1
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Horvath V, Svobodova A, Cabral JV, Fiala R, Burkert J, Stadler P, Lindner J, Bednar J, Zemlickova M, Jirsova K. Inter-placental variability is not a major factor affecting the healing efficiency of amniotic membrane when used for treating chronic non-healing wounds. Cell Tissue Bank 2023; 24:779-788. [PMID: 37227562 PMCID: PMC10616215 DOI: 10.1007/s10561-023-10096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
This study aimed to evaluate the efficacy of cryopreserved amniotic membrane (AM) grafts in chronic wound healing, including the mean percentage of wound closure per one AM application, and to determine whether the healing efficiency differs between AM grafts obtained from different placentas. A retrospective study analyzing inter-placental differences in healing capacity and mean wound closure after the application of 96 AM grafts prepared from nine placentas. Only the placentas from which the AM grafts were applied to patients suffering from long-lasting non-healing wounds successfully healed by AM treatment were included. The data from the rapidly progressing wound-closure phase (p-phase) were analyzed. The mean efficiency for each placenta, expressed as an average of wound area reduction (%) seven days after the AM application (baseline, 100%), was calculated from at least 10 applications. No statistical difference between the nine placentas' efficiency was found in the progressive phase of wound healing. The 7-day average wound reduction in particular placentas varied from 5.70 to 20.99% (median from 1.07 to 17.75) of the baseline. The mean percentage of wound surface reduction of all analyzed defects one week after the application of cryopreserved AM graft was 12.17 ± 20.12% (average ± SD). No significant difference in healing capacity was observed between the nine placentas. The data suggest that if there are intra- and inter-placental differences in AM sheets' healing efficacy, they are overridden by the actual health status of the subject or even the status of its individual wounds.
Collapse
Affiliation(s)
- Vojtech Horvath
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Alzbeta Svobodova
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Radovan Fiala
- Department of Cardiovascular Surgery, Motol University Hospital, Prague, Czech Republic
| | - Jan Burkert
- Department of Cardiovascular Surgery, Motol University Hospital, Prague, Czech Republic
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic
| | - Petr Stadler
- Department of Vascular Surgery, Na Homolce Hospital, Prague, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Bednar
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Martina Zemlickova
- Clinic of Dermatovenerology, General Teaching Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 01, Prague, Czech Republic.
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
3
|
Bonacci E, Kilian R, Rizzo C, De Gregorio A, Bosello F, Fasolo A, Ponzin D, Marchini G, Pedrotti E. Microscopic corneal epithelial changes and clinical outcomes in simple limbal epithelial transplantation surgery after treatment with amniotic membrane eye drops (AMED): A case report. Am J Ophthalmol Case Rep 2023; 29:101763. [PMID: 36483519 PMCID: PMC9723931 DOI: 10.1016/j.ajoc.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To describe the microscopic epithelial changes and the clinical outcomes of a patient treated with amniotic membrane eye drops (AMED) because of a persistent epithelial defect (PED) and a partial limbal stem cell deficiency (LSCD) after simple limbal epithelial transplantation (SLET) and deep anterior lamellar keratoplasty (DALK). Observations A 72-year-old patient, who had previously undergone SLET and DALK due to a total LSCD, presented with a PED related to a partial LSCD, and was treated with AMED for one month. We evaluated the patient's visual acuity, the Oxford grading scale, the Wong-Baker Pain Rating Scale, and in vivo confocal microscopy, both at baseline and 3 months after the end of treatment. Visual acuity improved from 0.5 to 0.4 LogMAR, the Oxford grading scale changed from grade III to grade I and the Wong-Baker Pain Rating Scale from grade 4 to grade 1. The corneal surface, which initially showed conjunctival characteristics over approximately 50% of the whole area, consisted mainly (75%) of mature corneal epithelium 3 months after the end of treatment. Conclusions and importance While improving symptoms and clinical characteristics, AMED was also able to restore the normal corneal epithelium's morphology in a case of partial LSCD after SLET and DALK.
Collapse
Affiliation(s)
- Erika Bonacci
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Raphael Kilian
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Clara Rizzo
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Francesca Bosello
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Adriano Fasolo
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
- The Veneto Eye Bank Foundation, Venice, Italy
| | | | - Giorgio Marchini
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Emilio Pedrotti
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Kafili G, Tamjid E, Niknejad H, Simchi A. Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Xu W, Kong B, Xie H, Zhang J, Liu W, Liu S, Zhang Y, Yang F, Xiao J, Mi S, Xiong L, Zhang M, Jiang F. PCL scaffold combined with rat tail collagen type I to reduce keratocyte differentiation and prevent corneal stroma fibrosis after injury. Exp Eye Res 2022; 217:108936. [DOI: 10.1016/j.exer.2022.108936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
|
6
|
Caporossi T, Bacherini D, Governatori L, Oliverio L, Di Leo L, Tartaro R, Rizzo S. Management of submacular massive haemorrhage in age-related macular degeneration: comparison between subretinal transplant of human amniotic membrane and subretinal injection of tissue plasminogen activator. Acta Ophthalmol 2021; 100:e1143-e1152. [PMID: 34609787 DOI: 10.1111/aos.15045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Macular neovascularization (MNV) can complicate age-related macular degeneration (AMD) and lead to severe visual acuity reduction. Massive submacular haemorrhage (SMH) is a sight-threatening complication of MNV and a challenge in the management of complications related to MNV in AMD since the effects of anti-vascular endothelial growth factor treatment alone are insufficient. Here, we evaluate the different postoperative outcomes of patients affected by MNV complicated by SMH that underwent subretinal implant of human amniotic membrane (hAM) or subretinal injection of tissue plasminogen activator (tPA). METHODS This is a retrospective, consecutive, comparative, non-randomized interventional study. We included 44 eyes of 44 patients affected by AMD complicated by MNV and SMH. Twenty-two eyes underwent a pars plana vitrectomy (PPV), SMH and neovascular membrane removal, with a subretinal implant of hAM and silicone oil, and 22 eyes underwent PPV, subretinal injection of tPA, and 20% sulphur hexafluoride. The primary study outcome was visual acuity improvement. Secondary outcomes were postoperative complications, and MNV recurrence and optical coherence tomography (OCT)-Angiography parameters correlated with best-corrected visual acuity (BCVA). RESULTS Mean preoperative BCVA was 1.9 logarithm of the minimal angle of resolution (logMAR) in the amniotic membrane-group and 2 logMAR in the tPA-group. The mean final BCVA values were 1.25 and 1.4 logMAR, respectively, with a statistically significant difference. Optical coherence tomography (OCT)-Angiography scan was be used to evaluate the retinal vascularization in the treated eye. CONCLUSION Both techniques report similar VA improvements and postoperative complications. However, transplantation of hAM seems to have a significant benefit in inhibiting MNV recurrence.
Collapse
Affiliation(s)
- Tomaso Caporossi
- Department of Ophthalmology Catholic University of Sacred‐Heart Foundation "Policlinico Universitario A. Gemelli" IRCCS Rome Italy
| | - Daniela Bacherini
- Department of NEUROFARBA, Ophthalmology University of Florence Careggi, Florence Italy
| | - Lorenzo Governatori
- Department of NEUROFARBA, Ophthalmology University of Florence Careggi, Florence Italy
| | - Leandro Oliverio
- Department of NEUROFARBA, Ophthalmology University of Florence Careggi, Florence Italy
| | - Laura Di Leo
- Department of NEUROFARBA, Ophthalmology University of Florence Careggi, Florence Italy
| | - Ruggero Tartaro
- Department of NEUROFARBA, Ophthalmology University of Florence Careggi, Florence Italy
| | - Stanislao Rizzo
- Department of Ophthalmology Catholic University of Sacred‐Heart Foundation "Policlinico Universitario A. Gemelli" IRCCS Rome Italy
| |
Collapse
|
7
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
8
|
Yazdanpanah G, Jiang Y, Rabiee B, Omidi M, Rosenblatt MI, Shokuhfar T, Pan Y, Naba A, Djalilian AR. Fabrication, Rheological, and Compositional Characterization of Thermoresponsive Hydrogel from Cornea. Tissue Eng Part C Methods 2021; 27:307-321. [PMID: 33813860 DOI: 10.1089/ten.tec.2021.0011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Weidinger A, Poženel L, Wolbank S, Banerjee A. Sub-Regional Differences of the Human Amniotic Membrane and Their Potential Impact on Tissue Regeneration Application. Front Bioeng Biotechnol 2021; 8:613804. [PMID: 33520964 PMCID: PMC7839410 DOI: 10.3389/fbioe.2020.613804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
For more than 100 years, the human amniotic membrane (hAM) has been used in multiple tissue regeneration applications. The hAM consists of cells with stem cell characteristics and a rich layer of extracellular matrix. Undoubtedly, the hAM with viable cells has remarkable properties such as the differentiation potential into all three germ layers, immuno-modulatory, and anti-fibrotic properties. At first sight, the hAM seems to be one structural entity. However, by integrating its anatomical location, the hAM can be divided into placental, reflected, and umbilical amniotic membrane. Recent studies show that cells of these amniotic sub-regions differ considerably in their properties such as morphology, structure, and content/release of certain bioactive factors. The aim of this review is to summarize these findings and discuss the relevance of these different properties for tissue regeneration. In summary, reflected amnion seems to be more immuno-modulatory and could have a higher reprogramming efficiency, whereas placental amnion seems to be pro-inflammatory, pro-angiogenic, with higher proliferation and differentiation capacity (e.g., chondrogenic and osteogenic), and could be more suitable for certain graft constructions. Therefore, we suggest that the respective hAM sub-region should be selected in consideration of its desired outcome. This will help to optimize and fine-tune the clinical application of the hAM.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Laura Poženel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
10
|
Insights on the Human Amniotic Membrane in Clinical Practice with a Focus on the New Applications in Retinal Surgery. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lay SummaryRecently, the use of the human amniotic membrane (hAM) has been extended to treat retinal disorders such as refractory macular holes, retinal breaks and dry and wet age-related macular degeneration. Not only the hAM has proved to be an excellent tool for repairing retinal tissue, but it has also shown a promising regeneration potential. This review aims to highlight the novel use of the hAM in treating retinal diseases. Although the hAM has been used in the ocular anterior segment reconstruction for more than 60 years, in the last 2 years, we have found in literature articles showing the use of the hAM in the retinal surgery field with interesting results in terms of tissue healing and photoreceptor regeneration.
Collapse
|
11
|
Applications of the Amniotic Membrane in Vitreoretinal Surgery. J Clin Med 2020; 9:jcm9082675. [PMID: 32824838 PMCID: PMC7463634 DOI: 10.3390/jcm9082675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 11/23/2022] Open
Abstract
Recently, the use of the human amniotic membrane (hAM) has been extended to treat retinal disorders, such as macular holes that failed to close and retinal tears. The hAM has demonstrated the induction of a recovery process of the external retinal layers involving the external limiting membrane (ELM) and the ellipsoid zone (EZ). After that, the application of the hAM for retinal pathologies was extended to large macular tears, high myopic retinal detachment associated with MH, paravascular tears, serous macular detachment associated with optic pit, complicated retinal detachment and advanced age-related macular degeneration (AMD). The hAM has shown a potential in repairing retinal tissue through a regeneration process. This review aims to highlight the use of the hAM in various vitreo-retinal surgical fields, and to confront it with other cutting-edge surgical techniques used to treat challenging vitreo-retinal pathologies.
Collapse
|
12
|
da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The ability to decellularize and recellularize the corneas deemed unsuitable for transplantation may increase the number of available grafts. Decellularized corneas (DCs) may provide a natural microenvironment for cell adhesion and differentiation. Despite this, no study to date has evaluated their efficacy as a substrate for the induction of stem cell differentiation into corneal cells. The present study aimed to compare the efficiency of NaCl and NaCl plus nucleases methods to decellularize whole human corneas, and to investigate the effect of epithelial basement membrane (EBM) of whole DCs on the ability of human embryonic stem cells (hESCs) to differentiate into corneal epithelial-like cells when cultured in animal serum-free differentiation medium. As laminin is the major component of EBM, we also investigated its effect on hESCs differentiation. The decellularization efficiency and integrity of the extracellular matrix (ECM) obtained were investigated by histology, electron microscopy, DNA quantification, immunofluorescence, and nuclear staining. The ability of hESCs to differentiate into corneal epithelial-like cells when seeded on the EBM of DCs or laminin-coated wells was evaluated by immunofluorescence and RT-qPCR analyses. NaCl treatment alone, without nucleases, was insufficient to remove cellular components, while NaCl plus nucleases treatment resulted in efficient decellularization and preservation of the ECM. Unlike cells induced to differentiate on laminin, hESCs differentiated on DCs expressed high levels of corneal epithelial-specific markers, keratin 3 and keratin 12. It was demonstrated for the first time that the decellularized matrices had a positive effect on the differentiation of hESCs towards corneal epithelial-like cells. Such a strategy supports the potential applications of human DCs and hESCs in corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal 71966-700, Brazil; Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Joyce Esposito de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Junnia Alvarenga de Carvalho Oliveira
- Department of Microbiology, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
13
|
Rizzo S, Caporossi T, Tartaro R, Finocchio L, Pacini B, Bacherini D, Virgili G. Human Amniotic Membrane Plug to Restore Age-Related Macular Degeneration Photoreceptor Damage. Ophthalmol Retina 2020; 4:996-1007. [PMID: 32344157 DOI: 10.1016/j.oret.2020.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of legal blindness in adults 65 years of age and older. Choroidal neovascularization (CNV) can complicate AMD and lead to severe visual acuity reduction. Despite the several treatments available, if the retinal pigment epithelium is damaged, we have to cope with the impossibility of restoring acceptable visual acuity using only medical treatments. DESIGN Prospective, consecutive, interventional study. PARTICIPANTS Eleven patients affected by AMD, 6 patients affected by CNV, and 5 patients affected by geographic atrophy. METHODS All patients underwent a pars plana vitrectomy with subretinal implantation of human amniotic membrane (hAM) to induce photoreceptor regeneration and partial visual acuity restoration. MAIN OUTCOME MEASURES Primary study outcome was visual acuity improvement. Secondary outcomes were multimodal imaging results. RESULTS Mean preoperative best-corrected visual acuity (BCVA) was 20/2000 (2 logarithm of the minimum angle of resolution [logMAR]), and all the patients showed a BCVA of counting fingers or less. Mean final BCVA was 20/400 (1.31 logMAR), ranging from 20/2000 to 20/100 (2-0.7 logMAR). OCT angiography was used to measure retinal vascularization in the treated eye compared with the fellow eye. A high correlation between BCVA and deep vascular density was evidenced. Adaptive optics findings, obtained over the retinal area where the highest functionality was observed, were evaluated using microperimetry. The images showed possible photoreceptor presence over the hAM membrane. CONCLUSIONS This work supports the feasibility and safety of the hAM to promote partial retinal function restoration 6 months after surgery with visual acuity improvement. The advanced diagnostics help to understand the interaction between the hAM and photoreceptors and suggest that photoreceptor regeneration may occur.
Collapse
Affiliation(s)
- Stanislao Rizzo
- Department of Ophthalmology, Catholic University of Sacred Hearth-Foundation "Policlinico Universitario A. Gemelli"-IRCCS, Rome, Italy
| | - Tomaso Caporossi
- Department of NEUROFARBA, Ophthalmology, University of Florence-Careggi, Florence, Italy.
| | - Ruggero Tartaro
- Department of NEUROFARBA, Ophthalmology, University of Florence-Careggi, Florence, Italy
| | - Lucia Finocchio
- Department of NEUROFARBA, Ophthalmology, University of Florence-Careggi, Florence, Italy
| | - Bianca Pacini
- Department of NEUROFARBA, Ophthalmology, University of Florence-Careggi, Florence, Italy
| | - Daniela Bacherini
- Department of NEUROFARBA, Ophthalmology, University of Florence-Careggi, Florence, Italy
| | - Gianni Virgili
- Department of NEUROFARBA, Ophthalmology, University of Florence-Careggi, Florence, Italy
| |
Collapse
|
14
|
Caporossi T, Angelis L, Pacini B, Tartaro R, Finocchio L, Barca F, Rizzo S. A human Amniotic Membrane plug to manage high myopic macular hole associated with retinal detachment. Acta Ophthalmol 2020; 98:e252-e256. [PMID: 31318489 DOI: 10.1111/aos.14174] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To assess the efficacy of the human amniotic membrane (hAM) to treat (HMMH) associated with retinal detachment (RD). MATERIAL AND METHODS Ten eyes of 10 patients with recurrent HMMH and RD, who had already undergone one or more pars plana vitrectomy (PPV), underwent a PPV with an hAM plug implanted in the macular hole. The initial five patients enrolled were tamponaded with (SO) while the subsequent five patients with 10% octafluoropropane (C3 F8 ). Silicon oil was removed in all five patients 2 months later. No statistical differences were reported between the two groups. RESULTS Final retinal reattachment was achieved in all the patients. BCVA improved from 1.73 logMAR to 0.94 logMAR after 6 months. No adverse events were registered during follow-up. CONCLUSION An hAM plug is an efficient substrate to manage HMMH associated with RD resulting in encouraging visual acuity recovery.
Collapse
Affiliation(s)
- Tomaso Caporossi
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| | - Lorenzo Angelis
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| | - Bianca Pacini
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| | - Ruggero Tartaro
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| | - Lucia Finocchio
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| | - Francesco Barca
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| | - Stanislao Rizzo
- Department of Translational Surgery and Medicine, Ophthalmology University of Florence Careggi, Florence Italy
| |
Collapse
|
15
|
Grémare A, Jean-Gilles S, Musqui P, Magnan L, Torres Y, Fénelon M, Brun S, Fricain JC, L'Heureux N. Cartography of the mechanical properties of the human amniotic membrane. J Mech Behav Biomed Mater 2019; 99:18-26. [PMID: 31325833 DOI: 10.1016/j.jmbbm.2019.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/07/2019] [Accepted: 07/13/2019] [Indexed: 12/16/2022]
Abstract
Because of its low immunogenicity, biological properties, and high availability, the Human Amniotic Membrane (HAM) is widely used in the clinic and in tissue engineering research. However, while its biological characteristics are well described, its mechanical properties remain understudied especially in terms of inter- and intra-HAM variability. To guide bioengineers in the use of this natural biomaterial, a detailed cartography of the HAM's mechanical properties was performed. Maximal force (Fmax) and strain at break (Smax) were identified as the relevant mechanical criteria for this study after a combined analysis of histological sections, thickness measurements after dehydration, and uniaxial tensile tests. Eight HAMs were studied by mechanical cartography using a standardized cutting protocol and sampling pattern. On average, 103 ± 10 samples were retrieved and tested per HAM. Intra-tissue variability highlighted the fact that there were two mechanically distinct areas (placental and peripheral) in each HAM. For all HAMs, placental HAM was significantly stronger by 82 ± 45% and more stretchable by 19 ± 6% than their peripheral counterparts. Our results also demonstrated that placental, but not peripheral, HAM presented isotropic mechanical properties. Thus, placental HAM can be a raw material of choice that could be favored especially in the development of tissue engineering products where mechanical properties play a key role.
Collapse
Affiliation(s)
- Agathe Grémare
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France; CHU Bordeaux, Odontology and Oral Health Department, F-33076 Bordeaux, France
| | | | - Pauline Musqui
- CHU Bordeaux, Odontology and Oral Health Department, F-33076 Bordeaux, France
| | - Laure Magnan
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Yoann Torres
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Mathilde Fénelon
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France; CHU Bordeaux, Odontology and Oral Health Department, F-33076 Bordeaux, France
| | - Stéphanie Brun
- CHU Bordeaux, Gynecology-Obstetrics Service, F-33076 Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France; CHU Bordeaux, Odontology and Oral Health Department, F-33076 Bordeaux, France
| | - Nicolas L'Heureux
- Univ. Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.
| |
Collapse
|
16
|
Yazdanpanah G, Jabbehdari S, Djalilian AR. Emerging Approaches for Ocular Surface Regeneration. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:1-10. [PMID: 31275736 DOI: 10.1007/s40135-019-00193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review In this manuscript, the recent advancements and novel approaches for regeneration of the ocular surface are summarized. Recent findings Following severe injuries, persistent inflammation can alter the rehabilitative capability of the ocular surface environment. Limbal stem cell deficiency (LSCD) is one of the most characterized ocular surface disorders mediated by deficiency and/or dysfunction of the limbal epithelial stem cells (LESCs) located in the limbal niche. Currently, the most advanced approach for revitalizing the ocular surface and limbal niche is based on transplantation of limbal tissues harboring LESCs. Emerging approaches have focused on restoring the ocular surface microenvironment using (1) cell-based therapies including cells with capabilities to support the LESCs and modulate the inflammation, e.g., mesenchymal stem cells (MSCs), (2) bio-active extracellular matrices from decellularized tissues, and/or purified/synthetic molecules to regenerate the microenvironment structure, and (3) soluble cytokine/growth factor cocktails to revive the signaling pathways. Summary Ocular surface/limbal environment revitalization provide promising approaches for regeneration of the ocular surface.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Banerjee A, Lindenmair A, Steinborn R, Dumitrescu SD, Hennerbichler S, Kozlov AV, Redl H, Wolbank S, Weidinger A. Oxygen Tension Strongly Influences Metabolic Parameters and the Release of Interleukin-6 of Human Amniotic Mesenchymal Stromal Cells In Vitro. Stem Cells Int 2018; 2018:9502451. [PMID: 30510589 PMCID: PMC6230389 DOI: 10.1155/2018/9502451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
The human amniotic membrane (hAM) has been used for tissue regeneration for over a century. In vivo (in utero), cells of the hAM are exposed to low oxygen tension (1-4% oxygen), while the hAM is usually cultured in atmospheric, meaning high, oxygen tension (20% oxygen). We tested the influence of oxygen tensions on mitochondrial and inflammatory parameters of human amniotic mesenchymal stromal cells (hAMSCs). Freshly isolated hAMSCs were incubated for 4 days at 5% and 20% oxygen. We found 20% oxygen to strongly increase mitochondrial oxidative phosphorylation, especially in placental amniotic cells. Oxygen tension did not impact levels of reactive oxygen species (ROS); however, placental amniotic cells showed lower levels of ROS, independent of oxygen tension. In contrast, the release of nitric oxide was independent of the amniotic region but dependent on oxygen tension. Furthermore, IL-6 was significantly increased at 20% oxygen. To conclude, short-time cultivation at 20% oxygen of freshly isolated hAMSCs induced significant changes in mitochondrial function and release of IL-6. Depending on the therapeutic purpose, cultivation conditions of the cells should be chosen carefully for providing the best possible quality of cell therapy.
Collapse
Affiliation(s)
- Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Lindenmair
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Garnisonstraße 21, 4020 Linz, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Sergiu Dan Dumitrescu
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simone Hennerbichler
- Red Cross Blood Transfusion Service for Upper Austria, Krankenhausstraße 7, 4017 Linz, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
18
|
Farhadihosseinabadi B, Farahani M, Tayebi T, Jafari A, Biniazan F, Modaresifar K, Moravvej H, Bahrami S, Redl H, Tayebi L, Niknejad H. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:431-440. [PMID: 29687742 DOI: 10.1080/21691401.2018.1458730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
One of the main goals of tissue engineering and regenerative medicine is to develop skin substitutes for treating deep dermal and full thickness wounds. In this regard, both scaffold and cell source have a fundamental role to achieve exactly the same histological and physiological analog of skin. Amnion epithelial and mesenchymal cells possess the characteristics of pluripotent stem cells which have the capability to differentiate into all three germ layers and can be obtained without any ethical concern. Amniotic cells also produce different growth factors, angio-modulatory cytokines, anti-bacterial peptides and a wide range of anti-inflammatory agents which eventually cause acceleration in wound healing. In addition, amniotic membrane matrix exhibits characteristics of an ideal scaffold and skin substitute through various types of extracellular proteins such as collagens, laminins and fibronectins which serve as an anchor for cell attachment and proliferation, a bed for cell delivery and a reservoir of drugs and growth factors involved in wound healing process. Recently, isolation of amniotic cells exosomes, surface modification and cross-linking approaches, construction of amnion based nanocomposites and impregnation of amnion with nanoparticles, construction of amnion hydrogel and micronizing process promoted its properties for tissue engineering. In this manuscript, the recent progress was reviewed which approve that amnion-derived cells and matrix have potential to be involved in skin substitutes; an enriched cell containing scaffold which has a great capability to be translated into the clinic.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mehrdad Farahani
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Tahereh Tayebi
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ameneh Jafari
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Basic Sciences, School of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Felor Biniazan
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Khashayar Modaresifar
- c Department of Biomaterials, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | - Hamideh Moravvej
- d Skin Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Soheyl Bahrami
- e Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center , Vienna , Austria
| | - Heinz Redl
- e Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center , Vienna , Austria
| | - Lobat Tayebi
- f Department of Developmental Sciences , Marquette University School of Dentistry , Milwaukee , WI , USA
| | - Hassan Niknejad
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
Van den Bogerd B, Ní Dhubhghaill S, Zakaria N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. J Tissue Eng Regen Med 2018; 12:e2020-e2028. [PMID: 29430874 PMCID: PMC5947733 DOI: 10.1002/term.2633] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/07/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
The idea of transplanting a sheet of laboratory-grown corneal endothelium dates back to 1978; however, the ideal scaffold is still lacking. We hypothesized that human crystalline lens capsules (LCs) could qualify as a scaffold and aimed to characterize the properties of this material for endothelial tissue engineering. LCs were isolated from donor eyes, stored at -80 °C, and decellularized with water and trypsin-EDTA. The decellularization was investigated by nuclear staining and counting and the capsule thickness was determined by optical coherence tomography and compared with Descemet's membrane (DM). Transparency was examined by spectrometry, and collagenase degradation was performed to evaluate its resistance to degradation. Cell-scaffold interaction was assessed by measuring focal adhesions surface area on LC and plastic. Finally, primary corneal endothelial cells were grown on LCs to validate the phenotype. Trypsin-EDTA decellularized most effectively, removing 99% of cells. The mean LC thickness was 35.76 ± 0.43 μm, whereas DM measured 25.93 ± 0.26 μm (p < .0001). Light transmission was 90% for both LC and DM. On a collagenase challenge, LC and amniotic membrane were digested after 13 hr, whereas DM was digested after 17 hr. The surface area of focal adhesions for cells grown on coated LCs was at least double that compared with other conditions, whereas tight junctions, ion pumps, and hexagonal morphology were well maintained when endothelial cells were cultured on LCs. In conclusion, LCs demonstrate excellent scaffolding properties for tissue engineering and sustain the cell phenotype and can be considered a suitable substrate for ocular tissue engineering or as a template for future scaffolds.
Collapse
Affiliation(s)
- Bert Van den Bogerd
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
- Department of OphthalmologyAntwerp University HospitalEdegemBelgium
| | - Nadia Zakaria
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
- Department of OphthalmologyAntwerp University HospitalEdegemBelgium
- Centre for Cell Therapy and Regenerative MedicineAntwerp University HospitalEdegemBelgium
| |
Collapse
|
20
|
Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from the Human Placenta and Umbilical Cord. Sci Rep 2018; 8:5014. [PMID: 29568084 PMCID: PMC5864926 DOI: 10.1038/s41598-018-23396-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) derived from placental tissue show great therapeutic potential and have been used in medical treatment, but the similarity and differences between the MSCs derived from various parts of the placenta remain unclear. In this study, we compared MSCs derived from different perinatal tissues, including the umbilical cord (UC), amniotic membrane (AM), chorionic plate (CP) and decidua parietalis (DP). Using human leukocyte antigen (HLA) typing and karyotype analysis, we found that the first three cell types were derived from the foetus, while the MSCs from the decidua parietalis were derived from the maternal portion of the placental tissue. Our results indicate that both foetal and maternal MSCs share a similar phenotype and multi-lineage differentiation potential, but foetal MSCs show a significantly higher expansion capacity than do maternal MSCs. Furthermore, MSCs from all sources showed significant differences in the levels of several paracrine factors.
Collapse
|
21
|
Azizian S, Khatami F, Modaresifar K, Mosaffa N, Peirovi H, Tayebi L, Bahrami S, Redl H, Niknejad H. Immunological compatibility status of placenta-derived stem cells is mediated by scaffold 3D structure. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:876-884. [DOI: 10.1080/21691401.2018.1438452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Azizian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Khatami
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Khashayar Modaresifar
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Habibollah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Baradaran-Rafii A, Asl NS, Ebrahimi M, Jabbehdari S, Bamdad S, Roshandel D, Eslani M, Momeni M. The role of amniotic membrane extract eye drop (AMEED) in in vivo cultivation of limbal stem cells. Ocul Surf 2018; 16:146-153. [DOI: 10.1016/j.jtos.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/10/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022]
|
23
|
Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep 2017; 7:17022. [PMID: 29208979 PMCID: PMC5717175 DOI: 10.1038/s41598-017-17210-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Due to antibacterial characteristic, amnion has been frequently used in different clinical situations. Developing an in vitro method to augment endogenous antibacterial ingredient of amniotic epithelial and mesenchymal stem cells is desirable for a higher efficacy of this promising biomaterial. In this study, epithelial or mesenchymal side dependent effect of amniotic membrane (AM) on antibacterial activity against some laboratory and clinical isolated strains was investigated by modified disk diffusion method and colony count assay. The effect of exposure to IL-1β in production and release of antibacterial ingredients was investigated by ELISA assay. The results showed that there is no significant difference between epithelial and mesenchymal sides of amnion in inhibition of bacterial growth. Although the results of disk diffusion showed that the AM inhibitory effect depends on bacterial genus and strain, colony count assay showed that the extract of AM inhibits all investigated bacterial strains. The exposure of AM to IL-1β leads to a higher level of antibacterial peptides secretion including elafin, HBD-2, HBD-3 and cathelicidic LL-37. Based on these results, amniotic cells possess antibacterial activity which can be augmented by inflammatory signal inducers; a process which make amnion and its epithelial and mesenchymal stem cells more suitable for tissue engineering and regenerative medicine.
Collapse
|
24
|
The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiology 2016; 74:61-67. [PMID: 27956223 DOI: 10.1016/j.cryobiol.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/07/2016] [Accepted: 12/05/2016] [Indexed: 01/24/2023]
Abstract
Human amniotic membrane (AM) is an appropriate candidate for treatment of cancer due to special properties, such as inhibition of angiogenesis and secretion of pro-apoptotic factors. This research was designed to evaluate the impact of cryopreservation on cancer cell death induction and anti-angiogenic properties of the AM. Cancer cells were treated with fresh and cryopreserved amniotic condition medium during 24 h and cancer cell viability was determined by MTT assay. To evaluate angiogenesis, the rat aorta ring assay was performed for both fresh and cryopreserved AM within 7 days. In addition, four anti-angiogenic factors Tissue Inhibitor of Matrix Metalloproteinase-1 and 2 (TIMP-1 and TIMP-2), Thrombospondin, and Endostatin were measured by ELISA assay before and after cryopreservation. The results showed that the viability of cultured cancer cells dose-dependently decreased after treatment with condition medium of fresh and cryopreserved tissue and no significant difference was observed between the fresh and cryopreserved AM. The results revealed that the amniotic epithelial stem cells inhibit the penetration of fibroblast-like cells and angiogenesis. Moreover, the penetration of fibroblast-like cells in both epithelial and mesenchymal sides of fresh and cryopreserved AM was observed after removing of epithelial cells. The cryopreservation procedure significantly decreased anti-angiogenic factors TIMP-1, TIMP-2, Thrombospondin, and Endostatin which shows that angio-modulatory property is not fully dependent on proteomic and metabolomic profiles of the AM. These promising results demonstrate that cancer cell death induction and anti-angiogenic properties of the AM were maintained within cryopreservation; a procedure which can circumvent limitations of the fresh AM.
Collapse
|