1
|
Kim M, Kim JY, Rhim WK, Cimaglia G, Want A, Morgan JE, Williams PA, Park CG, Han DK, Rho S. Extracellular vesicle encapsulated nicotinamide delivered via a trans-scleral route provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2024; 12:65. [PMID: 38649962 PMCID: PMC11036688 DOI: 10.1186/s40478-024-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Andrew Want
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - Pete A Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chun Gwon Park
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
2
|
Weber C, Quintin P, Holz FG, Fea A, Mercieca K. Ocular drug delivery systems: glaucoma patient perceptions from a German university hospital eye clinic. Graefes Arch Clin Exp Ophthalmol 2024; 262:545-556. [PMID: 37776338 PMCID: PMC10844344 DOI: 10.1007/s00417-023-06248-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE This study aimed to report on glaucoma patients' beliefs and illness perceptions and to investigate their opinion on ocular drug delivery devices (ODD). METHODS We performed a cross-sectional study in a large tertiary-referral outpatient glaucoma clinic, with 102 patients. Validated anonymized questionnaires were used. We investigated the awareness and acceptance regarding ODD (contact lenses (CLs), punctal plugs (PPs), subconjunctival implants, anterior chamber (AC) injections, and drug-emitting stents) and looked at factors that could influence a patient's decision for having an ODD. RESULTS Sixty-three patients (61.8%) confirmed they would rather have ODD than keep their eye-drops (38.2%). The most important factors influencing their decision were effectiveness and long-lasting effect. A large proportion of patients reported a preference for CLs (48.0%), PPs (52.9%), or drug-emitting stents (44.1%). When comparing patients who preferred ODD (group-1) versus eye-drops (group-2), significantly more patients in group-1 were worried (p < 0.001) or felt disrupted (p < 0.001) by their use of eye-drops. A significantly greater share of patients in group-1 showed acceptance towards CLs (60.3% vs. 38.5%; p = 0.032), AC injections (38.1% vs. 12.8%, p = 0.006), or drug-emitting stents (54% vs. 28.2%, p = 0.023), whilst there were no significant differences regarding the acceptance of PPs (p = 0.363) or subconjunctival implants (p = 0.058). CONCLUSION ODD for the treatment of glaucoma were broadly deemed acceptable by patients in this study. Effectiveness and long-lasting effect were the most important factors for a decision towards having an ODD. The majority of patients who preferred an ODD felt severely affected by their disease and were negatively influenced by their glaucoma medication intake.
Collapse
Affiliation(s)
- Constance Weber
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Straße 2, 53117, Bonn, Germany
| | - Philipp Quintin
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Straße 2, 53117, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Straße 2, 53117, Bonn, Germany
| | - Antonio Fea
- Department of Ophthalmology, University of Turin, Turin, Italy
| | - Karl Mercieca
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Straße 2, 53117, Bonn, Germany.
| |
Collapse
|
3
|
Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers (Basel) 2022; 14:polym14245475. [PMID: 36559842 PMCID: PMC9788421 DOI: 10.3390/polym14245475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Silk is a wonderful biopolymer that has a long history of medical applications. Surgical cords and medically authorised human analogues made of silk have a long history of use in management. We describe the use of silk in the treatment of eye diseases in this review by looking at the usage of silk fibroin for eye-related drug delivery applications and medication transfer to the eyes. During this ancient art endeavour, a reduced engineering project that employed silk as a platform for medicine delivery or a cell-filled matrix helped reignite interest. With considerable attention, this study explores the present usage of silk in ocular-based drug delivery. This paper also examines emerging developments with the use of silk as a biopolymer for the treatment of eye ailments. As treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and other retinal diseases and degenerations are developed, the trans-scleral route of drug delivery holds great promise for the selective, sustained-release delivery of these novel therapeutic compounds. We should expect a swarm of silk-inspired materials to enter clinical testing and use on the surface as the secrets of silk are unveiled. This article finishes with a discussion on potential silk power, which adds to better ideas and enhanced ocular medicine delivery.
Collapse
|
4
|
Kimna C, Winkeljann B, Hoffmeister J, Lieleg O. Biopolymer-based nanoparticles with tunable mucoadhesivity efficiently deliver therapeutics across the corneal barrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111890. [PMID: 33579502 DOI: 10.1016/j.msec.2021.111890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
To overcome the natural barriers of the ocular system that limit the topical delivery of therapeutically active molecules to the posterior eye, nanoscale drug carriers can be used to improve transcorneal drug transport. So far, using mucoadhesive drug carriers has been put forward as the most promising strategy to optimize drug transport. However, if the mucoadhesivity of a drug carrier is too high, this might limit the diffusive entry of molecules/drug carriers into the vitreous. In this study, we show how modulating the net charge of biopolymer-based drug carrier particles alters not only their mucoadhesivity but also other important properties, e.g., their stability, drug loading capacity and drug release profiles. Compared to simple aqueous solutions of free drug molecules as used in current treatments, nanoparticulate drug carriers with intermediate mucoadhesivity show improved drug transport across the corneal barrier. Therefore, our study shows that mucoadhesion of drug carrier particles is a feature that needs to be considered with great care - not only for ocular delivery attempts but for all drug delivery approaches dealing with mucosal barriers.
Collapse
Affiliation(s)
- Ceren Kimna
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Benjamin Winkeljann
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Julia Hoffmeister
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| |
Collapse
|
5
|
Bessone CDV, Akhlaghi SP, Tártara LI, Quinteros DA, Loh W, Allemandi DA. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur J Pharm Sci 2021; 160:105748. [PMID: 33567324 DOI: 10.1016/j.ejps.2021.105748] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a degenerative optic neuropathy characterized by increased intraocular pressure that if untreated can result in blindness. Ophthalmological drug therapy is a challenge of great clinical importance due to the diversity of ocular biological barriers which commonly causes limited or no effectiveness for drugs delivered through the eye. In this work, we proposed the development of nanosized cubic liquid crystals (cubosomes) as a new drug carrier system for latanoprost, an anti-glaucoma drug. Latanoprost-loaded phytantriol cubosomes (CubLnp) were prepared using a top-down method. Latanoprost concentration in the formulations ranged from 0.00125% to 0.02% w/v. All cubosomes displayed an average size around 200 nm, a low polydispersity index of 0.1 and zeta potential values around -25 mV, with an encapsulation efficiency of about 90%. Structural studies revealed that cubosomes displayed a double-diamond surface, Pn3m cubic-phase structure, and was not affected by drug loading. Calorimetric studies revealed a fast and exothermic interaction between latanoprost and cubosomes. According to in vitro essays, latanoprost release from cubosomes was slow in time, evidencing a sustained release profile. Based on this behavior, the in vivo hypotensive intraocular effect was evaluated by means of the subconjunctival administration of CubLnp in normotensive rabbits. We obtained promising results in comparison with a marketed latanoprost formulation (0.005% w/v).
Collapse
Affiliation(s)
- Carolina Del Valle Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Seyedeh Parinaz Akhlaghi
- Institute of Chemistry, University of Campinas (UNICAMP), PO Box 6154, 13083-970 Campinas-SP, Brazil
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniela Alejandra Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), PO Box 6154, 13083-970 Campinas-SP, Brazil
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
6
|
Abdullah SN, Mohmad Sabere AS. Public Knowledge, Attitude, and Perception Toward Conventional and Novel Ocular Treatment in Malaysia. J Pharm Bioallied Sci 2020; 13:143-147. [PMID: 34084061 PMCID: PMC8142917 DOI: 10.4103/jpbs.jpbs_463_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022] Open
Abstract
One of the major concerns in any pharmacological treatment is the patients’ adherence to medication. However, different types of ocular dosage forms might result in different response and compliance from the patients. This study investigated and compared public willingness on different types of dosage forms available for ocular treatment. The study also evaluated their willingness on new approach for the treatment based on their knowledge, attitude, and perception. This study was conducted between October and December 2017 through a set of questionnaires applied to 90 respondents between the age of 18 and 60 years who lived in Muar and Kuantan, Malaysia. The results were analyzed using SPSS software version 22.0 including inferential and descriptive statistics. There was no significant difference in the knowledge level between all age groups towards different types of dosage forms available; eye drops (P = 0.09), eye ointment (P = 0.252), medicated contact lens (P = 0.05), ocular mini-tablets (P = 0.06), and ocular inserts (P = 0.075). There is a variation of results among the public towards different types of dosage forms with their willingness to try conventional and novel approach. Eye drops show the highest willingness followed by eye ointment (less willingness). However, most of them showed no willingness towards medicated contact lens, ocular mini-tablets, and ocular insert. This research hopes to provide an overview on the development process of new formulation and dosage forms based on the patients’ willingness level in an attempt to increase patient compliance.
Collapse
Affiliation(s)
- Siti Nabilah Abdullah
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| |
Collapse
|
7
|
Varadaraj V, Kahook MY, Ramulu PY, Pitha IF. Patient Acceptance of Sustained Glaucoma Treatment Strategies. J Glaucoma 2019; 27:328-335. [PMID: 29462013 DOI: 10.1097/ijg.0000000000000913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess patient acceptance of different methods for delivering sustained-release, intraocular pressure (IOP)-lowering medications. METHODS Electronic surveys were administered to 150 patients at 2 glaucoma clinics. Participants were questioned on their willingness to accept: (1) drug-eluting contact lenses, (2) ring inserts (3) punctal plugs, and (4) subconjunctival injections as alternatives to IOP-lowering eye drops based on various success levels. Multivariable logistic regression models determined the association between device type and treatment acceptance adjusting for age, sex, study site, cost burden of drops, and previous contact lens use. RESULTS The majority (69%) of participants were 55 to 74 years of age, and white (65%), and half were female. The majority of participants would accept contacts (59%), rings (51%), plugs (57%), and subconjunctival injections (52%) if they obviated glaucoma surgery; fewer would accept these devices if they reduced (23% to 35%) or eliminated (27% to 42%) drops. Most participants would also accept contacts (56%), plugs (55%), and subconjunctival injections (53%) if they were more effective than eye drops, whereas only 47% would accept a ring; fewer would accept any device if it were equally or less effective than drops. Participants were also 36% (95% confidence interval=0.44-0.92; P=0.02) less likely to accept rings and 32% (95% confidence interval=0.47-0.98; P=0.04) less likely to accept subconjunctival injections as compared with contacts. CONCLUSION Most glaucoma patients considered sustained drug-delivery modalities acceptable alternatives to IOP-lowering eye drops, but only when they were said to obviate surgery or demonstrate greater efficacy than eye drops.
Collapse
Affiliation(s)
| | - Malik Y Kahook
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO
| | | | - Ian F Pitha
- Glaucoma Center of Excellence.,Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Tran SH, Wilson CG, Seib FP. A Review of the Emerging Role of Silk for the Treatment of the Eye. Pharm Res 2018; 35:248. [PMID: 30397820 PMCID: PMC6223815 DOI: 10.1007/s11095-018-2534-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Silk is a remarkable biopolymer with a long history of medical use. Silk fabrications have a robust track record for load-bearing applications, including surgical threads and meshes, which are clinically approved for use in humans. The progression of top-down and bottom-up engineering approaches using silk as the basis of a drug delivery or cell-loaded matrix helped to re-ignite interest in this ancient material. This review comprehensively summarises the current applications of silk for tissue engineering and drug delivery, with specific reference to the eye. Additionally, the review also covers emerging trends for the use of silk as a biologically active biopolymer for the treatment of eye disorders. The review concludes with future capabilities of silk to contribute to advanced, electronically-enhanced ocular drug delivery concepts.
Collapse
Affiliation(s)
- Simon H Tran
- 37D Biosystems, Inc., 2372 Morse Avenue, Suite 433, Irvine, California, 92614, USA
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany.
| |
Collapse
|
9
|
Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther 2018; 25:402-414. [PMID: 30072815 DOI: 10.1038/s41434-018-0035-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
AAV gene therapy approaches in the posterior eye resulted in the first FDA-approved gene therapy-based drug. However, application of AAV vectorology to the anterior eye has yet to enter even a Phase I trial. Furthermore, the simple and safe subconjunctival injection has been relatively unexplored in regard to AAV vector transduction. To determine the utility of this route for the treatment of various ocular disorders, a survey of gene delivery via natural AAV serotypes was performed and correlated to reported cellular attachment factors. AAV serotypes packaged with a self-complementary reporter were administered via subconjunctival injection to WT mice. Subconjunctival injection of AAV vectors was without incidence; however, vector shedding in tears was noted weeks following administration. AAV transduction was serotype dependent in anterior segment tissues including the eye lid, conjunctiva, and cornea, as well as the periocular tissues including muscle. Transgene product in the cornea was highest for AAV6 and AAV8, however, their corneal restriction was remarkably different; AAV6 appeared restricted to the endothelium layer while AAV8 efficiently transduced the stromal layer. Reported AAV cellular receptors were not well correlated to vector transduction; although, in some cases they were conserved among mouse and human ocular tissues. Subconjunctival administration of particular AAV serotypes may be a simple and safe targeted gene delivery route for ocular surface, muscular, corneal, and optic nerve diseases.
Collapse
|
10
|
Janus DA, Lieven CJ, Crowe ME, Levin LA. Polyester-based microdisc systems for sustained release of neuroprotective phosphine-borane complexes. Pharm Dev Technol 2017; 23:882-889. [PMID: 28524719 DOI: 10.1080/10837450.2017.1333516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phosphine-borane complexes are recently developed redox-active drugs that are neuroprotective in models of optic nerve injury and radioprotective in endothelial cells. However, a single dose of these compounds is short-lived, necessitating the development of sustained-release formulations of these novel molecules. We screened a library of biodegradable co- and non-block polyester polymer systems for release of incorporated phosphine-borane complexes to evaluate them as drug delivery systems for use in chronic disease. Bis(3-propionic acid methyl ester)phenylphosphine borane complex (PB1) was combined with biodegradable polymers based on poly(D,L-lactide) (PDLLA), poly(L-lactide) (PLLA), poly(caprolactone) (PCL), poly(lactide-co-glycide) (PLGA), or poly(dioxanone-co-caprolactone) (PDOCL) to make polymer microdiscs, and release over time quantified. Of 22 polymer-PB1 formulations tested, 17 formed rigid polymers. Rates of release differed significantly based on the chemical structure of the polymer. PB1 released from PLGA microdiscs released most slowly, with the most linear release in polymers of 60:40 LA:GA, acid endcap, Mn 15 000-25 000 and 75:25 LA:GA, acid endcap, Mn 45 000-55 000. Biodegradable polymer systems can, therefore, be used to produce sustained-release formulations for redox-active phosphine-borane complexes, with PLGA-based systems most suitable for very slow release. The sustained release could enable translation to a clinical neuroprotective strategy for chronic diseases such as glaucoma.
Collapse
Affiliation(s)
- David A Janus
- a Department of Ophthalmology and Visual Sciences , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Christopher J Lieven
- a Department of Ophthalmology and Visual Sciences , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Megan E Crowe
- a Department of Ophthalmology and Visual Sciences , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Leonard A Levin
- a Department of Ophthalmology and Visual Sciences , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA.,b Departments of Ophthalmology and Neurology , McGill University , Montreal , QC , Canada
| |
Collapse
|
11
|
Szigiato AA, Podbielski DW, Ahmed IIK. Sustained drug delivery for the management of glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1280393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dominik W. Podbielski
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Iqbal Ike K. Ahmed
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
|
13
|
Lusthaus JA, Goldberg I. Emerging drugs to treat glaucoma: targeting prostaglandin F and E receptors. Expert Opin Emerg Drugs 2016; 21:117-28. [DOI: 10.1517/14728214.2016.1151001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
A Survey on the Preference of Sustained Glaucoma Drug Delivery Systems by Singaporean Chinese Patients. J Glaucoma 2015; 24:485-92. [DOI: 10.1097/ijg.0000000000000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Voss K, Falke K, Bernsdorf A, Grabow N, Kastner C, Sternberg K, Minrath I, Eickner T, Wree A, Schmitz KP, Guthoff R, Witt M, Hovakimyan M. Development of a novel injectable drug delivery system for subconjunctival glaucoma treatment. J Control Release 2015; 214:1-11. [PMID: 26160303 DOI: 10.1016/j.jconrel.2015.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
Abstract
In this study we present the development of an injectable polymeric drug delivery system for subconjunctival treatment of primary open angle glaucoma. The system consists of hyaluronic acid sodium salt (HA), which is commonly used in ophthalmology in anterior segment surgery, and an isocyanate-functionalized 1,2-ethylene glycol bis(dilactic acid) (ELA-NCO). The polymer mixtures with different ratios of HA to ELA-NCO (1/1, 1/4, and 1/10 (v/v)) were investigated for biocompatibility, degradation behavior and applicability as a sustained release system. For the latter, the lipophilic latanoprost ester pro-drug (LA) was incorporated into the HA/ELA-NCO system. In vitro, a sustained LA release over a period of about 60days was achieved. In cell culture experiments, the HA/ELA-NCO (1/1, (v/v)) system was proven to be biocompatible for human and rabbit Tenon's fibroblasts. Examination of in vitro degradation behavior revealed a total mass loss of more than 60% during the observation period of 26weeks. In vivo, LA was continuously released for 152days into rabbit aqueous humor and serum. Histological investigations revealed a marked leuko-lymphocytic infiltration soon after subconjunctival injection. Thereafter, the initial tissue reaction declined concomitantly with a continuous degradation of the polymer, which was completed after 10months. Our study demonstrates the suitability of the polymer resulting from the reaction of HA with ELA-NCO as an injectable local drug delivery system for glaucoma therapy, combining biocompatibility and biodegradability with prolonged drug release.
Collapse
Affiliation(s)
- Karsten Voss
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Karen Falke
- Department of Ophthalmology, Rostock University Medical Center, Doberaner Strasse 140, D-18057 Rostock, Germany.
| | - Arne Bernsdorf
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Christian Kastner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Katrin Sternberg
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Ingo Minrath
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9a, D-18057 Rostock, Germany.
| | - Klaus-Peter Schmitz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Rudolf Guthoff
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9a, D-18057 Rostock, Germany.
| | - Marina Hovakimyan
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| |
Collapse
|
16
|
Venkatraman S, Wong T. How can nanoparticles be used to overcome the challenges of glaucoma treatment? Nanomedicine (Lond) 2015; 9:1281-3. [PMID: 25204817 DOI: 10.2217/nnm.14.85] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Subbu Venkatraman
- School of Materials Science & Engineering, NTU & Ocular Therapeutic Engineering Centre, NTU, 50 Nanyang Avenue, 639798 Singapore
| | | |
Collapse
|
17
|
Lambert WS, Carlson BJ, van der Ende AE, Shih G, Dobish JN, Calkins DJ, Harth E. Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Transl Vis Sci Technol 2015; 4:1. [PMID: 25599009 DOI: 10.1167/tvst.4.1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We examined the efficacy of an extended-release drug delivery system, nanosponge (NS) encapsulated compounds, administered intravitreally to lower intraocular pressure (IOP) in mice. METHODS Bilateral ocular hypertension was induced in mice by injecting microbeads into the anterior chamber. Hypertensive mice received NS loaded with ocular hypotensive drugs via intravitreal injection and IOP was monitored. Retinal deposition and retinal ganglion cell (RGC) uptake of Neuro-DiO were examined following intravitreal injection of Neuro-DiO-NS using confocal microscopy. RESULTS Brimonidine-loaded NS lowered IOP 12% to 30% for up to 6 days (P < 0.02), whereas travoprost-NS lowered IOP 19% to 29% for up to 4 days (P < 0.02) compared to saline injection. Three bimatoprost NS were tested: a 400-nm NS and two 700-nm NS with amorphous (A-NS) or amorphous/crystalline (AC-NS) crosslinkers. A single injection of 400 nm NS lowered IOP 24% to 33% for up to 17 days compared to saline, while A-NS and AC-NS lowered IOP 22% to 32% and 18% to 26%, respectively, for up to 32 days (P < 0.046). Over time retinal deposition of Neuro-DiO increased from 19% to 71%; Neuro-DiO released from NS was internalized by RGCs. CONCLUSIONS A single injection of NS can effectively deliver ocular hypotensive drugs in a linear and continuous manner for up to 32 days. Also, NS may be effective at targeting RGCs, the neurons that degenerate in glaucoma. TRANSLATIONAL RELEVANCE Patient compliance is a major issue in glaucoma. The use of NS to deliver a controlled, sustained release of therapeutics could drastically reduce the number of patients that progress to vision loss in this disease.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian J Carlson
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Grace Shih
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia N Dobish
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David J Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eva Harth
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
28-day intraocular pressure reduction with a single dose of brimonidine tartrate-loaded microspheres. Exp Eye Res 2014; 125:210-6. [DOI: 10.1016/j.exer.2014.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022]
|
19
|
Wong TT, Novack GD, Natarajan JV, Ho CL, Htoon HM, Venkatraman SS. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res 2014; 4:303-9. [DOI: 10.1007/s13346-014-0196-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
|
21
|
Bettahi I, Sun H, Gao N, Wang F, Mi X, Chen W, Liu Z, Yu FSX. Genome-wide transcriptional analysis of differentially expressed genes in diabetic, healing corneal epithelial cells: hyperglycemia-suppressed TGFβ3 expression contributes to the delay of epithelial wound healing in diabetic corneas. Diabetes 2014; 63:715-27. [PMID: 24306208 PMCID: PMC3900551 DOI: 10.2337/db13-1260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with diabetes mellitus (DM) may develop corneal complications and delayed wound healing. The aims of this study are to characterize the molecular signatures and biological pathways leading to delayed epithelial wound healing and to delineate the involvement of TGFβ3 therein. Genome-wide cDNA microarray analysis revealed 1,888 differentially expressed genes in the healing epithelia of normal (NL) versus type 1 DM rat corneas. Gene ontology and enrichment analyses indicated TGFβ signaling as a major altered pathway. Among three TGFβ isoforms, TGF-β1 and β3 were upregulated in response to wounding in NL corneal epithelial cells (CECs), whereas the latter was greatly suppressed by hyperglycemia in rat type 1 and 2 and mouse type 1 DM models. Functional analysis indicated that TGF-β3 contributed to wound healing in NL corneas. Moreover, exogenously added TGF-β3 accelerated epithelial wound closure in type 2 rat and type 1 mouse DM corneas via Smad and PI3K-AKT signaling pathways, autoregulation, and/or upregulation of Serpine1, a well-known TGFβ target gene. Taken together, our study for the first time provides a comprehensive list of genes differentially expressed in the healing CECs of NL versus diabetic corneas and suggests the therapeutic potential of TGF-β3 for treating corneal and skin wounds in diabetic patients.
Collapse
Affiliation(s)
- Ilham Bettahi
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Haijing Sun
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Feng Wang
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Xiaofan Mi
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Weiping Chen
- Genomic Core Laboratory of National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Zuguo Liu
- Xiamen Eye Center, Key Laboratory of Ophthalmology and Visual Science of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Fu-Shin X. Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Corresponding author: Fu-Shin X. Yu,
| |
Collapse
|