1
|
Venkata Srinivasan V, Carter-Dawson L, Patel NB. Retinal Ganglion Cell Content Underlying Standard Automated Perimetry Size I to V Visual Sensitivities in the Non-Human Primate Experimental Glaucoma Model. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 38995114 PMCID: PMC11246096 DOI: 10.1167/iovs.65.8.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Purpose To determine the relationship between visual sensitivities from white-on-white Goldmann size I to V stimuli and the underlying retinal ganglion cell (RGC) content in the non-human primate (NHP) experimental glaucoma model. Methods Normative data were collected from 13 NHPs. Unilateral experimental glaucoma was induced in seven animals with the least variable fields who were monitored using optical coherence tomography and 30-2 full-threshold standard automated perimetry (SAP). At varying endpoints, animals were euthanized followed by perfusion fixation, and 1-mm retinal punches were obtained from 34 corresponding SAP locations. RGCs were immunolabeled with an antibody against an RNA-binding protein (RBPMS) marker and imaged using confocal microscopy. RGC counts from each location were then related to visual sensitivities for each stimulus size, after accounting for ocular magnification. Results At the endpoint, the circumpapillary retinal nerve fiber layer thickness for experimental glaucoma eyes ranged from 47 to 113 µm. RGC density in control eyes was greatest for the 4.24° sample (18,024 ± 6869 cells/mm2) and decreased with eccentricity. Visual sensitivity at each tested location followed that predicted by spatial summation, with the critical area increasing with eccentricity (slope = 0.0036, R2 = 0.44). The relationship between RGC counts and visual sensitivity was described using a two-line fit, where the intercept of the first segment and hinge points were dependent on eccentricity. Conclusions In NHPs, SAP visual thresholds are related to the underlying RGCs. The resulting spatial summation based structure-function model can be used to estimate RGC content from any standard white-on-white stimulus size.
Collapse
Affiliation(s)
| | | | - Nimesh B Patel
- University of Houston College of Optometry, Houston, Texas, United States
| |
Collapse
|
2
|
Cole JD, McDaniel JA, Nilak J, Ban A, Rodriguez C, Hameed Z, Grannonico M, Netland PA, Yang H, Provencio I, Liu X. Characterization of neural damage and neuroinflammation in Pax6 small-eye mice. Exp Eye Res 2024; 238:109723. [PMID: 37979905 PMCID: PMC10843716 DOI: 10.1016/j.exer.2023.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Aniridia is a panocular condition characterized by a partial or complete loss of the iris. It manifests various developmental deficits in both the anterior and posterior segments of the eye, leading to a progressive vision loss. The homeobox gene PAX6 plays an important role in ocular development and mutations of PAX6 have been the main causative factors for aniridia. In this study, we assessed how Pax6-haploinsufficiency affects retinal morphology and vision of Pax6Sey mice using in vivo and ex vivo metrics. We used mice of C57BL/6 and 129S1/Svlmj genetic backgrounds to examine the variable severity of symptoms as reflected in human aniridia patients. Elevated intraocular pressure (IOP) was observed in Pax6Sey mice starting from post-natal day 20 (P20). Correspondingly, visual acuity showed a steady age-dependent decline in Pax6Sey mice, though these phenotypes were less severe in the 129S1/Svlmj mice. Local retinal damage with layer disorganization was assessed at P30 and P80 in the Pax6Sey mice. Interestingly, we also observed a greater number of activated Iba1+ microglia and GFAP + astrocytes in the Pax6Sey mice than in littermate controls, suggesting a possible neuroinflammatory response to Pax6 deficiencies.
Collapse
Affiliation(s)
- James D Cole
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John A McDaniel
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Joelle Nilak
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ashley Ban
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Zuhaad Hameed
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA.
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Zhang P, Vafaeva O, Dolf C, Ma Y, Wang G, Cho J, Chan HHL, Marsh-Armstrong N, Zawadzki RJ. Evaluating the performance of OCT in assessing static and potential dynamic properties of the retinal ganglion cells and nerve fiber bundles in the living mouse eye. BIOMEDICAL OPTICS EXPRESS 2023; 14:6422-6441. [PMID: 38420317 PMCID: PMC10898556 DOI: 10.1364/boe.504637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 03/02/2024]
Abstract
Glaucoma is a group of eye diseases characterized by the thinning of the retinal nerve fiber layer (RNFL), which is primarily caused by the progressive death of retinal ganglion cells (RGCs). Precise monitoring of these changes at a cellular resolution in living eyes is significant for glaucoma research. In this study, we aimed to assess the effectiveness of temporal speckle averaging optical coherence tomography (TSA-OCT) and dynamic OCT (dOCT) in examining the static and potential dynamic properties of RGCs and RNFL in living mouse eyes. We evaluated parameters such as RNFL thickness and possible dynamics, as well as compared the ganglion cell layer (GCL) soma density obtained from in vivo OCT, fluorescence scanning laser ophthalmoscopy (SLO), and ex vivo histology.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
| | - Olga Vafaeva
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Christian Dolf
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Yanhong Ma
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Guozhen Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Jessicca Cho
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| | - Robert J Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, University of California Davis, Davis, CA 95616, USA
- Center for Human Ocular Imaging Research (CHOIR), Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Karg MM, Lu YR, Refaian N, Cameron J, Hoffmann E, Hoppe C, Shirahama S, Shah M, Krasniqi D, Krishnan A, Shrestha M, Guo Y, Cermak JM, Walthier M, Broniowska K, Rosenzweig-Lipson S, Gregory-Ksander M, Sinclair DA, Ksander BR. Sustained Vision Recovery by OSK Gene Therapy in a Mouse Model of Glaucoma. Cell Reprogram 2023; 25:288-299. [PMID: 38060815 PMCID: PMC10739681 DOI: 10.1089/cell.2023.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.
Collapse
Affiliation(s)
- Margarete M. Karg
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Nasrin Refaian
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Cameron
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Emma Hoffmann
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shintaro Shirahama
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madhura Shah
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Drenushe Krasniqi
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anitha Krishnan
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maleeka Shrestha
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yinjie Guo
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Ochi H, Kurimoto T, Yamagami A, Goto K, Miki A, Kawai M, Ishikawa H, Matsuzaki M, Kondo M, Mochizuki Y, Kimura A, Maekubo T, Chuman H, Ueki S, Nakamura M. Structure-function relationship between magnetic resonance imaging lesion areas and visual field defects in initial optic neuritis with altitudinal hemianopsia. Jpn J Ophthalmol 2023; 67:618-627. [PMID: 37402942 DOI: 10.1007/s10384-023-01008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE To study the spatial association of magnetic resonance imaging (MRI) contrast enhancement (CE) areas with visual field defect (VFD) asymmetry in initial cases of optic neuritis (ON) with altitudinal hemianopsia (AH) with reference to nonarteritic anterior ischemic optic neuropathy (NAION) with AH. STUDY DESIGN Multicenter, cross-sectional study. METHODS The present study comprised 19 ON patients and 20 NAION patients with AH who underwent orbital contrast fat-suppressed MRI. The signal-to-intensity ratio (SIR) was calculated by dividing the maximum CE of the optic nerve by the mean CE of the cerebral white matter in 11 coronal sections at 3-mm intervals from immediately posterior to the eyeball to the optic chiasm. Sections in ON patients with an SIR exceeding the mean plus 2 standard deviations of the SIR at the corresponding section in the NAION group were considered abnormal. The correlation between upper-to-lower CE asymmetry in the maximum SIR section and VFD counterpart was determined. RESULTS The ON group had significantly higher maximum SIR than that of the NAION group (1.77 ± 0.88 vs. 1.25 ± 0.32; P < .01). Seven of the 19 patients had sections with abnormally high CE extending posteriorly beyond the orbital apex. Significant spatial correspondence was observed between CE and VFD asymmetry (rs = 0.563; P = .015) in the ON group but not in the NAION group (rs = - 0. 048; P = .850). CONCLUSIONS ON patients with AH frequently show CE even in the intracerebral optic nerve, maintaining a moderate structure-function correspondence.
Collapse
Affiliation(s)
- Hirotaka Ochi
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takuji Kurimoto
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Katsutoshi Goto
- Kawasaki Medical School, Department of Ophthalmology, Kurashiki, Japan
| | - Atsushi Miki
- Kawasaki Medical School, Department of Ophthalmology, Kurashiki, Japan
| | - Manami Kawai
- Department of Ophthalmology, School of Medicine, Kitasato University, Sagamihara,, Japan
| | - Hitoshi Ishikawa
- Department of Orthoptics and Visual Science, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Mitsuhiro Matsuzaki
- Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Miho Kondo
- Department of Ophthalmology, Hyogo Medical University, Nishinomiya, Japan
| | | | - Akiko Kimura
- Department of Ophthalmology, Hyogo Medical University, Nishinomiya, Japan
| | | | - Hideki Chuman
- Faculty of Medicine, Department of Ophthalmology, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Ueki
- Graduate School of Medical and Dental Sciences, Division of Ophthalmology and Visual Science, Niigata University, Niigata, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Mehta B, Ranjan S, Sharma V, Singh N, Raghav N, Dholakia A, Bhargava R, Reddy PLS, Bargujar P. The Discriminatory Ability of Ganglion Cell Inner Plexiform Layer Complex Thickness in Patients with Preperimetric Glaucoma. J Curr Ophthalmol 2023; 35:231-237. [PMID: 38681693 PMCID: PMC11047817 DOI: 10.4103/joco.joco_124_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 05/01/2024] Open
Abstract
Purpose To evaluate diagnostic performance of ganglion cell inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL) parameters measured with Cirrus high-definition optical coherence tomography (OCT) in patients with preperimetric glaucoma. Methods In this multicenter cross-sectional study, 150 eyes of 83 patients with preperimetric glaucoma were compared with 200 eyes of age and sex matched healthy subjects. All patients had visual field testing and OCT scanning of GCIPL and RNFL in all quadrants. The independent Samples t-test was used to determine if a difference exists between the means of two independent groups on a continuous dependent variable. The area under the receiver operating characteristic (ROC) curve (AUC) of each parameter was calculated for discriminatory ability between normal controls and preperimetric glaucoma. The sensitivity and specificity were estimated by point coordinates on ROC curve. Results The best parameters for distinguishing preperimetric glaucoma from healthy eyes were the combined average GCIPL + average RNFL, followed by average RNFL + GCIPL (inferotemporal), and average RNFL + GCIPL (minimum). The GCIPL parameters with the highest to lowest AUC (in decreasing order) were inferotemporal, followed by average, minimum, superior, inferior, superonasal, inferonasal, superotemporal, and quadrants. The RNFL parameters with the highest to lowest AUC (in decreasing order) were average, followed by nasal, temporal, superior, and inferior quadrants. The sensitivity of combined GCIPL + RNFL parameters ranged 85%-88% and the specificity ranged 76%-88%. The sensitivity for RNFL parameters ranged 80%-90% and the specificity ranged 64%-88%. Conclusion GCIPL and RNFL have good discriminatory ability; the sensitivity and specificity increase when both parameters are combined for early detection of glaucoma.
Collapse
Affiliation(s)
- Bhavya Mehta
- Department of Ophthalmology, GS Medical College and Hospital, Hapur, Uttar Pradesh, India
| | - Somesh Ranjan
- Department of Ophthalmology, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Vinod Sharma
- Department of Ophthalmology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Neha Singh
- Department of Ophthalmology, GS Medical College and Hospital, Hapur, Uttar Pradesh, India
| | - Nidhi Raghav
- Department of Ophthalmology, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Acid Dholakia
- Department of Ophthalmology, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Rahul Bhargava
- Department of Ophthalmology, GS Medical College and Hospital, Hapur, Uttar Pradesh, India
| | | | - Pooja Bargujar
- Department of Ophthalmology, GS Medical College and Hospital, Hapur, Uttar Pradesh, India
| |
Collapse
|
7
|
Lee GA, Kong GYX, Liu CH. Visual fields in glaucoma: Where are we now? Clin Exp Ophthalmol 2023; 51:162-169. [PMID: 36751125 DOI: 10.1111/ceo.14210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Visual fields are an integral part of glaucoma diagnosis and management. COVID has heightened the awareness of the potential for viral spread with the practice of visual fields modified. Mask artefacts can occur due to fogging of the inferior rim of the trail lens. Fortunately, the risk of airborne transmission when field testing is low. The 24-2c may be useful to detect early disease and the 10-2 more sensitive to detect advanced loss. The SITA faster test algorithm is able to reduce testing time thereby improving clinic efficiency, however, may show milder results for moderate or severe glaucoma. The technician has an important role of supervising the visual field performance to achieve reliable output. Home monitoring can provide earlier detection of progression and thus improve monitoring of glaucoma as well as reduce the burden of in-clinic assessments. Artificial Intelligence has been found to have high sensitivity and specificity compared to expert observers in detecting field abnormalities and progression as well as integrating structure with function. Although these advances will improve efficiency and guide accuracy, there will remain a need for clinicians to interpret the results and instigate management.
Collapse
Affiliation(s)
- Graham A Lee
- City Eye Centre, Brisbane, Queensland, Australia.,University of Queensland, Herston, Queensland, Australia.,Department of Ophthalmology, Mater Hospital, Brisbane, Queensland, Australia
| | - George Y X Kong
- Glaucoma Investigation and Research Unit, Royal Victorian Eye and Ear Hospital VIC, East Melbourne, Victoria, Australia.,Centre for Eye Research Australia, Royal Victorian Eye, and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
8
|
Pokal U, Swathi N, Rajalakshmi AR, Lokeshmaran A. Comparing retinal sensitivities on blue-on-yellow and green-on-yellow perimetry in glaucoma suspects. Indian J Ophthalmol 2022; 70:3550-3555. [PMID: 36190045 PMCID: PMC9789795 DOI: 10.4103/ijo.ijo_944_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose To compare the retinal sensitivities between the blue-on-yellow perimetry (BYP)/short-wavelength automated perimetry (SWAP) and green-on-yellow perimetry (GYP) among patients with and without nuclear sclerosis among glaucoma suspects. Methods After ophthalmic examination, patients were subjected to two perimetric tests: BYP and GYP. The visual field (VF) parameters were compared between the two perimeters (p < 0.05 was considered significant). Results Fifty-five eyes of 39 patients with a mean age of 60.53 ± 9.70 years were included in the study. Twenty-one eyes had clear lens or pseudophakia. Twenty-six eyes had lower grades of nuclear sclerosis (NO2NC2, NO3NC3) and eight eyes had higher grades of cataract (NO4NC4, NO5NC5). The mean retinal sensitivity (RS) in BYP was 22.08 ± 5.02 (dB) and in GYP was 23.84 ± 5.50 (dB) (p = 0.08). The mean defect in BYP was -2.56 ± 4.40 (dB) and in GYP was -3.24 ± 5.05 (dB), pattern standard deviation (PSD) in BYP was 3.65 ± 1.91 (dB) and in GYP was 3.83 ± 1.99 (dB), and foveal threshold (FT) was 24.20 ± 4.32 (dB) in BYP and 28.10 ± 4.50 (dB) in GYP. The two perimeters showed good agreement by the Bland-Altman plot for all parameters. Fourteen eyes showed perimetric changes suggestive of glaucoma by BYP. In these, GYP had a sensitivity of 92.86% (95% CI of 66.13% to 99.82%) and specificity of 95.12% (95% CI of 83.47% to 99.40%). Conclusion BYP and GYP show good agreement. They are comparable in clear media as well as in different grades of nuclear sclerosis. GYP showed good sensitivity and specificity compared to BYP.
Collapse
Affiliation(s)
- Upasana Pokal
- Department of Ophthalmology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University, Puducherry, India
| | - N Swathi
- Department of Ophthalmology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University, Puducherry, India,Correspondence to: Dr. Swathi N, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University, Puducherry, India. E-mail:
| | - A R Rajalakshmi
- Department of Ophthalmology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University, Puducherry, India
| | - A Lokeshmaran
- Department of Community Medicine, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth University, Puducherry, India
| |
Collapse
|
9
|
Croft MA, Nork TM, Heatley G, Mcdonald JP, Katz A, Kaufman PL. Intraocular accommodative movements in monkeys; relationship to presbyopia. Exp Eye Res 2022; 222:109029. [PMID: 35283107 PMCID: PMC9749451 DOI: 10.1016/j.exer.2022.109029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
Our goal was to quantify the age-related changes in the dynamic accommodative movements of the vitreous and aqueous humor in iridic, aniridic, phakic and aphakic primate eyes. Six bilaterally iridic and four bilaterally iridectomized rhesus monkeys, ranging in age from 6 to 25 years, received a stimulating electrode in the midbrain Edinger-Westphal nucleus to induce accommodation, measured by a Hartinger coincidence refractometer. One of the four iridectomized monkeys underwent unilateral extracapsular and another monkey underwent intracapsular lens extraction. Eyes were imaged utilizing specialized techniques and contrast agents to resolve intraocular structures. During accommodation the anterior hyaloid membrane and the posterior lens capsule bowed backward. Central vitreous fluid and structures/strands moved posteriorly toward the optic nerve region as peripheral vitreous, attached to the vitreous zonule, was pulled forward by ciliary muscle contraction. Triamcinolone particles injected intravitreally were also observed in the anterior chamber and moved from the anterior chamber toward the cleft of the anterior hyaloid membrane and then further posteriorly into the vitreous-filled cleft between the vitreous zonule and the ciliary body pars plana. These accommodative movements occurred in all eyes, and declined with age. There are statistically significant accommodative movements of various intravitreal structures. The posterior/anterior fluid flow between the anterior chamber and the vitreous compartments during accommodation/disaccommodation represents fluid displacement to allow/facilitate lens thickening. The posterior accommodative movement of central vitreous fluid may result from centripetal compression of the anterior tips of the cistern-like structure attached to the vitreous zonule, and posterior displacement of the central trunk of the cistern during ciliary muscle contraction and centripetal muscle movement. The findings may have implications for presbyopia.
Collapse
Affiliation(s)
- Mary Ann Croft
- Department of Ophthalmology and Visual Sciences, Madison, WI, 53792, USA.
| | - T Michael Nork
- Department of Ophthalmology and Visual Sciences, Madison, WI, 53792, USA
| | - Gregg Heatley
- Department of Ophthalmology and Visual Sciences, Madison, WI, 53792, USA
| | - Jared P Mcdonald
- Department of Ophthalmology and Visual Sciences, Madison, WI, 53792, USA
| | - Alexander Katz
- Department of Ophthalmology and Visual Sciences, Madison, WI, 53792, USA
| | - Paul L Kaufman
- Department of Ophthalmology and Visual Sciences, Madison, WI, 53792, USA; Wisconsin National Primate Research Center, Madison, WI, 53792, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
10
|
Xia L, Wenhui J, Xiaowen Y, Wenfang X, Wei Z, Yanjun H, Xiaoyan P. Predictive value of macular ganglion cell-inner plexiform layer thickness in visual field defect of pituitary adenoma patients: a case-control study. Pituitary 2022; 25:667-672. [PMID: 35834154 DOI: 10.1007/s11102-022-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The present study explored the association between preoperative macular ganglion cell-inner plexiform layer thickness (GCIPL) and retinal nerve fiber layer thickness (RNFL) measured by optical coherence tomography (OCT) and the recovery of visual field (VF) defect after surgery in pituitary adenoma patients. METHODS This case-control study included patients with pituitary adenoma in the Neurosurgery Department of Shanxi Provincial People's Hospital between October 2019 and June 2021. Cranial MRI examination, three-dimensional OCT, and VF testing (Humphrey Field Analyzer II750) were performed before and at 6months after the surgery. RESULTS Fifty-three pituitary adenoma patients (81 eyes) were enrolled; 15 patients (23 eyes) were in the visual field did not recover group (VFNR), and 38 patients (58 eyes) were in the visual field recovered group (VFR). The temporal RNFL (P = 0.002) and average RNFL (P = 0.009) in the VFNR group were significantly lower than in the VFR group. The superior nasal GCIPL (P = 0.001), inferior nasal GCIPL (P = 0.001) and average GCIPL (P = 0.01) were significantly lower in the VFNR group than in the VFR group (all P < 0.01).The multivariable logistic regression analysis showed that nasal inferior GCIPL was an independent risk factor for VF recovery (odds ratio (OR) = 1.376,95% confidence interval (CI):1.089-1.739,P = 0.007). In the received operating characteristics (ROC) analysis, the area under the ROC curve (AUROCs) was the highest for nasal inferior GCIPL (AUROC = 0.739). CONCLUSIONS In patients who underwent resection of pituitary adenoma, nasal inferior GCIPL was an independent risk factor of visual field defect recover after surgery.
Collapse
Affiliation(s)
- Li Xia
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmolgy and Visual Science Key Laboratory, Beijing Tongren Eye Center, Capital Medical University, No.17 Hougou Lane, Chongnei Street, 100005, Beijing, People's Republic of China
- Department of Ophthalmology, Shanxi Provincial People's Hospital, No.29 Twin Towers, YingZe District, 030000, Taiyuan, People's Republic of China
| | - Jia Wenhui
- Department of neurology, Shanxi Provincial People's Hospital, No.29 Twin Towers, YingZe District, 030000, Taiyuan, People's Republic of China
| | - Yang Xiaowen
- Infectious disease department, Shanxi Provincial People's Hospital, No.29 Twin Towers, YingZe District, 030000, Taiyuan, People's Republic of China
| | - Xie Wenfang
- Department of Ophthalmology, Shanxi Provincial People's Hospital, No.29 Twin Towers, YingZe District, 030000, Taiyuan, People's Republic of China
| | - Zhang Wei
- Department of Ophthalmology, Shanxi Provincial People's Hospital, No.29 Twin Towers, YingZe District, 030000, Taiyuan, People's Republic of China
| | - Hu Yanjun
- Department of nuclear magnetic, Shanxi Provincial People's Hospital, No.29 Twin Towers, YingZe District, 030000, Taiyuan, People's Republic of China
| | - Peng Xiaoyan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmolgy and Visual Science Key Laboratory, Beijing Tongren Eye Center, Capital Medical University, No.17 Hougou Lane, Chongnei Street, 100005, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Cole JD, McHaney KM, Rabiee B, Gao J, Rodriguez C, Miller DA, Liu M, Grannonico M, Norat P, Zhang HF, Djalilian AR, Liu X. Long-term retinal protection by MEK inhibition in Pax6 haploinsufficiency mice. Exp Eye Res 2022; 218:109012. [PMID: 35245513 PMCID: PMC9050935 DOI: 10.1016/j.exer.2022.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Aniridia is a panocular condition characterized by impaired eye development and vision, which is mainly due to the haploinsufficiency of the paired-box-6 (PAX6) gene. Like what is seen in aniridia patients, Pax6-deficient mice Pax6Sey-Neu/+ exhibit a varied degree of ocular damage and impaired vision. Our previous studies showed that these phenotypes were partially rescued by PD0325901, a mitogen-activated protein kinase kinase (MEK or MAP2K) inhibitor. In this study, we assessed the long-term efficacy of PD0325901 treatment in retinal health and visual behavior. At about one year after the postnatal treatment with PD0325901, Pax6Sey-Neu/+ mice showed robust improvements in retina size and visual acuity, and the elevated intraocular pressure (IOP) was also alleviated, compared to age-matched mice treated with vehicles only. Moreover, the Pax6Sey-Neu/+ eyes showed disorganized retinal ganglion cell (RGC) axon bundles and retinal layers, which we termed as hotspots. We found that the PD treatment reduced the number and size of hotspots in the Pax6Sey-Neu/+ retinas. Taken together, our results suggest that PD0325901 may serve as an efficacious intervention in protecting retina and visual function in aniridia-afflicted subjects.
Collapse
Affiliation(s)
- James D Cole
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Kara M McHaney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Ophthalmology, Nazareth Hospital, Philadelphia, PA, USA
| | - Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - David A Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Erb C, Eckert S, Gindorf P, Köhler M, Köhler T, Neuhann L, Neuhann T, Salzmann N, Schmickler S, Ellrich J. Electrical neurostimulation in glaucoma with progressive vision loss. Bioelectron Med 2022; 8:6. [PMID: 35361287 PMCID: PMC8969331 DOI: 10.1186/s42234-022-00089-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Abstract
Background
The retrospective study provides real-world evidence for long-term clinical efficacy of electrical optic nerve stimulation (ONS) in glaucoma with progressive vision loss.
Methods
Seventy glaucoma patients (45 to 86 y) with progressive vision loss despite therapeutic reduction of intraocular pressure (IOP) underwent electrical ONS. Closed eyes were separately stimulated by bipolar rectangular pulses with stimulus intensities up to 1.2 mA sufficient to provoke phosphenes. Ten daily stimulation sessions within 2 weeks lasted about 80 min each. Right before ONS at baseline (PRE), vision loss was documented by static threshold perimetry and compared to the same assessment approximately 1 year afterwards (POST). Mean defect (MD) was defined as primary outcome parameter. Perimetries with a reliability factor (RF) of max. 20% were considered.
Results
Perimetry follow-up of 101 eyes in 70 patients fulfilled the criterion of a max. 20% RF. Follow-up was performed on average 362.2 days after ONS. MD significantly decreased from PRE 14.0 dB (median) to POST 13.4 dB (p < 0.01). 64 eyes in 49 patients showed constant or reduced MD as compared to baseline (PRE 13.4 dB vs. POST 11.2 dB). In 37 eyes of 30 patients, MD increased from PRE 14.9 dB to POST 15.6 dB.
Conclusions
Innovative treatments that preserve visual function through mechanisms other than lowering IOP are required for glaucoma with progressive vision loss. The present long-term data document progression halt in more than 63% of affected eyes after ONS and, thus, extend existing evidence from clinical trials.
Collapse
|
13
|
Yuksel Elgin C, Chen D, Al‐Aswad LA. Ophthalmic imaging for the diagnosis and monitoring of glaucoma: A review. Clin Exp Ophthalmol 2022; 50:183-197. [DOI: 10.1111/ceo.14044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Cansu Yuksel Elgin
- Department of Ophthalmology, NYU Langone Health NYU Grossman School of Medicine New York New York USA
| | - Dinah Chen
- Department of Ophthalmology, NYU Langone Health NYU Grossman School of Medicine New York New York USA
| | - Lama A. Al‐Aswad
- Department of Ophthalmology, NYU Langone Health NYU Grossman School of Medicine New York New York USA
- Department of Population Health, NYU Langone Health NYU Grossman School of Medicine New York New York USA
| |
Collapse
|
14
|
Mardin CY. Are There Static-Structural Biomarkers for Glaucoma with OCT? Klin Monbl Augenheilkd 2022; 239:149-157. [PMID: 35211936 DOI: 10.1055/a-1688-1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glaucomas lead to uniform, specific and slowly developing atrophy of the optic nerve with progressing visual field defects in late stages. Early diagnosis is challenging, but necessary as optic nerve damage is irreparable. Biomarkers with structural optical coherence tomography (OCT) flag optic atrophy but do not prove to be specific in the differential diagnosis to other forms of optic atrophy. Combination of OCT parameters and their correlation to other variables facilitate glaucoma diagnosis. Use of artificial intelligence (AI) in structural OCT images may prove to be superior and as biomarker more specific to thickness measurements of neuronal tissues alone.
Collapse
|
15
|
Detecting glaucoma with only OCT: Implications for the clinic, research, screening, and AI development. Prog Retin Eye Res 2022; 90:101052. [PMID: 35216894 DOI: 10.1016/j.preteyeres.2022.101052] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
A method for detecting glaucoma based only on optical coherence tomography (OCT) is of potential value for routine clinical decisions, for inclusion criteria for research studies and trials, for large-scale clinical screening, as well as for the development of artificial intelligence (AI) decision models. Recent work suggests that the OCT probability (p-) maps, also known as deviation maps, can play a key role in an OCT-based method. However, artifacts seen on the p-maps of healthy control eyes can resemble patterns of damage due to glaucoma. We document in section 2 that these glaucoma-like artifacts are relatively common and are probably due to normal anatomical variations in healthy eyes. We also introduce a simple anatomical artifact model based upon known anatomical variations to help distinguish these artifacts from actual glaucomatous damage. In section 3, we apply this model to an OCT-based method for detecting glaucoma that starts with an examination of the retinal nerve fiber layer (RNFL) p-map. While this method requires a judgment by the clinician, sections 4 and 5 describe automated methods that do not. In section 4, the simple model helps explain the relatively poor performance of commonly employed summary statistics, including circumpapillary RNFL thickness. In section 5, the model helps account for the success of an AI deep learning model, which in turn validates our focus on the RNFL p-map. Finally, in section 6 we consider the implications of OCT-based methods for the clinic, research, screening, and the development of AI models.
Collapse
|
16
|
Schuman JS, Angeles Ramos Cadena MDL, McGee R, Al-Aswad LA, Medeiros FA. A Case for The Use of Artificial Intelligence in Glaucoma Assessment. Ophthalmol Glaucoma 2021; 5:e3-e13. [PMID: 34954220 PMCID: PMC9133028 DOI: 10.1016/j.ogla.2021.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
We hypothesize that artificial intelligence applied to relevant clinical testing in glaucoma has the potential to enhance the ability to detect glaucoma. This premise was discussed at the recent Collaborative Community for Ophthalmic Imaging meeting, "The Future of Artificial Intelligence-Enabled Ophthalmic Image Interpretation: Accelerating Innovation and Implementation Pathways," held virtually September 3-4, 2020. The Collaborative Community in Ophthalmic Imaging (CCOI) is an independent self-governing consortium of stakeholders with broad international representation from academic institutions, government agencies, and the private sector whose mission is to act as a forum for the purpose of helping speed innovation in healthcare technology. It was one of the first two such organizations officially designated by the FDA in September 2019 in response to their announcement of the collaborative community program as a strategic priority for 2018-2020. Further information on the CCOI can be found online at their website (https://www.cc-oi.org/about). Artificial intelligence for glaucoma diagnosis would have high utility globally, as access to care is limited in many parts of the world and half of all people with glaucoma are unaware of their illness. The application of artificial intelligence technology to glaucoma diagnosis has the potential to broadly increase access to care worldwide, in essence flattening the Earth by providing expert level evaluation to individuals even in the most remote regions of the planet.
Collapse
Affiliation(s)
- Joel S Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA; Center for Neural Science, NYU, New York, NY, USA; Neuroscience Institute, NYU Langone Health, New York, NY, USA.
| | | | - Rebecca McGee
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Lama A Al-Aswad
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Felipe A Medeiros
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
17
|
Pérez-Carrasco MJ, Carballo-Álvarez J, Barbur JL, Puell MC. Relationship Between Flicker Modulation Sensitivity and Retinal Ganglion Cell Related Layer Thicknesses. Transl Vis Sci Technol 2021; 10:16. [PMID: 34647964 PMCID: PMC8525864 DOI: 10.1167/tvst.10.12.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Early detection of structural changes in retinal ganglion cells (RGCs) and corresponding changes in visual function is important in early degenerative diseases of the retina, but the sensitivity of both measurements is limited by the inherent variability in healthy subjects. This study investigates the relationships between RGC-related layer thicknesses and foveal and parafoveal flicker modulation sensitivity (FMS) across photopic and mesopic light levels in healthy subjects. Methods Photopic and mesopic FMS was measured in 56 young adults, at the point of fixation and at an eccentricity of 5 degrees, in each of the four quadrants. Spectral-domain optical coherence tomography (SD-OCT) was used to measure retinal thicknesses. Relationships between foveal and parafoveal FMS and the retinal thickness in the corresponding region were examined after adjusting for confounding variables. Results Total macular and inner retinal layer (IRL) thicknesses in the parafoveal ring were significant predictors of photopic (P = 0.034) and mesopic (P = 0.034) parafoveal FMS, respectively. The superior peripapillary retinal nerve fiber layer (pRNFL) thickness was a contributing factor to the inferior parafoveal FMS (photopic: P = 0.006 and mesopic: P = 0.021) and the inferior pRNFL thickness was also a contributing factor to the superior parafoveal FMS (photopic: P < 0.001 and mesopic: P = 0.015). Conclusions The pRNFL thicknesses predict parafoveal FMS for both mesopic and photopic conditions in healthy eyes. Translational Relevance The measurement of rapid flicker sensitivity in the parafoveal retina together with the pRNFL thickness profiles measured before the onset of disease, may provide a more sensitive biomarker for detecting loss of sensitivity caused by the earliest neurodegenerative changes in the eyes.
Collapse
Affiliation(s)
- María J Pérez-Carrasco
- Applied Vision Research Group, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Carballo-Álvarez
- Centre for Applied Vision Research, The Henry Wellcome Laboratories for Vision Science, School of Health Sciences, City, University of London, London, UK
| | - John L Barbur
- Centre for Applied Vision Research, The Henry Wellcome Laboratories for Vision Science, School of Health Sciences, City, University of London, London, UK
| | - María C Puell
- Applied Vision Research Group, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Thepass G, Lemij HG, Vermeer KA, van der Steen J, Pel JJM. Slowed Saccadic Reaction Times in Seemingly Normal Parts of Glaucomatous Visual Fields. Front Med (Lausanne) 2021; 8:679297. [PMID: 34513866 PMCID: PMC8426641 DOI: 10.3389/fmed.2021.679297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: In eye movement perimetry, peripheral stimuli are confirmed by goal-directed eye movements toward the stimulus. The saccadic reaction time (SRT) is regarded as an index of visual field responsiveness, whereas in standard automated perimetry (SAP), the visual field sensitivity is tested. We investigated the relation between visual field sensitivity and responsiveness in corresponding locations of the visual field in healthy controls and in patients with mild, moderate and advanced glaucoma. Materials and Methods: Thirty-four healthy control subjects and 42 glaucoma patients underwent a 54-point protocol in eye movement perimetry (EMP) and a 24-2 SITA standard protocol in a Humphrey Field Analyzer. The visual field points were stratified by total deviation sensitivity loss in SAP into 6 strata. A generalized linear mixed model was applied to determine the influence of the various factors. Results: The generalized linear mixed model showed that the mean SRT increased with increasing glaucoma severity, from 479 ms in the control eyes to 678 ms in the eyes of patients with advanced glaucoma (p < 0.001). Mean SRTs significantly increased with increasing SAP sensitivity loss. Even at the locations where no sensitivity loss was detected by SAP (total deviation values greater or equal than 0 dB), we found lengthened SRTs in mild, moderate and advanced glaucoma compared to healthy controls (p < 0.05) and in moderate and advanced glaucoma compared to mild glaucoma (p < 0.05). At locations with total deviation values between 0 and −3 dB, −3 and −6 dB and −6 and −12 dB, we found similar differences. Conclusions: The lengthened SRT in areas with normal retinal sensitivities in glaucomatous eyes, i.e., planning and execution of saccades to specific locations, precede altered sensory perception as assessed with SAP. Better understanding of altered sensory processing in glaucoma might allow earlier diagnosis of emerging glaucoma.
Collapse
Affiliation(s)
- Gijs Thepass
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, Netherlands
| | - Hans G Lemij
- Glaucoma Service, Rotterdam Eye Hospital, Rotterdam, Netherlands
| | | | - Johannes van der Steen
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Royal Dutch Visio, Huizen, Netherlands
| | - Johan J M Pel
- Vestibular and Ocular Motor Research Group, Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
19
|
Gardiner SK, Mansberger SL, Fortune B. Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma. Invest Ophthalmol Vis Sci 2021; 61:5. [PMID: 33141891 PMCID: PMC7645201 DOI: 10.1167/iovs.61.13.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose It is often suggested that structural change is detectable before functional change in glaucoma. However, this may be related to the lower variability and hence narrower normative limits of structural tests. In this study, we ask whether a time lag exists between the true rates of change in structure and function, regardless of clinical detectability of those changes. Methods Structural equation models were used to determine whether the rate of change in function (mean linearized total deviation, AveTDLin) or structure (retinal nerve fiber layer thickness [RNFLT]) was predicted by the concurrent or previous rate for the other modality, after adjusting for its own rate in the previous time interval. Rates were calculated over 1135 pairs of consecutive visits from 318 eyes of 164 participants in the Portland Progression Project, with mean 207 days between visits. Results The rate of change of AveTDLin was predicted by its own rate in the previous time interval, but not by rates of RNFLT change in either the concurrent or previous time interval (both P > 0.05). Similarly, the rate of RNFLT change was not predicted by concurrent AveTDLin change after adjusting for its own previous rate. However, the rate of AveTDLin change in the previous time interval did significantly improve prediction of the current rate for RNFLT, with P = 0.005, suggesting a time lag of around six months between changes in AveTDLin and RNFLT. Conclusions Although RNFL thinning may be detectable sooner, true functional change appears to predict and precede thinning of the RNFL in glaucoma.
Collapse
Affiliation(s)
- Stuart K Gardiner
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Steven L Mansberger
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Brad Fortune
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
20
|
Liu Z, Saeedi O, Zhang F, Villanueva R, Asanad S, Agrawal A, Hammer DX. Quantification of Retinal Ganglion Cell Morphology in Human Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 33760041 PMCID: PMC7995922 DOI: 10.1167/iovs.62.3.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose To characterize retinal ganglion cell morphological changes in patients with primary open-angle glaucoma associated with hemifield defect (HD) using adaptive optics–optical coherence tomography (AO-OCT). Methods Six patients with early to moderate primary open-angle glaucoma with an average age of 58 years associated with HD and six age-matched healthy controls with an average age of 61 years were included. All participants underwent in vivo retinal ganglion cell (RGC) imaging at six primary locations across the macula with AO-OCT. Ganglion cell layer (GCL) somas were manually counted, and morphological parameters of GCL soma density, size, and symmetry were calculated. RGC cellular characteristics were correlated with functional visual field measurements. Results GCL soma density was 12,799 ± 7747 cells/mm2, 9370 ± 5572 cells/mm2, and 2134 ± 1494 cells/mm2 at 3°, 6°, and 12°, respectively, in glaucoma patients compared with 25,058 ± 4649 cells/mm2, 15,551 ± 2301 cells/mm2, and 3891 ± 1105 cells/mm2 (P < 0.05 for all locations) at the corresponding retinal locations in healthy participants. Mean soma diameter was significantly larger in glaucoma patients (14.20 ± 2.30 µm) compared with the health controls (12.32 ± 1.94 µm, P < 0.05 for all locations); symmetry was 0.36 ± 0.32 and 0.86 ± 0.13 in glaucoma and control cohorts, respectively. Conclusions Glaucoma patients had lower GCL soma density and symmetry, greater soma size, and increased variation of GCL soma reflectance compared with age-matched control subjects. The morphological changes corresponded with HD, and the cellular level structural loss correlated with visual function loss in glaucoma. AO-based morphological parameters could be potential sensitive biomarkers for glaucoma.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore Maryland, United States
| | - Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Ricardo Villanueva
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore Maryland, United States
| | - Samuel Asanad
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Daniel X Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
21
|
A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma. J Glaucoma 2020; 29:671-680. [PMID: 32520765 DOI: 10.1097/ijg.0000000000001571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PRéCIS:: Bruch's membrane opening-minimum rim width (BMO-MRW) and circumpapillary retinal nerve fiber layer (cRNFL) thickness measures may be improved by comparing probability levels and accounting for blood vessel locations. PURPOSE To understand the differences between 2 optical coherence tomography measures of glaucomatous damage: the BMO-MRW and cRNFL thickness. MATERIALS AND METHODS Optical coherence tomography circle scans were obtained for an early glaucoma group (EG) of 88 eyes (88 patients) with 24-2 mean deviation better than -6.0 dB, and a broader group (BG) of 188 eyes (110 patients) with 24-2 mean deviation from -0.15 to -27.0 dB. On the basis of a commercial report, the cRNFL and BMO-MRW of each hemidisc was classified as abnormal if either of the 2 superior (inferior) sectors, temporal superior and nasal superior (temporal inferior and nasal inferior), was yellow or red (P<5%); and as normal if both were green (P≥5%). In addition, a post hoc analysis identified the reasons for disagreements on the basis of the presence (or absence) of glaucomatous damage at a hemidisc level (consensus of 4 experts). RESULTS The BMO-MRW and cRNFL measures agreed in 81.9% (broader group) and 73.9% (EG) of the hemidiscs. In both groups, an abnormal-BMO-MRW/normal-cRNFL disagreement was as common as a normal-BMO-MRW/abnormal-cRNFL. Of the 46 EG hemidisc disagreements, the number of "mistakes" for BMO-MRW (28) was nonsignificantly higher than for cRNFL (18) (P=0.15). Primary causes for disagreement were as follows: borderline significance level, a local defect, and aberrant blood vessel location. CONCLUSIONS Although BMO-MRW and cRNFL measures agreed in the majority of hemidiscs, they still disagreed in over 25% of the EG hemidiscs. These measures may be improved by comparing actual probability levels and accounting for blood vessel locations. However, both can miss information available on retinal ganglion cell/retinal nerve fiber layer probability maps.
Collapse
|
22
|
Hood DC, Zemborain ZZ, Tsamis E, De Moraes CG. Improving the Detection of Glaucoma and Its Progression: A Topographical Approach. J Glaucoma 2020; 29:613-621. [PMID: 32459689 PMCID: PMC7423747 DOI: 10.1097/ijg.0000000000001553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glaucoma is typically defined as a progressive optic neuropathy characterized by a specific (arcuate) pattern of visual field (VF) and anatomic changes. Therefore, we should be comparing arcuate patterns of damage seen on VFs with those seen on optical coherence tomography (OCT) maps. Instead, clinicians often use summary metrics such as VF pattern standard deviation, OCT retinal nerve fiber (RNF) global thickness, etc. There are 2 major impediments to topographically comparing patterns of damage on VF and OCT maps. First, until recently, it was not easy to make these comparisons with commercial reports. While recent reports do make it easier to compare VF and OCT maps, they have shortcomings. In particular, the 24-2 VF covers a larger retinal region than the commercial OCT scans, and, further, it is not easy to understand the topographical relationship among the different maps/plots within the current OCT reports. Here we show how a model of RNF bundles can overcome these problems. The second major impediment is the lack of a quantitative, and automated, method for comparing patterns of damage seen on VF and OCT maps. However, it is now possible to objectively and automatically quantify this agreement. Together, the RNF bundle model and the automated structure-function method should improve the power of topographical methods for detecting glaucoma and its progression. This should prove useful in clinical studies and trials, as well as for training and validating artificial intelligence/deep learning approaches for these purposes.
Collapse
Affiliation(s)
- Donald C. Hood
- Department of Psychology, Columbia University, New York City, NY, USA
- Department of Ophthalmology, Columbia University Medical Center, New York City, New York, USA
| | - Zane Z. Zemborain
- Department of Psychology, Columbia University, New York City, NY, USA
| | - Emmanouil Tsamis
- Department of Psychology, Columbia University, New York City, NY, USA
| | - C. Gustavo De Moraes
- Department of Ophthalmology, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|