1
|
Fang H, Ren W, Cui Q, Liang H, Yang C, Liu W, Wang X, Liu X, Shi Y, Feng J, Chen C. Integrin β4 promotes DNA damage-related drug resistance in triple-negative breast cancer via TNFAIP2/IQGAP1/RAC1. eLife 2023; 12:RP88483. [PMID: 37787041 PMCID: PMC10547475 DOI: 10.7554/elife.88483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Anti-tumor drug resistance is a challenge for human triple-negative breast cancer (TNBC) treatment. Our previous work demonstrated that TNFAIP2 activates RAC1 to promote TNBC cell proliferation and migration. However, the mechanism by which TNFAIP2 activates RAC1 is unknown. In this study, we found that TNFAIP2 interacts with IQGAP1 and Integrin β4. Integrin β4 activates RAC1 through TNFAIP2 and IQGAP1 and confers DNA damage-related drug resistance in TNBC. These results indicate that the Integrin β4/TNFAIP2/IQGAP1/RAC1 axis provides potential therapeutic targets to overcome DNA damage-related drug resistance in TNBC.
Collapse
Affiliation(s)
- Huan Fang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- Kunming College of Life Sciences, University of Chinese Academy of SciencesKunming, YunnanChina
| | - Wenlong Ren
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- School of Life Science, University of Science & Technology of ChinaHefeiChina
| | - Qiuxia Cui
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- Affiliated Hospital of Guangdong Medical UniversityGuangdongChina
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Huichun Liang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Chuanyu Yang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Wenjing Liu
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Xinye Wang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Xue Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People’s Hospital South CampusShanghaiChina
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou UniversityZhengzhouChina
| | - Jing Feng
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People’s Hospital South CampusShanghaiChina
- The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen)ShenzhenChina
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangdong ProvinceGuangzhouChina
| | - Ceshi Chen
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- Academy of Biomedical Engineering, Kunming Medical UniversityKunmingChina
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
2
|
Stransky N, Ganser K, Naumann U, Huber SM, Ruth P. Tumoricidal, Temozolomide- and Radiation-Sensitizing Effects of K Ca3.1 K + Channel Targeting In Vitro Are Dependent on Glioma Cell Line and Stem Cell Fraction. Cancers (Basel) 2022; 14:cancers14246199. [PMID: 36551685 PMCID: PMC9776522 DOI: 10.3390/cancers14246199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Reportedly, the intermediate-conductance Ca2+-activated potassium channel KCa3.1 contributes to the invasion of glioma cells into healthy brain tissue and resistance to temozolomide and ionizing radiation. Therefore, KCa3.1 has been proposed as a potential target in glioma therapy. The aim of the present study was to assess the variability of the temozolomide- and radiation-sensitizing effects conferred by the KCa3.1 blocking agent TRAM-34 between five different glioma cell lines grown as differentiated bulk tumor cells or under glioma stem cell-enriching conditions. As a result, cultures grown under stem cell-enriching conditions exhibited indeed higher abundances of mRNAs encoding for stem cell markers compared to differentiated bulk tumor cultures. In addition, stem cell enrichment was paralleled by an increased resistance to ionizing radiation in three out of the five glioma cell lines tested. Finally, TRAM-34 led to inconsistent results regarding its tumoricidal but also temozolomide- and radiation-sensitizing effects, which were dependent on both cell line and culture condition. In conclusion, these findings underscore the importance of testing new drug interventions in multiple cell lines and different culture conditions to partially mimic the in vivo inter- and intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: or ; Tel.: +49-7071-29-82183; Fax: +49-7071-29-4944
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
4
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
5
|
The Role of Nrf2 Activity in Cancer Development and Progression. Cancers (Basel) 2019; 11:cancers11111755. [PMID: 31717324 PMCID: PMC6896028 DOI: 10.3390/cancers11111755] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Nrf2 is a transcription factor that stimulates the expression of genes which have antioxidant response element-like sequences in their promoter. Nrf2 is a cellular protector, and this principle applies to both normal cells and malignant cells. While healthy cells are protected from DNA damage induced by reactive oxygen species, malignant cells are defended against chemo- or radiotherapy. Through our literature search, we found that Nrf2 activates several oncogenes unrelated to the antioxidant activity, such as Matrix metallopeptidase 9 (MMP-9), B-cell lymphoma 2 (BCL-2), B-cell lymphoma-extra large (BCL-xL), Tumour Necrosis Factor α (TNF-α), and Vascular endothelial growth factor A (VEGF-A). We also did a brief analysis of The Cancer Genome Atlas (TCGA) data of lung adenocarcinoma concerning the effects of radiation therapy and found that the therapy-induced Nrf2 activation is not universal. For instance, in the case of recurrent disease and radiotherapy, we observed that, for the majority of Nrf2-targeted genes, there is no change in expression level. This proves that the universal, axiomatic rationale that Nrf2 is activated as a response to chemo- and radiation therapy is wrong, and that each scenario should be carefully evaluated with the help of Nrf2-targeted genes. Moreover, there were nine genes involved in lipid peroxidation, which showed underexpression in the case of new radiation therapy: ADH1A, ALDH3A1, ALDH3A2, ADH1B, GPX2, ADH1C, ALDH6A1, AKR1C3, and NQO1. This may relate to the fact that, while some studies reported the co-activation of Nrf2 and other oncogenic signaling pathways such as Phosphoinositide 3-kinases (PI3K), mitogen-activated protein kinase (MAPK), and Notch1, other reported the inverse correlation between Nrf2 and the tumor-promoter Transcription Factor (TF), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Lastly, Nrf2 establishes its activity through interactions at multiple levels with various microRNAs. MiR-155, miR-144, miR-28, miR-365-1, miR-93, miR-153, miR-27a, miR-142, miR-29-b1, miR-340, and miR-34a, either through direct repression of Nrf2 messenger RNA (mRNA) in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner or by enhancing the Keap1 cellular level, inhibit the Nrf2 activity. Keap1–Nrf2 interaction leads to the repression of miR-181c, which is involved in the Nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway. Nrf2’s role in cancer prevention, diagnosis, prognosis, and therapy is still in its infancy, and the future strategic planning of Nrf2-based oncological approaches should also consider the complex interaction between Nrf2 and its various activators and inhibitors.
Collapse
|
6
|
Chellini L, Caprara V, Spadaro F, Sestito R, Bagnato A, Rosanò L. Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signalling in ovarian cancer. Matrix Biol 2019; 81:17-33. [DOI: 10.1016/j.matbio.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022]
|
7
|
Wu CC, Li H, Xiao Y, Yang LL, Chen L, Deng WW, Wu L, Zhang WF, Sun ZJ. Over-expression of IQGAP1 indicates poor prognosis in head and neck squamous cell carcinoma. J Mol Histol 2018; 49:389-398. [DOI: 10.1007/s10735-018-9779-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
|
8
|
The inhibition of UBC13 expression and blockage of the DNMT1-CHFR-Aurora A pathway contribute to paclitaxel resistance in ovarian cancer. Cell Death Dis 2018; 9:93. [PMID: 29367628 PMCID: PMC5833742 DOI: 10.1038/s41419-017-0137-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/03/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Paclitaxel is widely used as a first-line chemotherapeutic drug for patients with ovarian cancer and other solid cancers, but drug resistance occurs frequently, resulting in ovarian cancer still presenting as the highest lethality among all gynecological tumors. Here, using DIGE quantitative proteomics, we identified UBC13 as down-regulated in paclitaxel-resistant ovarian cancer cells, and it was further revealed by immunohistochemical staining that UBC13 low-expression was associated with poorer prognosis and shorter survival of the patients. Through gene function experiments, we found that paclitaxel exposure induced UBC13 down-regulation, and the enforced change in UBC13 expression altered the sensitivity to paclitaxel. Meanwhile, the reduction of UBC13 increased DNMT1 levels by attenuating its ubiquitination, and the up-regulated DNMT1 enhanced the CHFR promoter DNA methylation levels, leading to a reduction of CHFR expression, and an increased in the levels of Aurora A. Our findings revealed a novel function for UBC13 in regulating paclitaxel sensitivity through a DNMT1-CHFR-Aurora A pathway in ovarian cancer cells. UBC13 could potentially be employed as a therapeutic molecular drug for reversing paclitaxel resistance in ovarian cancer patients.
Collapse
|
9
|
Peng Q, Qin J, Zhang Y, Cheng X, Wang X, Lu W, Xie X, Zhang S. Autophagy maintains the stemness of ovarian cancer stem cells by FOXA2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:171. [PMID: 29187221 PMCID: PMC5707869 DOI: 10.1186/s13046-017-0644-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Background Cancer stem cells (CSCs) are regarded as the main cell type responsible for the initiation, metastasis, drug resistance, and recurrence of cancer. But the mechanism by which cancer stem cells maintain their stemness remains unclear. Methods and Results In the present study, ovarian cancer stem cells (OCSCs) were revealed to have an enhanced autophagic flux. Furthermore, their chemoresistance and ability to self-renewal in vitro were decreased when autophagy was inhibited by Bafilomycin A1(BafA1), Chloroquine(CQ) or autophagy related 5(ATG5) knockdown. PCR array screening determined that Forkhead Box A2(FOXA2) was highly expressed in OCSCs, and correspondingly regulated by autophagy activity. In addition, the self-renewal ability was decreased in the case of FOXA2 knockdown by shRNA in OCSCs. Overexpression of FOXA2 from the pEGFP(+)-FOXA2 plasmid partially reversed the depressed self-renewal ability of OCSCs during autophagy inhibition. Conclusions Our findings suggest that autophagy, through participation of FOXA2, maintains the characteristics of OCSCs. Autophagy and FOXA2 are therefore potential targets for ovarian cancer stem cell directed therapies. Electronic supplementary material The online version of this article (10.1186/s13046-017-0644-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaohua Peng
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jiale Qin
- Department of Ultrasound; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yanan Zhang
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
10
|
Wippel HH, Santos MDM, Clasen MA, Kurt LU, Nogueira FCS, Carvalho CE, McCormick TM, Neto GPB, Alves LR, da Gloria da Costa Carvalho M, Carvalho PC, Fischer JDSDG. Comparing intestinal versus diffuse gastric cancer using a PEFF-oriented proteomic pipeline. J Proteomics 2017; 171:63-72. [PMID: 29032071 DOI: 10.1016/j.jprot.2017.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Gastric cancer is the fifth most common malignant neoplasia and the third leading cause of cancer death worldwide. Mac-Cormick et al. recently showed the importance of considering the anatomical region of the tumor in proteomic gastric cancer studies; more differences were found between distinct anatomical regions than when comparing healthy versus diseased tissue. Thus, failing to consider the anatomical region could lead to differential proteins that are not disease specific. With this as motivation, we compared the proteomic profiles of intestinal and diffuse adenocarcinoma from the same anatomical region, the corpus. To achieve this, we used isobaric labeling (iTRAQ) of peptides, a 10-step HILIC fractionation, and reversed-phase nano-chromatography coupled online with a Q-Exactive Plus mass spectrometer. We updated PatternLab to take advantage of the new Comet-PEFF search engine that enables identifying post-translational modifications and mutations included in neXtProt's PSI Extended FASTA Format (PEFF) metadata. Our pipeline then uses a text-mining tool that automatically extracts PubMed IDs from the proteomic result metadata and drills down keywords from manuscripts related with the biological processes at hand. Our results disclose important proteins such as apolipoprotein B-100, S100 and 14-3-3 proteins, among many others, highlighting the different pathways enriched by each cancer type. SIGNIFICANCE Gastric cancer is a heterogeneous and multifactorial disease responsible for a significant number of deaths every year. Despite the constant improvement of surgical techniques and multimodal treatments, survival rates are low, mostly due to limited diagnostic techniques and late symptoms. Intestinal and diffuse types of gastric cancer have distinct clinical and pathological characteristics; yet little is known about the molecular mechanisms regulating these two types of gastric tumors. Here we compared the proteomic profile of diffuse and intestinal types of gastric cancer from the same anatomical location, the corpus, from four male patients. This methodological design aimed to eliminate proteomic variations resulting from comparison of tumors from distinct anatomical regions. Our PEFF-tailored proteomic pipeline significantly increased the identifications as when compared to previous versions of PatternLab.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Computational Mass Spectrometry & Proteomics Group, Carlos Chagas Institute, Fiocruz - Paraná, Brazil
| | | | - Milan Avila Clasen
- Computational Mass Spectrometry & Proteomics Group, Carlos Chagas Institute, Fiocruz - Paraná, Brazil
| | - Louise Ulrich Kurt
- Computational Mass Spectrometry & Proteomics Group, Carlos Chagas Institute, Fiocruz - Paraná, Brazil
| | - Fabio Cesar Sousa Nogueira
- Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Protein Chemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Eduardo Carvalho
- Pathology Service of the Clementino Fraga Filho University Hospital (HUCFF-UFRJ), Rio de Janeiro, Brazil
| | | | - Guilherme Pinto Bravo Neto
- Division of Esophageal and Gastric Surgery, General Surgery Service of the HUCFF-UFRJ, Rio de Janeiro, Brazil
| | | | | | - Paulo Costa Carvalho
- Computational Mass Spectrometry & Proteomics Group, Carlos Chagas Institute, Fiocruz - Paraná, Brazil.
| | | |
Collapse
|