1
|
Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells 2022; 11:cells11091432. [PMID: 35563738 PMCID: PMC9103122 DOI: 10.3390/cells11091432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
DJ-1, also called Parkinson’s protein 7 (PARK7), is ubiquitously expressed and plays multiple actions in different physiological and, especially, pathophysiological processes, as evidenced by its identification in neurodegenerative diseases and its high expression in different types of cancer. To date, the exact activity of DJ-1 in carcinogenesis has not been fully elucidated, however several recent studies disclosed its involvement in regulating fundamental pathways involved in cancer onset, development, and metastatization. At this purpose, we have dissected the role of DJ-1 in maintaining the transformed phenotype, survival, drug resistance, metastasis formation, and differentiation in cancer cells. Moreover, we have discussed the role of DJ-1 in controlling the redox status in cancer cells, along with the ability to attenuate reactive oxygen species (ROS)-dependent cell death, as well as to mediate ferropotosis. Finally, a mention to the development of therapeutic strategies targeting DJ-1 has been done. We have reported the most recent studies, aiming to shed light on the role played by DJ-1 in different cancer aspects and create the foundation for moving beyond the tip of the iceberg.
Collapse
|
2
|
He W, Fang X, Lu X, Liu Y, Li G, Zhao Z, Li J, Yang R. Function Identification of Bovine ACSF3 Gene and Its Association With Lipid Metabolism Traits in Beef Cattle. Front Vet Sci 2022; 8:766765. [PMID: 35071379 PMCID: PMC8770830 DOI: 10.3389/fvets.2021.766765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Acyl-CoA synthetase family member 3 (ACSF3) carries out the first step of mitochondrial fatty acid synthesis II, which is the linkage of malonate and, to a lesser extent, methylmalonate onto CoA. Malonyl-coenzyme A (malonyl-CoA) is a central metabolite in mammalian fatty acid biochemistry that is generated and utilized in the cytoplasm. In this research, we verified the relationship between expression of the ACSF3 and the production of triglycerides (TGs) at the cellular level by silencing and over-expressing ACSF3. Subsequently, through Sanger sequencing, five polymorphisms were found in the functional domain of the bovine ACSF3, and the relationship between ACSF3 polymorphism and the economic traits and fatty acid composition of Chinese Simmental cattle was analyzed by a means of variance analysis and multiple comparison. The results illustrated that the expression of ACSF3 promoted triglyceride synthesis in bovine mammary epithelial cells and bovine fetal fibroblast cells. Further association analysis also indicated that individuals with the AG genotype (g.14211090 G > A) of ACSF3 were significantly associated with the fatty acid composition of intramuscular fat (higher content of linoleic acid, α-linolenic acid, and arachidonic acid), and that CTCAG haplotype individuals were significantly related to the fatty acid composition of intramuscular fat (higher linoleic acid content). Individuals with the AA genotypes of g.14211055 A > G and g.14211090 G > A were substantially associated with a larger eye muscle area in the Chinese Simmental cattle population. ACSF3 played a pivotal role in the regulation of cellular triacylglycerol and long-chain polyunsaturated fatty acid levels, and polymorphism could serve as a useful molecular marker for future marker-assisted selection in the breeding of intramuscular fat deposition traits in beef cattle.
Collapse
Affiliation(s)
- Wei He
- College of Animal Science, Jilin University, Changchun, China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun, China
| | - Xin Lu
- College of Animal Science, Jilin University, Changchun, China
| | - Yue Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Guanghui Li
- College of Animal Science, Jilin University, Changchun, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhu QZ, Liu HY, Zhao XY, Qiu LJ, Zhou TT, Wang XY, Chen HP, Xiao ZQ. DJ-1 activates the noncanonical NF-κB pathway via interaction with Cezanne to inhibit the apoptosis and promote the proliferation of Ishikawa cells. Mol Biol Rep 2021; 48:6075-6083. [PMID: 34374892 DOI: 10.1007/s11033-021-06614-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endometrial cancer is generally one of the most evident malignant tumours of the female reproductive system, and the mechanisms underlying its cell proliferation and apoptosis are key to research in gynaecological oncology. In the paper, the in-depth molecular mechanism by which DJ-1 protein regulates the proliferation and apoptosis of Ishikawa cells was investigated. METHODS AND RESULTS DJ-1 knockdown and overexpressing Ishikawa stable cell lines were established by lentiviral transduction. The levels of DJ-1 and noncanonical NF-κB signaling key proteins were evaluated by Western blotting. Cell counting kit-8 (CCK-8) and flow cytometry were applied to analyze the cell viability and apoptosis. Co-immunoprecipitation experiment was utilized to assess the DJ-1-Cezanne interaction. The results showed that DJ-1 overexpression conferred apoptosis resistance and high proliferation on Ishikawa cells, while DJ-1 knockdown in Ishikawa cells produced the opposite results. These findings again suggested that DJ-1 inhibits the apoptosis and promotes the proliferation of Ishikawa cells. More crucially, further data showed that the noncanonical NF-κB activation was required for the regulation of Ishikawa cell proliferation and apoptosis by DJ-1. Meanwhile, it was found that noncanonical NF-κB pathway may be activated by DJ-1 interacting with and negatively regulating Cezanne in Ishikawa cells. CONCLUSIONS Overall, this work revealed that DJ-1 associates with and negatively regulates Cezanne and consequently triggers the noncanonical NF-κB activation, thereby regulating Ishikawa cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Qi-Zhou Zhu
- Department of Gynecological Oncology, Maternal and Child Health Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Department of Gynecological Oncology, JiangXi Maternal and Child Health Hospital, Nanchang, 330006, People's Republic of China
| | - Hao-Yue Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiao-Yan Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Le-Jia Qiu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ting-Ting Zhou
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xue-Ying Wang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - He-Ping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhong-Qing Xiao
- Department of Gynecological Oncology, Maternal and Child Health Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China. .,Department of Gynecological Oncology, JiangXi Maternal and Child Health Hospital, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
4
|
Jin W. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020; 9:jcm9051256. [PMID: 32357493 PMCID: PMC7288009 DOI: 10.3390/jcm9051256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
The expression of PARK7 is upregulated in various types of cancer, suggesting its potential role as a critical regulator of the pathogenesis of cancer and in the treatment of cancer and neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington disease. PARK7 activates various intracellular signaling pathways that have been implicated in the induction of tumor progression, which subsequently enhances tumor initiation, continued proliferation, metastasis, recurrence, and resistance to chemotherapy. Additionally, secreted PARK7 has been identified as a high-risk factor for the pathogenesis and survival of various cancers. This review summarizes the current understanding of the correlation between the expression of PARK7 and tumor progression.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
5
|
Zhou J, Li Z, Li J, Gao B, Song W. Chemotherapy Resistance Molecular Mechanism in Small Cell Lung Cancer. Curr Mol Med 2019; 19:157-163. [PMID: 30813876 DOI: 10.2174/1566524019666190226104909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The malignancy of small cell lung cancer (SCLC) is the highest amongst all
lung cancer types. It is characterized by rapid growth, early occurrence of distant sites
metastasis, poor survival rates and is initially sensitive to chemotherapy and
radiotherapy. However, most patients eventually relapse or disease progresses because
of chemotherapy resistance. Because of lack of effective second-line therapies, the
prognosis of SCLC patients is usually poor. For the development of novel therapies, it is
necessary to understand the mechanisms of chemotherapy resistance in SCLC. The
mechanism is complex, because multiple factors could lead to chemotherapy resistance.
An overview of multiple events triggering the formation of chemotherapy resistance
phenotypes of SCLC cells is discussed.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jun Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
6
|
Yang J, Dou Z, Peng X, Wang H, Shen T, Liu J, Li G, Gao Y. Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35-An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin Nutr 2018; 38:2349-2359. [PMID: 30420292 DOI: 10.1016/j.clnu.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The aim of the paper is to investigate the effect of the active fraction extracted from the Xinjiang Bactrian camel whey on the human cancer cells using an in vitro and in vivo model of human carcinoma of the esophagus. METHODS AND RESULTS Our results demonstrated that an antitumor active fraction, TR35, isolated from Xinjiang Bactrian camel milk could significantly inhibit Eca109 cell proliferation and induce its apoptosis (indicated by MTT assay, Annexin V-FITC Apoptosis Detection, and caspase-3 activity). Moreover, we found that TR35 could inhibit the growth of xenografted tumor in nude mice without loss in body weight. Furthermore, we used RNA-Seq and 2-DE combined Mass Spectrometry analysis to identify differentially expressed RNA and protein markers of apoptosis and necrosis. Compared with untreated Eca109 cells, a total of 405 differentially expressed genes and 55 differentially expressed proteins were identified in TR35 treated Eca109 cells. KEGG analysis uncovered signaling pathways closely associated with cancer inhibition that were enriched in the TR35-treated cells. CONCLUSIONS These results might implicate that downregulation of specific proteins identified in this study may be the cause of this tumor growth inhibition. This study sheds light on the potential therapeutic advantages based on the historical anti-cancer activities of camel milk.
Collapse
Affiliation(s)
- Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhihua Dou
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Hongjuan Wang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tong Shen
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jun Liu
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guan Li
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Gao
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Ismail IA, El-Sokkary GH, Saber SH. Low doses of Paclitaxel repress breast cancer invasion through DJ-1/KLF17 signalling pathway. Clin Exp Pharmacol Physiol 2018; 45:961-968. [PMID: 29701902 DOI: 10.1111/1440-1681.12960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/14/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Paclitaxel (taxol) is an important agent against many tumours, including breast cancer. Ample data documents that paclitaxel inhibits breast cancer metastasis while others prove that paclitaxel enhances breast cancer metastasis. The mechanisms by which paclitaxel exerts its action are not well established. This study focuses on the effect of paclitaxel, particularly the low doses on breast cancer metastasis and the mechanisms that regulate it. Current results show that, paclitaxel exerts significant cytotoxicity even at low doses in both MCF-7 and MDA-MB-231 cells. Interestingly, paclitaxel significantly inhibits cell invasion and migration, decreases Snail and increases E-cadherin mRNA expression levels at the indicated low doses. Furthermore, paclitaxel-inhibiting breast cancer metastasis is associated with down-regulation of DJ-1 and ID-1 mRNA expression level with a concurrent increase in KLF17 expression. Under the same experimental conditions, paclitaxel induces KLF17 and concurrently represses ID-1 protein levels. Our results show for the first time that paclitaxel inhibits breast cancer metastasis through regulating DJ-1/KLF17/ID-1 signalling pathway; repressed DJ-1 and ID-1 and enhanced KLF17 expression.
Collapse
Affiliation(s)
- Ismail Ahmed Ismail
- Faculty of Science, Department of Biology, Taibah University, Saudi, Arabia
- Faculty of Science, Department of Zoology, Laboratory of Molecular Cell Biology, Assiut University, Assiut, Egypt
| | - Gamal H El-Sokkary
- Faculty of Science, Department of Zoology, Assiut University, Assiut, Egypt
| | - Saber H Saber
- Faculty of Science, Department of Zoology, Laboratory of Molecular Cell Biology, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Raninga PV, Di Trapani G, Tonissen KF. The Multifaceted Roles of DJ-1 as an Antioxidant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:67-87. [PMID: 29147904 DOI: 10.1007/978-981-10-6583-5_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The DJ-1 protein was originally linked with Parkinson's disease and is now known to have antioxidant functions. The protein has three redox-sensitive cysteine residues, which are involved in its dimerisation and functional properties. A mildly oxidised form of DJ-1 is the most active form and protects cells from oxidative stress conditions. DJ-1 functions as an antioxidant through a variety of mechanisms, including a weak direct antioxidant activity by scavenging reactive oxygen species. DJ-1 also regulates a number of signalling pathways, including the inhibition of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis under oxidative stress conditions. Other proteins regulated by DJ-1 include enzymes, chaperones, the 20S proteasome and transcription factors, including Nrf2. Once activated by oxidative stress, Nrf2 upregulates antioxidant gene expression including members of the thioredoxin and glutathione pathways, which in turn mediate an antioxidant protective function. Crosstalk between DJ-1 and both the thioredoxin and glutathione systems has also been identified. Thioredoxin reduces a cysteine residue on DJ-1 to modulate its activity, while glutaredoxin1 de-glutathionylates DJ-1, preventing degradation of DJ-1 and resulting in its accumulation. DJ-1 also regulates the activity of glutamate cysteine ligase, which is the rate-limiting step for glutathione synthesis. These antioxidant functions of DJ-1 are key to its role in protecting neurons from oxidative stress and are hypothesised to protect the brain from the development of neurodegenerative diseases such as Parkinson's disease (PD) and to protect cardiac tissues from ischaemic-reperfusion injury. However, DJ-1, as an antioxidant, also protects cancer cells from undergoing oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Prahlad V Raninga
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Giovanna Di Trapani
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Kathryn F Tonissen
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
9
|
Di Cello A, Di Sanzo M, Perrone FM, Santamaria G, Rania E, Angotti E, Venturella R, Mancuso S, Zullo F, Cuda G, Costanzo F. DJ-1 is a reliable serum biomarker for discriminating high-risk endometrial cancer. Tumour Biol 2017; 39:1010428317705746. [DOI: 10.1177/1010428317705746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Annalisa Di Cello
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesca Marta Perrone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Erika Rania
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elvira Angotti
- Laboratory of Clinical Biochemistry, AOU Mater Domini, Catanzaro, Italy
| | - Roberta Venturella
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Serafina Mancuso
- Laboratory of Clinical Biochemistry, AOU Mater Domini, Catanzaro, Italy
| | - Fulvio Zullo
- Unit of Obstetrics and Gynaecology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Gao H, Niu Y, Li M, Fang S, Guo L. Identification of DJ-1 as a contributor to multidrug resistance in human small-cell lung cancer using proteomic analysis. Int J Exp Pathol 2017; 98:67-74. [PMID: 28580701 DOI: 10.1111/iep.12221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 01/18/2017] [Indexed: 01/24/2023] Open
Abstract
Proteomic approaches have been proven to provide an important tool in identifying drug resistance-associated proteins. The aim of this study was to investigate the protein profiling of drug resistance-related proteins in small-cell lung cancer (SCLC) by proteomic analysis. The proteomic profiling was performed by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MALDI-TOF-TOF of SCLC in the multidrug-resistant cell line H69AR and its parental cell line H69. A total of 11 proteins were identified to be >2-fold up-or downregulated between the two cell lines. DJ-1, one of the differently expressed proteins identified by proteomics, was further examined by immunohistochemistry staining in 116 cases of SCLC tissues. Immunohistochemical results demonstrated that DJ-1 was expressed in 51.7% (60/116) of SCLC. DJ-1 expression was correlated significantly with survival time of SCLC patients (P < 0.05), but not with other clinical parameters such as gender, age and clinical stage (P > 0.05). Downregulation of DJ-1 using DJ-1-siRNA in H69AR cells sensitized cancer cells to chemotherapeutic drugs through increasing drug-induced cell apoptosis accompanied with G0-G1 phase arrest. These findings suggest DJ-1 may serve as a potential biomarker for chemoresistance and prognostic factor for patients with SCLC.
Collapse
Affiliation(s)
- Hongyi Gao
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuchun Niu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Benati M, Montagnana M, Danese E, Paviati E, Giudici S, Ruzzenente O, Franchi M, Lippi G. The clinical significance of DJ-1 and HE4 in patients with endometrial cancer. J Clin Lab Anal 2017; 32. [PMID: 28374920 DOI: 10.1002/jcla.22223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/05/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The non-invasive diagnostic approach for early detection of endometrial cancer (EC) remains limited. To date, human epididymis protein 4 (HE4) has been intensively studied but its diagnostic is controversial in EC. DJ-1 is an oncoprotein secreted by cancer cells, recently identified as a potential diagnostic biomarker for breast cancer, melanoma, and pancreatic cancer. The aim of this study was to compare the diagnostic performances of DJ-1 and HE4 measured in EC patients and healthy controls (HC). METHODS Forty-five patients (63.9±12.0 years) with EC and 29 (63.2±13.3 years) HC were enrolled. Serum concentrations of DJ-1 and HE4 were measured using ELISA kits developed by R&D (Minneapolis, USA) and Fujirebio Diagnostic (Malvern, PA, USA), respectively. Differences between EC patients and HC were assessed by Mann-Whitney test and associations were tested by Spearman's correlation. The diagnostic performance was assessed using receiver operating characteristics (ROC) curves analysis. RESULTS Serum DJ-1 concentrations were found to be higher in EC patients than in HC (9533.6 vs 1988.5 pg/mL; P<.0001). The area under the ROC curve (ROC-AUC) was 0.95 (P<.0001). At the cut-off of 3654 pg/mL, the sensitivity and specificity were 0.89 and 0.90, respectively. HE4 serum levels were higher in EC patients than in HC (75.3 vs 56.2 pmol/L; P=.019), with an AUC of 0.66 (P=.020). The AUC obtained by the combination of the two markers resulted 0.96 (P<.0001). CONCLUSION These results suggest that increased serum DJ-1 levels are associated with EC and that this biomarker may be potentially useful for diagnosing EC.
Collapse
Affiliation(s)
- Marco Benati
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona, Italy
| | - Martina Montagnana
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Danese
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Paviati
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona, Italy
| | - Silvia Giudici
- Department of Surgery, Obstetrics and Gynaecology Section, University of Verona, Verona, Italy
| | - Orazio Ruzzenente
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona, Italy
| | - Massimo Franchi
- Department of Surgery, Obstetrics and Gynaecology Section, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Kawate T, Tsuchiya B, Iwaya K. Expression of DJ-1 in Cancer Cells: Its Correlation with Clinical Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:45-59. [PMID: 29147902 DOI: 10.1007/978-981-10-6583-5_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upregulation of DJ-1 mRNA is commonly observed in various human cancers such as ductal carcinoma of the breast, non-small cell carcinoma of the lung, pancreatic duct adenocarcinoma, urinary transitional cell carcinoma, and gynecologic carcinoma. At the protein level, intensity and intracellular localization of DJ-1 expression is varied, and the DJ-1 protein regulates cancer progression, clinical aggressiveness, differentiation, cancer cell morphology, and drug sensitivity. Thus, DJ-1 plays a critical role in cancer. Although DJ-1 has an important role within cancer cells, cancer cells secrete DJ-1 outside the cells. DJ-1 may serve as a tumor marker that can be detected from an early stage in the blood, secretory fluids, ascites, or pleural effusion.
Collapse
Affiliation(s)
- Takahiko Kawate
- Department of Breast Oncology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Benio Tsuchiya
- Department of Pathology, School of Allied Health Sciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Keiichi Iwaya
- Department of Pathology, Kyoundo Hospital, Sasaki Institute, 101-0062 2-2 Kandasurugadai, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
13
|
Affiliation(s)
- Jayasree Sengupta
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - G. Anupa
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Muzaffer Ahmed Bhat
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Debabrata Ghosh
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
14
|
Abstract
Onset of cancer and neurodegenerative disease occurs by abnormal cell growth and neuronal cell death, respectively, and the number of patients with both diseases has been increasing in parallel with an increase in mean lifetime, especially in developed countries. Although both diseases are sporadic, about 10% of the diseases are genetically inherited, and analyses of such familial forms of gene products have contributed to an understanding of the molecular mechanisms underlying the onset and pathogenesis of these diseases. I have been working on c-myc, a protooncogene, for a long time and identified various c-Myc-binding proteins that play roles in c-Myc-derived tumorigenesis. Among these proteins, some proteins have been found to be also responsible for the onset of neurodegenerative diseases, including Parkinson's disease, retinitis pigmentosa and cerebellar atrophy. In this review, I summarize our findings indicating the common mechanisms of onset between cancer and neurodegenerative diseases, with a focus on genes such as DJ-1 and Myc-Modulator 1 (MM-1) and signaling pathways that contribute to the onset and pathogenesis of cancer and neurodegenerative diseases.
Collapse
|
15
|
Gel-free proteomics reveals neoplastic potential in endometrium of infertile patients with stage IV ovarian endometriosis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.jrhm.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
DJ-1 in endometrial cancer: a possible biomarker to improve differential diagnosis between subtypes. Int J Gynecol Cancer 2015; 24:649-58. [PMID: 24614826 DOI: 10.1097/igc.0000000000000102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The objectives of this study were to characterize the well-defined endometrial cancer (EC) type I (endometrioid [EEC] G1-G2) versus the prototype of EC type II (serous [ESC]) and to evaluate the expression of specific biomarkers differentially expressed between 2 well-defined types, in those EC subtypes (such as EEC G3) disputed between types I and II. METHODS Data from 25 patients (10 EEC G1-G2, 8 EEC G3, 5 ESC, and 2 clear cell) submitted to the surgical treatment were collected. Two-dimensional electrophoresis and mass spectrometry (MS) analysis were performed on 5 EEC G1-G2 and 5 healthy endometrial samples of the same patients. Differentially expressed proteins, such as DJ-1, were validated by Western blot. In patients with EEC G1-G2, serum levels of DJ-1, an overexpressed oncoprotein related to EC pathogenesis and progression, were evaluated and then compared with levels identified in patients with ESC and healthy controls. The DJ-1 immunohistochemical (IHC) staining was performed on neoplastic and healthy endometrium collected from the same patients. The 8 stored samples of EEC G3 were submitted to DJ-1 IHC assays. RESULTS The 2-dimensional electrophoresis analysis identified 1040 protein spots differentially expressed in EEC G1-G2 compared with healthy endometrium. Forty-two spots were subjected to liquid chromatography-MS/MS analysis. Thirty-three up-regulated (like an annexin 2 [ANXA2] shorter isoform, CAPG [macrophage-capping protein], DJ-1/PARK7) and 9 down-regulated (like calreticulin and ubiquitin carboxyl-terminal hydrolase isozyme L1) proteins were identified and validated by Western blot. A significant increase in serum DJ-1 levels of EEC G1-G2 versus the healthy controls and in ESC versus EEC patients was observed. DJ-1 IHC score was significantly higher in ESC versus those EEC G1-G2. In 3 cases of EEC G3, the DJ-1 expression was similar to the ESC subtype. CONCLUSIONS The identification of proteins, such as DJ-1, differentially expressed, between well-defined EC types I and II allows to make a subtype-specific presurgical diagnosis and help surgeon to safely preoperatively choose a proper surgical treatment.
Collapse
|
17
|
Raninga PV, Trapani GD, Tonissen KF. Cross Talk between Two Antioxidant Systems, Thioredoxin and DJ-1: Consequences for Cancer. Oncoscience 2014; 1:95-110. [PMID: 25593990 PMCID: PMC4295760 DOI: 10.18632/oncoscience.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress, which is associated with an increased concentration of reactive oxygen species (ROS), is involved in the pathogenesis of numerous diseases including cancer. In response to increased ROS levels, cellular antioxidant molecules such as thioredoxin, peroxiredoxins, glutaredoxins, DJ-1, and superoxide dismutases are upregulated to counteract the detrimental effect of ROS. However, cancer cells take advantage of upregulated antioxidant molecules for protection against ROS-induced cell damage. This review focuses on two antioxidant systems, Thioredoxin and DJ-1, which are upregulated in many human cancer types, correlating with tumour proliferation, survival, and chemo-resistance. Thus, both of these antioxidant molecules serve as potential molecular targets to treat cancer. However, targeting one of these antioxidants alone may not be an effective anti-cancer therapy. Both of these antioxidant molecules are interlinked and act on similar downstream targets such as NF-κβ, PTEN, and Nrf2 to exert cytoprotection. Inhibiting either thioredoxin or DJ-1 alone may allow the other antioxidant to activate downstream signalling cascades leading to tumour cell survival and proliferation. Targeting both thioredoxin and DJ-1 in conjunction may completely shut down the antioxidant defence system regulated by these molecules. This review focuses on the cross-talk between thioredoxin and DJ-1 and highlights the importance and consequences of targeting thioredoxin and DJ-1 together to develop an effective anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Prahlad V. Raninga
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| | - Giovanna Di Trapani
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
| | - Kathryn F. Tonissen
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| |
Collapse
|