1
|
Marzouk E, Abalkhail A, ALqahtani J, Alsowat K, Alanazi M, Alzaben F, Alnasser A, Alasmari A, Rawway M, Draz A, Abu-Okail A, Altwijery A, Moussa I, Alsughayyir S, Alamri S, Althagafi M, Almaliki A, Elmanssury AE, Elbehiry A. Proteome analysis, genetic characterization, and antibiotic resistance patterns of Klebsiella pneumoniae clinical isolates. AMB Express 2024; 14:54. [PMID: 38722429 PMCID: PMC11082098 DOI: 10.1186/s13568-024-01710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a member of the ESKAPE group and is responsible for severe community and healthcare-associated infections. Certain Klebsiella species have very similar phenotypes, which presents a challenge in identifying K. pneumoniae. Multidrug-resistant K. pneumoniae is also a serious global problem that needs to be addressed. A total of 190 isolates were isolated from urine (n = 69), respiratory (n = 52), wound (n = 48) and blood (n = 21) samples collected from various hospitals in the Al-Qassim, Saudi Arabia, between March 2021 and October 2022. Our study aimed to rapidly and accurately detect K. pneumoniae using the Peptide Mass Fingerprinting (PMF) technique, confirmed by real-time PCR. Additionally, screening for antibiotic susceptibility and resistance was conducted. The primary methods for identifying K. pneumoniae isolates were culture, Gram staining, and the Vitek® 2 ID Compact system. An automated MALDI Biotyper (MBT) instrument was used for proteome identification, which was subsequently confirmed using SYBR green real-time polymerase chain reaction (real-time PCR) and microfluidic electrophoresis assays. Vitek® 2 AST-GN66 cards were utilized to evaluate the antimicrobial sensitivity of K. pneumoniae isolates. According to our results, Vitek® 2 Compact accurately identified 178 out of 190 (93.68%) K. pneumoniae isolates, while the PMF technique correctly detected 188 out of 190 (98.95%) isolates with a score value of 2.00 or higher. Principal component analysis was conducted using MBT Compass software to classify K. pneumoniae isolates based on their structure. Based on the analysis of the single peak intensities generated by MBT, the highest peak values were found at 3444, 5022, 5525, 6847, and 7537 m/z. K. pneumoniae gene testing confirmed the PMF results, with 90.53% detecting entrobactin, 70% detecting 16 S rRNA, and 32.63% detecting ferric iron uptake. The resistance of the K. pneumoniae isolates to antibiotics was as follows: 64.75% for cefazolin, 62.63% for trimethoprim/sulfamethoxazole, 59.45% for ampicillin, 58.42% for cefoxitin, 57.37% for ceftriaxone, 53.68% for cefepime, 52.11% for ampicillin-sulbactam, 50.53% for ceftazidime, 52.11% for ertapenem, and 49.47% for imipenem. Based on the results of the double-disk synergy test, 93 out of 190 (48.95%) K. pneumoniae isolates were extended-spectrum beta-lactamase. In conclusion, PMF is a powerful analytical technique used to identify K. pneumoniae isolates from clinical samples based on their proteomic characteristics. K. pneumoniae isolates have shown increasing resistance to antibiotics from different classes, including carbapenem, which poses a significant threat to human health as these infections may become difficult to treat.
Collapse
Affiliation(s)
- Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 , P.O. Box 6666, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 , P.O. Box 6666, Saudi Arabia
| | - Jamaan ALqahtani
- Family Medicine Department, King Fahad Armed Hospital, 23311, Jeddah, Saudi Arabia
| | - Khalid Alsowat
- Pharmacy Department, Prince Sultan Armed Forces Hospital, 42375, Medina, Saudi Arabia
| | - Menwer Alanazi
- Dental Department, King Salman Armed Forces Hospital, 47521, Tabuk, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, 23311, Jeddah, Saudi Arabia
| | - Abdulaziz Alnasser
- Psychiatry Department, Prince Sultan Military Medical City, 11632, Riyadh, Saudi Arabia
| | - Anas Alasmari
- Neurology department, king Fahad military hospital, 23311, Jeddah, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, 42421, Sakaka, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| | | | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sulaiman Alsughayyir
- Medical Administration, Armed Forces Medical Services, 12426, Riyadh, Saudi Arabia
| | - Saleh Alamri
- Prince Sultan Military Medical City, 13525, Riyadh, Saudi Arabia
| | - Mohammed Althagafi
- Laboratory Department, Armed Forces Center for Health Rehabilitation, 21944, Taif, Saudi Arabia
| | - Abdulrahman Almaliki
- Physiotherapy Department, Armed Forces Center for Health Rehabilitation, 21944, Taif, Saudi Arabia
| | - Ahmed Elnadif Elmanssury
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 , P.O. Box 6666, Saudi Arabia
| | - Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 , P.O. Box 6666, Saudi Arabia
| |
Collapse
|
2
|
Kazmi SY, Fathima K, Khan N, Kulsum SN, Faraz A. Sensitivity Profile of Fosfomycin, Nitrofurantoin, and Co-trimoxazole Against Uropathogens Isolated From UTI Cases in a Secondary Care Center, KSA. Cureus 2024; 16:e53999. [PMID: 38476810 PMCID: PMC10928802 DOI: 10.7759/cureus.53999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
Background Fosfomycin, nitrofurantoin, and co-trimoxazole are cheap and effective first-line oral antimicrobials in cases of uncomplicated cystitis in males and non-pregnant females. Fosfomycin and nitrofurantoin are called urinary antiseptics because these two drugs are primarily excreted in the kidney and concentrated in the urine without systemic effect. The present study was designed to evaluate the in vitro activities of fosfomycin, nitrofurantoin, and co-trimoxazole against uropathogens isolated at King Khalid Hospital Al-Majmaah, KSA. Methods The study was conducted at the King Khalid Hospital Al Majmaah, KSA, from September 1, 2021, until February 28, 2022. The patients' urine samples were inoculated on the Cystein Lactose Electrolytes Deficient (CLED) medium, and uropathogens were isolated. The organisms' identification and sensitivity testing against cotrimoxazole, fosfomycin, and nitrofurantoin was conducted using a Microscan automated analyzer, the MicroScan WalkAway Beckman Coulter, Sacramento, CA, USA. Results The study comprised non-repeat 137 patients who were either admitted to the hospital or treated as outpatients, yielding a total of 147 isolates. Nitrofurantoin showed a lower resistance rate, around 20% (n = 29), followed by fosfomycin at 23% (n = 34). The resistance rate of cotrimoxazole was 43% (n = 63). Overall, nitrofurantoin and fosfomycin showed relatively lower resistance against all isolates. Conclusions Being cheap and effective, we propose that fosfomycin and nitrofurantoin be used as first-line treatments in patients presenting with uncomplicated UTIs.
Collapse
Affiliation(s)
| | - Kauser Fathima
- Pathology and Laboratory Medicine, Tumair General Hospital, Tumair, SAU
| | - Nazia Khan
- Basic Sciences, Majmaah University, AlMajmaah, SAU
| | | | - Ali Faraz
- Basic Sciences, Majmaah University, AlMajmaah, SAU
| |
Collapse
|
3
|
Chmielewska SJ, Skłodowski K, Depciuch J, Deptuła P, Piktel E, Fiedoruk K, Kot P, Paprocka P, Fortunka K, Wollny T, Wolak P, Parlinska-Wojtan M, Savage PB, Bucki R. Bactericidal Properties of Rod-, Peanut-, and Star-Shaped Gold Nanoparticles Coated with Ceragenin CSA-131 against Multidrug-Resistant Bacterial Strains. Pharmaceutics 2021; 13:425. [PMID: 33809901 PMCID: PMC8004255 DOI: 10.3390/pharmaceutics13030425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ever-growing number of infections caused by multidrug-resistant (MDR) bacterial strains requires an increased effort to develop new antibiotics. Herein, we demonstrate that a new class of gold nanoparticles (Au NPs), defined by shape and conjugated with ceragenin CSA-131 (cationic steroid antimicrobial), display strong bactericidal activity against intractable superbugs. METHODS For the purpose of research, we developed nanosystems with rod- (AuR NPs@CSA-131), peanut-(AuP NPs@CSA-131) and star-shaped (AuS NPs@CSA-131) metal cores. Those nanosystems were evaluated against bacterial strains representing various groups of MDR (multidrug-resistant) Gram-positive (MRSA, MRSE, and MLSb) and Gram-negative (ESBL, AmpC, and CR) pathogens. Assessment of MICs (minimum inhibitory concentrations)/MBCs (minimum bactericidal concentrations) and killing assays were performed as a measure of their antibacterial activity. In addition to a comprehensive analysis of bacterial responses involving the generation of ROS (reactive oxygen species), plasma membrane permeabilization and depolarization, as well as the release of protein content, were performed to investigate the molecular mechanisms of action of the nanosystems. Finally, their hemocompatibility was assessed by a hemolysis assay. RESULTS All of the tested nanosystems exerted potent bactericidal activity in a manner resulting in the generation of ROS, followed by damage of the bacterial membranes and the leakage of intracellular content. Notably, the killing action occurred with all of the bacterial strains evaluated, including those known to be drug resistant, and at concentrations that did not impact the growth of host cells. CONCLUSIONS Conjugation of CSA-131 with Au NPs by covalent bond between the COOH group from MHDA and NH3 from CSA-131 potentiates the antimicrobial activity of this ceragenin if compared to its action alone. Results validate the development of AuR NPs@CSA-131, AuP NPs@CSA-131, and AuS NPs@CSA-131 as potential novel nanoantibiotics that might effectively eradicate MDR bacteria.
Collapse
Affiliation(s)
- Sylwia Joanna Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (S.J.C.); (K.S.); (P.D.); (E.P.); (K.F.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (S.J.C.); (K.S.); (P.D.); (E.P.); (K.F.)
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (S.J.C.); (K.S.); (P.D.); (E.P.); (K.F.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (S.J.C.); (K.S.); (P.D.); (E.P.); (K.F.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (S.J.C.); (K.S.); (P.D.); (E.P.); (K.F.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, 25-365 Kielce, Poland; (P.K.); (P.P.); (K.F.); (P.W.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, 25-365 Kielce, Poland; (P.K.); (P.P.); (K.F.); (P.W.)
| | - Kamila Fortunka
- Department of Microbiology and Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, 25-365 Kielce, Poland; (P.K.); (P.P.); (K.F.); (P.W.)
| | - Tomasz Wollny
- Holy Cross Cancer Center, Kielce, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Department of Microbiology and Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, 25-365 Kielce, Poland; (P.K.); (P.P.); (K.F.); (P.W.)
| | | | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (S.J.C.); (K.S.); (P.D.); (E.P.); (K.F.)
| |
Collapse
|
4
|
Cohen R, Madhi F, Levy C, Bonacorsi S. Treatment of Urinary Tract Infections Caused By ESBL-Producing Enterobacteriaceae: Have All Treatment Options Been Considered? Pediatr Infect Dis J 2020; 39:e216-e217. [PMID: 32677814 DOI: 10.1097/inf.0000000000002654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Robert Cohen
- ACTIV (Association Clinique et Thérapeutique Infantile du Val de Marne), Créteil, France, Centre de recherche clinique, Unité Petits Nourrissons, hôpital Intercommunal de Créteil, 94000 Créteil, France, Université Paris Est, IMRB-GRC GEMINI, 94010 Créteil, France, GPIP (Groupe de Pathologie Infectieuse Pédiatrique) de la SFP (Société Française de Pédiatrie), Paris, France
| | - Fouad Madhi
- Université Paris Est, IMRB-GRC GEMINI, 94010 Créteil, France, GPIP (Groupe de Pathologie Infectieuse Pédiatrique) de la SFP (Société Française de Pédiatrie), Paris, France, Service de pédiatrie générale, Centre Hospitalier Intercommunal de Créteil, 40 avenue de Verdun, 94000 Créteil, France
| | - Corinne Levy
- ACTIV (Association Clinique et Thérapeutique Infantile du Val de Marne), Créteil, France, Centre de recherche clinique, Unité Petits Nourrissons, hôpital Intercommunal de Créteil, 94000 Créteil, France, Université Paris Est, IMRB-GRC GEMINI, 94010 Créteil, France
| | - Stéphane Bonacorsi
- Université de Paris, IAME, INSERM, F-75018 Paris, France, Service de Microbiologie, Centre National de Référence Escherichia coli, Hôpital Robert-Debré, AP-HP, Paris, France
| |
Collapse
|