%) of humans had anti-Neu5Gc IgM and IgG antibodies that bound to pAECs and approximately 50% had anti-Neu5Gc antibodies that bound to pRBCs, (ii) there was significantly less human antibody binding to pig cells that did not express either Gal or Neu5Gc compared with those that did not express Gal alone, (iii) the levels of both IgM and IgG binding to GTKO/CD46/Neu5GcKO pRBCs and pAECs were low, (iv) the level of anti-Neu5Gc IgG was higher in men than women, (v) the level did not change with age or diet, and there was some variability associated with (vi) previous vaccination history and (vii) the geographic region in which the individual spent his or her childhood. Our study confirms that human antibody binding to RBCs and AECs from GTKO/CD46/Neu5GcKO pigs is greatly reduced compared to binding to GTKO/CD46 cells. However, all humans appear to have a low level of antibody that binds to pAECs that is not directed to either Gal or Neu5Gc. Our findings require consideration in planning clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- Bingsi Gao
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Zhongqiang Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of General Surgery, Second Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Xiaotian Gao
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Doug Landsittel
- Department of Biostatistics and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David Ayares
- Revivicor, Blacksburg, VA, United States of America
| | - Yuliang Huang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- * E-mail: (HH); (YW)
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (HH); (YW)
| |
Collapse
|
12
|
Zhang Z, Gao B, Zhao C, Long C, Qi H, Ezzelarab M, Cooper DK, Hara H. The impact of serum incubation time on IgM/IgG binding to porcine aortic endothelial cells. Xenotransplantation 2017; 24. [PMID: 28547819 DOI: 10.1111/xen.12312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022]
Abstract
The results of the assay for measuring anti-non-Gal antibodies (which affect pig xenograft survival) in recipients are important. Serum incubation time and concentration may be important factors in the extent of antibody binding to the graft. The aim of this in vitro study was to determine the optimal incubation time and serum concentration for measuring anti-non-Gal antibody binding to porcine aortic endothelial cells (pAECs). Pooled human, naive, and sensitized baboon sera were incubated with wild-type, α1,3-galactosyltransferase gene-knockout (GTKO), and GTKO/human CD55 pAECs. IgM/IgG binding to pAECs after varying serum incubation times (0.5, 1, 2, and 3 hour) and concentrations (5, 10, 20, and 40 μL) was determined by flow cytometry. An increase in incubation time from 30 minutes to 2 hour was associated with increases in anti-non-Gal IgM/IgG binding to GTKO and GTKO/hCD55 pAECs of pooled human, naive and sensitized baboon sera (P<.05). Pooled human serum showed a significant increase in anti-non-Gal IgM (1.5 times) and a minimal increase in anti-non-Gal IgG antibody binding. IgM/IgG binding of sensitized baboon serum to GTKO pAECs after 2-hour incubation was 1.5 times and 2 times greater than after 30-minutes incubation, respectively, whereas naïve baboon sera showed minimal (non-significant) increase in anti-non-Gal IgM/IgG antibody binding. With 2-hour incubation, increasing the serum concentration from 5 μL to 20 μL significantly increased antibody binding to non-Gal antigens in pooled human and sensitized baboon serum. With naïve baboon serum, only IgG was significantly increased. Increasing the serum incubation time contributed to improve the sensitivity of detecting anti-non-Gal antibodies, without affecting cell viability in vitro.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of the Central South University, Hunan, Changsha, China.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Bingsi Gao
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Chengjiang Zhao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Haizhi Qi
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of the Central South University, Hunan, Changsha, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - David Kc Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
13
|
Duggal N, Jaishankar D, Yadavalli T, Hadigal S, Mishra YK, Adelung R, Shukla D. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Mol Vis 2017; 23:26-38. [PMID: 28275313 PMCID: PMC5334001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/23/2017] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Infection of the human cornea by herpes simplex virus type-1 (HSV-1) can cause significant vision loss. The purpose of this study was to develop an ex vivo model to visualize viral growth and spread in the cornea. The model was also used to analyze cytokine production and study the antiviral effects of zinc oxide tetrapods. METHODS A β-galactosidase-expressing recombinant virus, HSV-1(KOS)tk12, was used to demonstrate the ability of the virus to enter and develop blue plaques on human corneal epithelial (HCE) cells and corneal tissues. Freshly obtained porcine corneas were cultured and then scratched before infection with HSV-1(KOS)tk12. The blue plaques on the corneas were imaged using a stereomicroscope. Western blot analysis for HSV-1 proteins was performed to verify HSV-1 infection of the cornea. Using the ex vivo model, zinc oxide tetrapods were tested for their anti-HSV-1 potential, and a cytokine profile was developed to assess the effects of the treatment. RESULTS Cultured corneas and the use of β-galactosidase-expressing HSV-1(KOS)tk12 virus can provide an attractive ex vivo model to visualize and study HSV-1 entry and spread of the infection in tissues. We found that unlike cultured HCE cells, which demonstrated nearly 100% infectivity, HSV-1 infection of the cultured cornea was more restrictive and took longer to develop. We also found that the zinc oxide tetrapod-shaped nano- and microstructures inhibited HSV infection of the cultured cells, as well as the cultured corneas. The cytokine profile of the infected samples was consistent with previous studies of HSV-1 corneal infection. CONCLUSIONS The ability to visualize HSV-1 growth and spread in corneal tissues can provide new details about HSV-1 infection of the cornea and the efficacy of new cornea-specific antiviral drug candidates. The ex vivo model also demonstrates antiviral effects of zinc oxide tetrapods and adequately portrays the drug delivery issues that cornea-specific treatments face.
Collapse
Affiliation(s)
- Neil Duggal
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL
| | - Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL,Department of Bioengineering, University of Illinois at Chicago, IL
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL
| | - Satvik Hadigal
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL
| | - Yogendra Kumar Mishra
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kiel, Germany
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL,Department of Bioengineering, University of Illinois at Chicago, IL,Department of Microbiology and Immunology, University of Illinois at Chicago, IL
| |
Collapse
|
14
|
Aristizabal AM, Caicedo LA, Martínez JM, Moreno M, J Echeverri G. Clinical xenotransplantation, a closer reality: Literature review. Cir Esp 2017; 95:62-72. [PMID: 28237390 DOI: 10.1016/j.ciresp.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023]
Abstract
Xenotransplantation could provide an unlimited supply of organs and solve the current shortage of organs for transplantation. To become a reality in clinical practice, the immunological and physiological barriers and the risk of xenozoonosis that they possess should be resolved. From the immunological point of view, in the last 30 years a significant progress in the production of transgenic pigs has prevented the hyperacute rejection. About xenozoonosis, attention has been focused on the risk of transmission of porcine endogenous retroviruses; however, today, it is considered that the risk is very low and the inevitable transmission should not prevent the clinical xenotransplantation. Regarding the physiological barriers, encouraging results have been obtained and it's expected that the barriers that still need to be corrected can be solved in the future through genetic modifications.
Collapse
Affiliation(s)
- Ana María Aristizabal
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Luis Armando Caicedo
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Juan Manuel Martínez
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Manuel Moreno
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Gabriel J Echeverri
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia.
| |
Collapse
|
15
|
Dong X, Hara H, Wang Y, Wang L, Zhang Y, Cooper DK, Dai Y, Pan Z. Initial study of α1,3-galactosyltransferase gene-knockout/CD46 pig full-thickness corneal xenografts in rhesus monkeys. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaojuan Dong
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Hidetaka Hara
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing China
| | - Li Wang
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Yingnan Zhang
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - David K.C. Cooper
- Department of Surgery; Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Yifan Dai
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing China
| | - Zhiqiang Pan
- Beijing Ophthalmology & Visual Science Key Laboratory; BeijingTongren Eye Center; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
16
|
Gao H, Zhao C, Xiang X, Li Y, Zhao Y, Li Z, Pan D, Dai Y, Hara H, Cooper DKC, Cai Z, Mou L. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning. J Reprod Dev 2016; 63:17-26. [PMID: 27725344 PMCID: PMC5320426 DOI: 10.1262/jrd.2016-079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated
gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT).
Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied
the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously
in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening
and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As
a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from
GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from
GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested
that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications.
Collapse
Affiliation(s)
- Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee W, Long C, Ramsoondar J, Ayares D, Cooper DKC, Manji RA, Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation 2016; 23:370-80. [DOI: 10.1111/xen.12254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | | | | | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Rizwan A. Manji
- Department of Surgery; University of Manitoba; Winnipeg MB Canada
- Cardiac Sciences Program; Winnipeg Regional Health Authority and St Boniface Hospital; Winnipeg MB Canada
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
18
|
Lee W, Hara H, Ezzelarab MB, Iwase H, Bottino R, Long C, Ramsoondar J, Ayares D, Cooper DKC. Initial in vitro studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation 2016; 23:137-50. [PMID: 26988899 DOI: 10.1111/xen.12229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The impact that the absence of expression of NeuGc in pigs might have on pig organ or cell transplantation in humans has been studied in vitro, but only using red blood cells (pRBCs) and peripheral blood mononuclear cells (pPBMCs) as the target cells for immune assays. We have extended this work in various in vitro models and now report our initial results. METHODS The models we have used involve GTKO/hCD46 and GTKO/hCD46/NeuGcKO pig aortas and corneas, and pRBCs, pPBMCs, aortic endothelial cells (pAECs), corneal endothelial cells (pCECs), and isolated pancreatic islets. We have investigated the effect of the absence of NeuGc expression on (i) human IgM and IgG binding, (ii) the T-cell proliferative response, (iii) human platelet aggregation, and (iv) in an in vitro assay of the instant blood-mediated inflammatory reaction (IBMIR) following exposure of pig islets to human blood/serum. RESULTS The lack of expression of NeuGc on some pig tissues (aortas, corneas) and cells (RBCs, PBMCs, AECs) significantly reduces the extent of human antibody binding. In contrast, the absence of NeuGc expression on some pig tissues (CECs, isolated islet cells) does not reduce human antibody binding, possibly due to their relatively low NeuGc expression level. The strength of the human T-cell proliferative response may also be marginally reduced, but is already weak to GTKO/hCD46 pAECs and islet cells. We also demonstrate that the absence of NeuGc expression on GTKO/hCD46 pAECs does not reduce human platelet aggregation, and nor does it significantly modify the IBMIR to pig islets. CONCLUSION The absence of NeuGc on some solid organs from GTKO/hCD46/NeuGcKO pigs should reduce the human antibody response after clinical transplantation when compared to GTKO/hCD46 pig organs. However, the clinical benefit of using certain tissue (e.g., cornea, islets) from GTKO/hCD46/NeuGcKO pigs is questionable.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Cooper DKC. Modifying the sugar icing on the transplantation cake. Glycobiology 2016; 26:571-81. [PMID: 26935763 DOI: 10.1093/glycob/cww028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
As a transplant surgeon, my interest in glycobiology began through my research into ABO-incompatible allotransplantation, and grew when my goal became overcoming the shortage of organs from deceased human donors by the transplantation of pig organs into patients with terminal organ failure (xenotransplantation/cross-species transplantation). The major target for human "natural" (preformed) anti-pig antibodies is galactose-α(1,3)-galactose (the "Gal" epitope), which is expressed on many pig cells, including the vascular endothelium. The binding of human IgM and IgG antibodies to Gal antigens initiates the process of hyperacute rejection, resulting in destruction of the pig graft within minutes or hours. This major barrier has been overcome by the production of pigs in which the gene for the enzyme α(1,3)-galactosyltransferase (GT) has been deleted by genetic engineering, resulting in GT knockout (GTKO) pigs. The two other known carbohydrate antigenic targets on pig cells for human anti-pig antibodies are (i) the product of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene, i.e., N-glycolylneuraminic acid, and (ii) the product of the β1,4 N-acetylgalactosaminyltransferase gene, i.e., the Sd(a) antigen. Expression of these two has also been deleted in pigs. These genetic manipulations, together with others directed to overcoming primate complement and coagulation activation (the latter of which also relates to glycobiology) have contributed to the prolongation of pig graft survival in nonhuman primate recipients to many months rather than a few minutes. Clinical trials of the transplantation of pig cells are already underway and transplantation of pig organs may be expected within the relatively near future.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|