1
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
2
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
3
|
Bumiller-Bini V, de Freitas Oliveira-Toré C, Carvalho TM, Kretzschmar GC, Gonçalves LB, Alencar NDM, Gasparetto MA, Beltrame MH, Winter Boldt AB. MASPs at the crossroad between the complement and the coagulation cascades - the case for COVID-19. Genet Mol Biol 2021; 44:e20200199. [PMID: 33729332 PMCID: PMC7982787 DOI: 10.1590/1678-4685-gmb-2020-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Components of the complement system and atypical parameters of coagulation were reported in COVID-19 patients, as well as the exacerbation of the inflammation and coagulation activity. Mannose binding lectin (MBL)- associated serine proteases (MASPs) play an important role in viral recognition and subsequent activation of the lectin pathway of the complement system and blood coagulation, connecting both processes. Genetic variants of MASP1 and MASP2 genes are further associated with different levels and functional efficiency of their encoded proteins, modulating susceptibility and severity to diseases. Our review highlights the possible role of MASPs in SARS-COV-2 binding and activation of the lectin pathway and blood coagulation cascades, as well as their associations with comorbidities of COVID-19. MASP-1 and/or MASP-2 present an increased expression in patients with COVID-19 risk factors: diabetes, arterial hypertension and cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and cerebrovascular disease. Based also on the positive results of COVID-19 patients with anti-MASP-2 antibody, we propose the use of MASPs as a possible biomarker of the progression of COVID-19 and the investigation of new treatment strategies taking into consideration the dual role of MASPs, including MASP inhibitors as promising therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
| | - Camila de Freitas Oliveira-Toré
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Laboratório de Imunopatologia Molecular, Curitiba, PR, Brazil
| | - Tamyres Mingorance Carvalho
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Citogenética Humana e Oncogenética, Curitiba, PR, Brazil
| | - Gabriela Canalli Kretzschmar
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
| | - Letícia Boslooper Gonçalves
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Imunogenética e Histocompatibilidade (LIGH), Curitiba, PR, Brazil
| | - Nina de Moura Alencar
- Fundação Oswaldo Cruz (Fiocruz), Instituto Carlos Chagas, Programa de Pós-Graduação em Biociências e Biotecnologia, Laboratório de Virologia Molecular, Curitiba, PR, Brazil
| | - Miguel Angelo Gasparetto
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| | - Marcia Holsbach Beltrame
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
The Role of Mannose-binding Lectin in Infectious Complications of Pediatric Hemato-Oncologic Diseases. Pediatr Infect Dis J 2021; 40:154-158. [PMID: 33433161 DOI: 10.1097/inf.0000000000002919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The complement system is essential for protection against infections in oncologic patients because of the chemotherapy-induced immunosuppression. One of the key elements in the activation of the complement system via the lectin pathway is the appropriate functioning of mannose-binding lectin (MBL) and mannose-binding lectin-associated serine protease 2 (MASP2) complex. The objective of our study was to find an association between polymorphisms resulting in low MBL level and activation of the MBL-MASP2 complex. Also, we aimed at finding a connection between these abnormalities and the frequency and severity of febrile neutropenic episodes in children suffering from hemato-oncologic diseases. Ninety-seven patients had been enrolled and followed from the beginning of the therapy for 8 months, and several characteristics of febrile neutropenic episodes were recorded. Genotypes of 4 MBL2 polymorphisms (-221C/G, R52C, G54D, G57E) were determined by real-time polymerase chain reaction. Activation of the MBL-MASP2 complex was evaluated by enzyme-linked immunosorbent assay at the time of diagnosis and during an infection. The number of febrile neutropenic episodes was lower, and the time until the first episode was longer in patients with normal MBL level than in patients with low MBL level coding genotypes. The MBL-MASP2 complex activation level correlated with the MBL genotype and decreased significantly during infections in patients with low MBL level. Our results suggest that infections after immunosuppression therapy in children suffering from hemato-oncologic diseases are associated with the MBL2 genotype. Our results may contribute to the estimation of risk for infections in the future, which may modify therapeutic options for individuals.
Collapse
|
6
|
Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E, Seppänen MRJ, Sullivan KE, Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J Clin Immunol 2020; 40:576-591. [PMID: 32064578 PMCID: PMC7253377 DOI: 10.1007/s10875-020-00754-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Pediatrics, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anete S Grumach
- Clinical Immunology, Reference Center on Rare Diseases, University Center Health ABC, Santo Andre, SP, Brazil
| | | | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, Cardiff University & University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
7
|
Mannose-binding lectin and mannose-binding protein-associated serine protease 2 levels and infection in very-low-birth-weight infants. Pediatr Res 2018; 84:134-138. [PMID: 29807983 DOI: 10.1038/s41390-018-0017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/11/2018] [Accepted: 04/01/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of this study was to explore the role of the lectin pathway in neonatal sepsis through the study of MBL and MASP2 levels and their relationship with infection in a cohort of very-low-birth-weight infants (VLBWI). METHODS MBL and MASP2 were measured in plasma samples of n = 89 VLBWI using ELISA and correlated with clinical parameters. MBL plasma levels were aligned with genotyping data of mbl2 exon 1 polymorphisms, rs1800450, rs1800451, and rs5030737. RESULTS MBL levels were clearly determined by MBL genotype, i.e., AA individuals had tenfold higher MBL levels than AO individuals. MBL and MASP2 levels did not correlate with gestational age, apart from MASP2 levels on day 7. During the first 21 days of life, we noted a gradual increase in both MBL and MASP2 levels. On day 7 of life, MASP2 levels in infants developing late-onset sepsis measured before the onset of symptoms were found to be lower, as compared to non-LOS infants. CONCLUSIONS In our cohort of VLBWI, MBL levels were genetically determined, but not associated with gestational age or sepsis in the first 21 days of life. Lower MASP2 levels on day 7 may indicate increased risk for late-onset infection.
Collapse
|
8
|
Silva AA, Catarino SJ, Boldt ABW, Pedroso MLA, Beltrame MH, Messias-Reason IJ. Effects of MASP2 haplotypes and MASP-2 levels in hepatitis C-infected patients. Int J Immunogenet 2018; 45:118-127. [PMID: 29675993 DOI: 10.1111/iji.12371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023]
Abstract
Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) are components of the lectin pathway, which activate the complement system after binding to the HCV structural proteins E1 and E2. We haplotyped 11 MASP2 polymorphisms in 103 HCV patients and 205 controls and measured MASP-2 levels in 67 HCV patients and 77 controls to better understand the role of MASP-2 in hepatitis C susceptibility and disease severity according to viral genotype and fibrosis levels. The haplotype block MASP2*ARDP was associated with protection against HCV infection (OR = 0.49, p = .044) and lower MASP-2 levels in controls (p = .021), while haplotype block AGTDVRC was significantly increased in patients (OR = 7.58, p = .003). MASP-2 levels were lower in patients than in controls (p < .001) and in patients with viral genotype 1 or 4 (poor responders to treatment) than genotype 3 (p = .022) and correlated inversely with the levels of alkaline phosphatase, especially in individuals with fibrosis 3 or 4 (R = -.7, p = .005). MASP2 gene polymorphisms modulate basal gene expression, which may influence the quality of complement response against HCV. MASP-2 levels decrease during chronic disease, independently of MASP2 genotypes, most probably due to consumption and attenuation mechanisms of viral origin and by the reduced liver function, the site of MASP-2 production.
Collapse
Affiliation(s)
- Amanda A Silva
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sandra J Catarino
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Angelica B W Boldt
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Lucia A Pedroso
- Departamento de Clínica Médica, Hospital de Clínicas, Serviço de Hepatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcia H Beltrame
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Iara J Messias-Reason
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
9
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
10
|
No Strong Relationship Between Components of the Lectin Pathway of Complement and Susceptibility to Pulmonary Tuberculosis. Inflammation 2015; 38:1731-7. [DOI: 10.1007/s10753-015-0150-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pana ZD, Samarah F, Papi R, Antachopoulos C, Papageorgiou T, Farmaki E, Hatzipantelis E, Tragiannidis A, Vavatsi-Christaki N, Kyriakidis D, Athanassiadou-Piperopoulou F, Roilides E. Mannose binding lectin and ficolin-2 polymorphisms are associated with increased risk for bacterial infections in children with B acute lymphoblastic leukemia. Pediatr Blood Cancer 2014; 61:1017-22. [PMID: 24453114 DOI: 10.1002/pbc.24951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND We aimed to investigate whether the presence of mannose binding lectin (MBL2), ficolin 2 (FCN2) polymorphisms or the combined deficiency significantly influence the risk and subsequently the frequency of chemotherapy-induced bacterial infections in children with B acute lymphoblastic leukemia (B-ALL). PROCEDURE MBL2 polymorphisms for exon 1 and FCN2 polymorphisms for promoter regions -986, -602, -557, -64, -4 and exon 8 regions +6,359, +6,424 were determined in children with B-ALL. FCN2 haplotype was determined by gene sequencing. Number and duration of FN episodes as well as number of bacterial infections were recorded during induction chemotherapy. RESULTS Forty-four children with B-ALL (median age 4.3 years, 65.9% males) suffered from 142 FN episodes and 92 bacterial infections (40.2% Gram positive and 59.8% Gram negative). MBL2 low-risk genotype was found in 59.1%, medium-risk in 31.8% and high-risk in 9%. FCN2 low-risk haplotypes were detected in 38.2%, medium-risk in 44.1% and high-risk in 17.6%. MBL2 genotype and FCN2 haplotype were not associated with increased frequency of FN episodes. MBL2 medium/high-risk genotype and FCN2 medium/high-risk haplotype were associated with prolonged duration of FN (P = 0.007 and P = 0.001, respectively) and increased number of bacterial infections (P = 0.001 and P = 0.002, respectively). The combined MBL2/FCN2 medium/high-risk genotype was associated with an increased number of bacterial infections (P = 0.001). CONCLUSIONS MBL2 and FCN2 single or combined deficiencies are associated with increased duration of FN episodes as well as increased number of bacterial infections in children with B-ALL suggesting a prognostic role of these genes.
Collapse
Affiliation(s)
- Zoe Dorothea Pana
- Pediatric Hematology Oncology Unit, 2nd Department of Pediatrics, Aristotle University School of Medicine, AHEPA General Hospital, Thessaloniki, Greece; Biochemistry Laboratory, Aristotle University School of Medicine, Thessaloniki, Greece; Biochemistry Laboratory, Department of Chemistry, Aristotle University Faculty of Chemistry, Thessaloniki, Greece; Infectious Disease Unit, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Goeldner I, Skare T, Boldt ABW, Nass FR, Messias-Reason IJ, Utiyama SR. Association of MASP-2 levels and MASP2 gene polymorphisms with rheumatoid arthritis in patients and their relatives. PLoS One 2014; 9:e90979. [PMID: 24632598 PMCID: PMC3954616 DOI: 10.1371/journal.pone.0090979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/05/2014] [Indexed: 01/31/2023] Open
Abstract
Background Mannan-binding lectin-associated serine protease 2 (MASP-2) is a key protein of the lectin pathway of complement. MASP-2 levels have been associated with different polymorphisms within MASP2 gene as well as with the risk for inflammatory disorders and infections. Despite its clinical importance, MASP-2 remains poorly investigated in rheumatoid arthritis (RA). Methods In this case-control study, we measured MASP-2 serum levels in 156 RA patients, 44 patient relatives, and 100 controls from Southern Brazil, associating the results with nine MASP2 polymorphisms in all patients, 111 relatives, and 230 controls genotyped with multiplex SSP-PCR. Results MASP-2 levels were lower in patients than in controls and relatives (medians 181 vs. 340 or 285 ng/ml, respectively, P<0.0001). Conversely, high MASP-2 levels were associated with lower susceptibility to RA and to articular symptoms independently of age, gender, ethnicity, smoking habit, anti-CCP and rheumatoid factor positivity (OR = 0.05 [95%CI = 0.019–0.13], P<0.0001 between patients and controls; OR = 0.12, [95%CI = 0.03–0.45], P = 0.002 between patients and relatives; OR = 0.06, [95%CI = 0.004–0.73], P = 0.03 between relatives with and without articular symptoms). MASP2 haplotypes *2A1 and *2B1-i were associated with increased susceptibility to RA (OR = 3.32 [95%CI = 1.48–7.45], P = 0.004). Deficiency-causing p.120G and p.439H substitutions were associated with five times increased susceptibility to articular symptoms in relatives (OR = 5.13 [95%CI = 1.36–20.84], P = 0.02). There was no association of MASP-2 levels or MASP2 polymorphisms with autoantibodies, Sjögren's syndrome, nodules and functional class. Conclusions In this study, we found the first evidence that MASP-2 deficiency might play an important role in the development of RA and articular symptoms among relatives of RA patients.
Collapse
Affiliation(s)
- Isabela Goeldner
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Thelma Skare
- Rheumatology Unit, Evangelical University Hospital, Curitiba, Brazil
| | | | - Flavia R. Nass
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Shirley R. Utiyama
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
13
|
Abstract
Invasive fungal infections (IFI) have become a leading cause of morbidity and mortality in cancer patients. Infections with these organisms are often difficult to diagnose and treat. Appropriate and timely diagnosis requires a high index of suspicion and invasive procedures, including biopsy, to confirm the diagnosis. Treatment may be difficult, secondary to variable susceptibility and difficulty with exact and specific characterization of the fungal pathogen. The pathogens that are seen range from yeasts to invasive molds. Fortunately newer, noninvasive diagnostic techniques are available to aid in the diagnosis and treatments have become better tolerated and more efficacious.
Collapse
Affiliation(s)
- Michael Angarone
- Division of Infectious Disease, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Suite 900, Chicago, IL, 60611, USA,
| |
Collapse
|
14
|
Ingels C, Vanhorebeek I, Steffensen R, Derese I, Jensen L, Wouters PJ, Hermans G, Thiel S, Van den Berghe G. Lectin pathway of complement activation and relation with clinical complications in critically ill children. Pediatr Res 2014; 75:99-108. [PMID: 24129551 DOI: 10.1038/pr.2013.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/12/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Critically ill children are susceptible to nosocomial infections, which contribute to adverse outcomes. Deficiencies in the innate immunity lectin pathway of complement activation are implicated in a child's vulnerability to infections in conditions such as cancer, but the role during critical illness remains unclear. We hypothesized that low on-admission levels of the pathway proteins are, in part, genetically determined and associated with susceptibility to infectious complications and adverse outcomes. METHODS We studied protein levels of mannose-binding lectin (MBL), H-ficolin and M-ficolin, three MBL-associated-serine proteases (MASPs) and MBL-associated protein (MAp44), and relation with functional genetic polymorphisms, in 130 healthy children and upon intensive care unit (ICU) admission in 700 critically ill children of a randomized study on glycemic control. RESULTS Levels of MASP-1, MASP-2, MASP-3, and MAp-44 were lower and the levels of M-ficolin were higher in ICU patients on admission than those in matched healthy controls. Only a low on-admission MASP-3 level was independently associated with risk of new ICU infections and prolonged ICU stay, after correcting for other risk factors. On-admission MASP-3 varied with age, illness severity, and genetic variation. CONCLUSION Low on-admission MASP-3 levels in critically ill children were independently associated with subsequent acquisition of infection and prolonged ICU stay. The biological explanation needs further investigation.
Collapse
Affiliation(s)
- Catherine Ingels
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ilse Vanhorebeek
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Steffensen
- Regional Centre for Blood Transfusion and Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Derese
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisbeth Jensen
- Department of Biomedicine, Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Pieter J Wouters
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Steffen Thiel
- Department of Biomedicine, Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Greet Van den Berghe
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
The role of mannose-binding lectin in severe sepsis and septic shock. Mediators Inflamm 2013; 2013:625803. [PMID: 24223476 PMCID: PMC3808714 DOI: 10.1155/2013/625803] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 12/29/2022] Open
Abstract
Severe sepsis and septic shock are a primary cause of death in patients in intensive care unit (ICU). Investigations upon genetic susceptibility profile to systemic complications during severe infections are a field of increasing scientific interest. Particularly when adaptive immune system is compromised or immature, innate immunity plays a key role in the immediate defense against invasive pathogens. Mannose-binding lectin (MBL) is a serum protein that recognizes a wide range of pathogenic microorganisms and activates complement cascade via the antibody-independent pathway. More than 30% of humans harbor mutations in MBL gene (MBL2) resulting in reduced plasmatic levels and activity. Increased risk of infection acquisition has been largely documented in MBL-deficient patients, but the real impact of this form of innate immunosuppression upon clinical outcome is not clear. In critically ill patients higher incidence and worse prognosis of severe sepsis/septic shock appear to be associated with low-producers haplotypes. However an excess of MBL activation might be also harmful due to the possibility of an unbalanced proinflammatory response and an additional host injury. Strategies of replacement therapies in critically ill patients with severe infections are under investigation but still far to be applied in clinical practice.
Collapse
|
16
|
Ammann RA, Bodmer N, Simon A, Agyeman P, Leibundgut K, Schlapbach LJ, Niggli FK. Serum Concentrations of Mannan-Binding Lectin (MBL) and MBL-Associated Serine Protease-2 and the Risk of Adverse Events in Pediatric Patients With Cancer and Fever in Neutropenia. J Pediatric Infect Dis Soc 2013; 2:155-61. [PMID: 26619462 DOI: 10.1093/jpids/pit005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/01/2013] [Indexed: 11/14/2022]
Abstract
BACKGROUND It is unknown whether serum concentrations of mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) influence the risk of adverse events (AEs) in children with cancer presenting with fever in neutropenia (FN). METHODS Pediatric patients with cancer presenting with FN after non-myeloablative chemotherapy were observed in a prospective multicenter study. Mannan-binding lectin and MASP-2 were measured using commercially available enzyme-linked immunosorbent assay in serum taken at cancer diagnosis. Multiple FN episodes per patient were allowed. Associations of MBL and MASP-2 with AE in general, with bacteremia, and with serious medical complications (SMC) during FN were analyzed using mixed logistic regression. RESULTS Of 278 FN episodes, AE was reported in 84 (30%), bacteremia was reported in 42 (15%), and SMC was reported in 16 (5.8%). Median MBL was 2152 ng/mL (range, 7-10 060). It was very low (<100) in 11 (9%) patients, low (100-999) in 36 (29%) patients, and normal (≥1000) in 79 (63%) patients. Median MASP-2 was 410 ng/mL (range, 68-2771). It was low (<200) in 18 (14%) patients and normal in the remaining 108 (86%) patients. Mannan-binding lectin and MASP-2 were not significantly associated with AE or bacteremia. Normal versus low MBL was independently associated with a significantly higher risk of SMC (multivariate odds ratio, 12.8; 95% confidence interval, 1.01-163; P = .050). CONCLUSIONS Mannan-binding lectin and MASP-2 serum concentrations were not found to predict the risk to develop AEs or bacteremia during FN. Normal MBL was associated with an increased risk of SMC during FN. This finding, in line with earlier studies, does not support the concept of MBL supplementation in MBL-deficient children with cancer presenting with FN.
Collapse
Affiliation(s)
| | | | - Arne Simon
- Department of Pediatrics, University of Bonn, and Pediatric Oncology, Saarland University Hospital, Homburg, Germany
| | - Philipp Agyeman
- Department of Pediatrics and Institute for Infectious Diseases, University of Bern, and
| | | | - Luregn J Schlapbach
- Department of Pediatrics and Pediatric Critical Care Research Group, Pediatric Intensive Care Unit, Mater Children's Hospital, Brisbane, Australia
| | | |
Collapse
|
17
|
The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. ScientificWorldJournal 2013; 2013:675898. [PMID: 23533355 PMCID: PMC3595680 DOI: 10.1155/2013/675898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.
Collapse
|
18
|
Budd SJ, Aris RM, Medaiyese AA, Tilley SL, Neuringer IP. Increased plasma mannose binding lectin levels are associated with bronchiolitis obliterans after lung transplantation. Respir Res 2012; 13:56. [PMID: 22762710 PMCID: PMC3441326 DOI: 10.1186/1465-9921-13-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/09/2012] [Indexed: 11/11/2022] Open
Abstract
Background Long-term lung allograft survival is limited by bronchiolitis obliterans syndrome (BOS). Mannose binding lectin (MBL) belongs to the innate immune system, participates in complement activation, and may predispose to graft rejection. We investigated mannose binding (MBL) during cold ischemia and in tissue samples from explanted lungs with BOS, and assessed MBL and complement proteins in plasma post-lung transplantation relative to BOS staging. Methods MBL was detected by immunohistochemistry lung tissue at the time of cold ischemia and in samples with BOS. MBL was assayed in the peripheral blood of 66 lung transplant patients transplanted between 1990–2007. Results MBL localized to vasculature and basement membrane during cold ischemia and BOS. Patients further out post-lung transplant > 5 years (n = 33), had significantly lower levels of MBL in the blood compared to lung transplant patients < 5 years with BOS Op-3 (n = 17), 1738 ± 250 ng/ml vs 3198 ± 370 ng/ml, p = 0.027, and similar levels to lung transplant patients < 5 years with BOS 0 (n = 16), 1738 ± 250 ng/ml vs 1808 ± 345 ng/ml. MBL levels in all BOS 0 (n = 30) vs. all BOS Op-3 (n = 36) were 1378 ± 275 ng/ml vs. 2578 ± 390 ng/ml, p = 0.001, respectively. C3 plasma levels in BOS 0 (n = 30) vs. BOS Op-3 (n = 36) were 101 ± 19.8 mg/ml vs. 114 ± 25.2 mg/ml, p = 0.024, respectively. Conclusions MBL localizes within the lung during graft ischemia and BOS, higher levels of plasma MBL are associated with BOS Op-3 and < 5 years post-transplant, and higher level of plasma complement protein C3 was associated with BOS Op-3 clinical status. MBL may serve as a biomarker for poorer outcome post-lung transplantation.
Collapse
|
19
|
Kwok JY, Augst RM, Yu DY, Singh KK. Sensitive CSF ELISAs for the detection of MBL, MASP-2 and functional MBL/MASP-2. J Neurosci Methods 2012; 209:255-7. [PMID: 22728252 DOI: 10.1016/j.jneumeth.2012.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/26/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Mannose binding lectin (MBL) mediated complement pathway is an important constituent of innate immune response in several infections including neuroinflammatory and neurodegenerative diseases. Although there are Enzyme-Linked Immunosorbent Assays (ELISAs) for estimating MBL, MBL-associated serine protease-2 (MASP-2) and functional MBL-MASP-2 (fMBL) proteins for the plasma, serum and cell supernatants there are no established methods for their estimation in the cerebrospinal fluid (CSF). We developed sensitive ELISAs for the detection of MBL, fMBL and MASP-2 in the CSF. First, we adapted standard ELISAs for the detection of these proteins in the CSF. Second, we used a biotinyl-tyramide based horseradish peroxidase (HRP) signal amplification for the sensitive detection of these proteins in the CSF. In summary, using modified ELISA and biotinyl-tyramide based HRP signal amplification, we successfully detected MBL, fMBL and MASP-2 proteins in the CSF samples with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Janet Y Kwok
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA 92093-0672, USA
| | | | | | | |
Collapse
|
20
|
Kwok JY, Vaida F, Augst RM, Yu DY, Singh KK. Mannose binding lectin mediated complement pathway in multiple sclerosis. J Neuroimmunol 2011; 239:98-100. [PMID: 21911261 DOI: 10.1016/j.jneuroim.2011.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
Role of mannose binding lectin (MBL) complement activation pathway, an arm of innate immunity in multiple sclerosis (MS) was evaluated by analyzing the expression of MBL, MBL-associated serine protease-2 (MASP-2), and functional MBL/MASP-2 mediated C4 cleavage (fMBL) in 87 plasma and cerebrospinal fluid (CSF) samples from MS patients and non-MS controls. Median fMBL and MASP-2 plasma levels were higher in MS vs. non-MS cases. These associations remained in an analysis of subtypes of MS disease. These findings suggest a potential activation of MBL complement pathway in MS that may possibly alter the risk or progression of MS disease.
Collapse
Affiliation(s)
- Janet Y Kwok
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, United States
| | | | | | | | | |
Collapse
|
21
|
Torfoss D, Sandstad B, Mollnes TE, Høiby EA, Holte H, Bjerner J, Bjøro T, Gaudernack G, Kvalheim G, Kvaløy S. The mild inflammatory response in febrile neutropenic lymphoma patients with low risk of complications is more pronounced in patients receiving tobramycin once daily compared with three times daily. Scand J Immunol 2011; 74:632-9. [PMID: 21883353 DOI: 10.1111/j.1365-3083.2011.02618.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We evaluated inflammatory markers in febrile neutropenic lymphoma patients undergoing high-dose chemotherapy with autologous stem cell support. Based on MASCC scores, our patients had a low risk of serious complications and a perspective of a benign initial clinical course of the febrile neutropenia. We also studied the impact of tobramycin given once versus three times daily on these immune markers. Sixty-one patients participating in a Norwegian multicentre prospective randomized clinical trial, comparing tobramycin once daily versus three times daily, given with penicillin G to febrile neutropenic patients, constituted a clinically homogenous group. Four patients had bacteraemia, all isolates being Gram-positive. Thirty-two patients received tobramycin once daily, and 29 patients received tobramycin three times daily. Blood samples were taken at the onset of febrile neutropenia and 1-2 days later. All samples were frozen at -70 °C and analysed at the end of the clinical trial for C-reactive protein (CRP), procalcitonin (PCT), complement activation products, mannose-binding lectin (MBL) and 17 cytokines. We found a mild proinflammatory response in this series of patients. CRP was non-specifically elevated. Ten patients with decreased MBL levels showed the same mild clinical and proinflammatory response. Patients receiving tobramycin once daily showed a more pronounced proinflammatory response compared with patients receiving tobramycin three times daily. Overall, febrile neutropenic cancer patients with a benign clinical course show a mild proinflammatory immune response.
Collapse
Affiliation(s)
- D Torfoss
- Department of Oncology, The Norwegian Radium Hospital, Division of Surgery and Cancer Medicine, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Frakking FNJ, Brouwer N, Dolman KM, van Woensel JBM, Caron HN, Kuijpers TW, van de Wetering MD. Mannose-binding lectin (MBL) as prognostic factor in paediatric oncology patients. Clin Exp Immunol 2011; 165:51-9. [PMID: 21488869 PMCID: PMC3110321 DOI: 10.1111/j.1365-2249.2011.04398.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Deficiency of mannose-binding lectin (MBL) has been suggested to influence duration of febrile neutropenia and prognosis in paediatric oncology patients. However, there is no consensus on the definition of MBL deficiency. In a cohort of children with cancer, we investigated (i) how to determine MBL deficiency and (ii) whether MBL is a prognostic factor for disease severity. In 222 paediatric oncology patients, 92 healthy children and 194 healthy adults, MBL plasma levels and MBL2 genotype (wild-type: A, variant: O) were determined. Event-free survival (EFS), overall survival (OS) and paediatric intensive care unit (PICU) admissions were recorded prospectively. In febrile neutropenic patients admitted to the PICU, disease severity was assessed by clinical, microbiological and laboratory parameters. An optimal cut-off value for MBL deficiency was determined to be < 0·20 µg/ml. Wild-type MBL2 genotype patients, including the XA/XA haplotype, had increased MBL levels compared to healthy individuals. MBL deficiency was associated with decreased EFS (P = 0·03), but not with need for PICU admission. A trend for a twice increased frequency of septic shock (80% versus 38%, P = 0·14), multiple organ failure (40% versus 17%, P = 0·27) and death (40% versus 21%, P = 0·27) was observed in the absence of microbiological findings. MBL deficiency was associated with decreased EFS and possibly with an increased severity of disease during PICU admission after febrile neutropenia in the absence of any association with microbiological findings. These findings suggest prognosis to be worse in MBL-deficient compared to MBL-sufficient paediatric oncology patients.
Collapse
Affiliation(s)
- F N J Frakking
- Emma Children's Hospital, Academic Medical Center (AMC), Sanquin Research and Landsteiner Laboratory, AMC, University of Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Sallenbach S, Thiel S, Aebi C, Otth M, Bigler S, Jensenius JC, Schlapbach LJ, Ammann RA. Serum concentrations of lectin-pathway components in healthy neonates, children and adults: mannan-binding lectin (MBL), M-, L-, and H-ficolin, and MBL-associated serine protease-2 (MASP-2). Pediatr Allergy Immunol 2011; 22:424-30. [PMID: 21226765 DOI: 10.1111/j.1399-3038.2010.01104.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aimed to measure serum concentrations of five lectin-pathway components, mannan-binding lectin (MBL), M-ficolin, L-ficolin, H-ficolin, and MBL-associated serine protease-2 (MASP-2), in healthy neonates and children, to determine if they change with age and to compare them with serum concentrations in healthy adults. Concentrations were measured in 141 preterm and 30 term neonates, in 120 children including infants and adolescents, and in 350 adults (97 for L-ficolin) by inhouse time-resolved immunofluorometric assays or commercially available enzyme-linked immunosorbent assays. The adjacent categories method applying Wilcoxon-Mann-Whitney tests was used to determine age categories where concentrations differed significantly. Displaying serum concentration vs. age, an inverted-U shape (higher concentrations in children than in neonates and adults) was found for MBL and the ficolins, and an S-shape for MASP-2. Serum concentrations of all five lectin-pathway components were significantly lower in preterm neonates <32-wk gestational age compared to older neonates, infants, and children. Only M-ficolin in children >1 yr and H-ficolin in term neonates and in children were found to be comparable with adult values. MBL, M-, L-, and H-ficolin, and MASP-2 serum concentrations show important changes with age. The respective normal ranges for adults should not be used in the pediatric population. The age-specific pediatric ranges established here may be used instead.
Collapse
|
24
|
Multiplex sequence-specific polymerase chain reaction reveals new MASP2 haplotypes associated with MASP-2 and MAp19 serum levels. Hum Immunol 2011; 72:753-60. [PMID: 21683108 DOI: 10.1016/j.humimm.2011.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/23/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022]
Abstract
Deficiency of mannan-binding lectin-associated serine protease 2 (MASP-2) has been associated with infections, whereas high levels appear to increase the risk of inflammatory disorders. Nevertheless, MASP2 haplotypes have been poorly investigated. To overcome haplotyping cost and time consumption, we developed multiplex polymerase chain reactions with sequence-specific primers (PCR-SSP) for 8 single nucleotide polymorphisms (SNPs), reducing the number of necessary reactions from 18 to 7. SNPs were distributed from the promoter to the last exon, and a single PCR-SSP was used for p.D120G. We evaluated the phylogenetic relationships and global distribution of 10 identified haplotypes in 338 Danish individuals with known MASP-2 and MAp19 levels and 309 South Brazilians. Four haplotypes were associated with reduced MASP-2 levels in plasma (lower than 200 ng/mL). Simultaneous association with the highest MASP-2 (over 600 ng/mL) and lowest MAp19 levels (lower than 200 ng/mL) was demonstrated with the intron 9 mutation (Kruskal-Wallis p < 0.0001). Cumulative genotype frequencies predict approximately 0.4% severely deficient and 25% overproducing individuals in both populations. Rapid and low-cost screening of patients with multiplex MASP2 PCR-SSP could be used to identify clinical conditions where MASP-2 (or MAp19) levels may be disease modifying, possibly improving disease outcome through early therapeutic and preventive measures.
Collapse
|
25
|
Schlapbach LJ, Thiel S, Aebi C, Hirt A, Leibundgut K, Jensenius JC, Ammann RA. M-ficolin in children with cancer. Immunobiology 2011; 216:633-8. [PMID: 21112665 DOI: 10.1016/j.imbio.2010.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 01/17/2023]
Abstract
OBJECTIVES M-ficolin (ficolin-1) is a complement-activating pattern-recognition molecule structurally related to mannan-binding lectin. It is produced by monocytes and neutrophils, and is found in serum. Its biological role is largely unknown. We assessed M-ficolin concentration in serum from pediatric cancer patients. The aim of this study was to explore association of M-ficolin with clinical and hematological parameters, and to investigate whether the risk of chemotherapy-related infections was related to M-ficolin concentrations in serum. METHODS M-ficolin was measured by time-resolved immunofluorometric assay in serum taken at cancer diagnosis and was correlated with peripheral blood counts and bone marrow examinations performed at the same time. RESULTS Median M-ficolin concentration in 94 children with cancer was 1.6 μg/mL (interquartile range, 0.57-2.7; range, 0.055-25.8), and was not different from age-matched controls (median, 1.7 μg/mL; p=0.92). M-ficolin was strongly associated with absolute counts of neutrophils (Spearman's rho, 0.45; 95%-CI, 0.26-0.65; p<0.001), monocytes (0.34; 0.12-0.55; p<0.001), and thus phagocytes (0.42; 0.20-0.63; p<0.001) in peripheral blood. Similarly, M-ficolin correlated strongly with neutrophils (0.36; 0.14-0.59; p=0.002) and phagocytes (0.31; 0.08-0.54; p=0.009) in bone marrow. Low serum M-ficolin (≤0.5 μg/mL) was not associated with an increased incidence of fever in neutropenia during chemotherapy (multivariate Poisson rate ratio, 1.04; 95%-CI, 0.68-1.60; p=0.85). CONCLUSIONS The concentration of M-ficolin in serum from children with cancer was strongly associated with neutrophil and monocyte counts in blood and bone marrow. These results suggest that M-ficolin concentrations in serum reflect the pool of phagocytes.
Collapse
Affiliation(s)
- Luregn J Schlapbach
- Department of Pediatrics, Inselspital, University of Bern, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Martínez-López J, Rivero A, Rapado I, Montalbán C, Paz-Carreira J, Canales M, Martínez R, Sánchez-Godoy P, Fernández de Sevilla A, Peñalver FJ, Gonzalez M, Prieto E, Salar A, Burgaleta C, Queizán JA, Peñarrubia MJ, Monteagudo MD, Cabrera C, De la Serna J, Tomás JF. Influence of MBL-2 mutations in the infection risk of patients with follicular lymphoma treated with rituximab, fludarabine, and cyclophosphamide. Leuk Lymphoma 2010; 50:1283-9. [PMID: 19557622 DOI: 10.1080/10428190903040006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The employment of current treatments based on chemotherapy and immunotherapy leads to inmunosuppression. The presence of mutations or polymorphisms in genes related to immune system might involve an additional disadvantage. The aim of the present study was to analyze mannose-binding lectin (MBL-2 gene) mutations and their association with severe infections and event-free survival in patients diagnosed with follicular lymphoma, treated uniformly, in the clinical trial LNHF-03. The results of this trial showed impressive clinical efficacy but was complicated with 80 documented infectious episodes. Patients were classified into two genotypic groups, AA and AO/OO, based on their haplotypic inheritance. Neither the number of infectious episodes nor differences in event-free survival was found as a function of MBL-2 groups. Other factors, including the lymphoma malignancy and the immune alterations associated with the disease, should be considered responsible for this observation.
Collapse
|
27
|
Genotypes coding for low serum levels of mannose-binding lectin are underrepresented among individuals suffering from noninfectious systemic inflammatory response syndrome. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:447-53. [PMID: 20042521 DOI: 10.1128/cvi.00375-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gene polymorphisms, giving rise to low serum levels of mannose-binding lectin (MBL) or MBL-associated protease 2 (MASP2), have been associated with an increased risk of infections. The objective of this study was to assess the outcome of intensive care unit (ICU) patients with systemic inflammatory response syndrome (SIRS) regarding the existence of functionally relevant MBL2 and MASP2 gene polymorphisms. The study included 243 ICU patients with SIRS admitted to our hospital, as well as 104 healthy control subjects. MBL2 and MASP2 single nucleotide polymorphisms were genotyped using a sequence-based typing technique. No differences were observed regarding the frequencies of low-MBL genotypes (O/O and XA/O) and MASP2 polymorphisms between patients with SIRS and healthy controls. Interestingly, ICU patients with a noninfectious SIRS had a lower frequency for low-MBL genotypes and a higher frequency for high-MBL genotypes (A/A and A/XA) than either ICU patients with an infectious SIRS or healthy controls. The existence of low- or /high-MBL genotypes or a MASP2 polymorphism had no impact on the mortality rates of the included patients. The presence of high-MBL-producing genotypes in patients with a noninfectious insult is a risk factor for SIRS and ICU admission.
Collapse
|
28
|
Schlapbach LJ, Aebi C, Hansen AG, Hirt A, Jensenius JC, Ammann RA. H-ficolin serum concentration and susceptibility to fever and neutropenia in paediatric cancer patients. Clin Exp Immunol 2009; 157:83-9. [PMID: 19659773 DOI: 10.1111/j.1365-2249.2009.03957.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
H-ficolin (Hakata antigen, ficolin-3) activates the lectin pathway of complement similar to mannose-binding lectin. However, its impact on susceptibility to infection is currently unknown. This study investigated whether the serum concentration of H-ficolin at diagnosis is associated with fever and neutropenia (FN) in paediatric cancer patients. H-ficolin was measured by time-resolved immunofluorometric assay in serum taken at cancer diagnosis from 94 children treated with chemotherapy. The association of FN episodes with H-ficolin serum concentration was analysed by multivariate Poisson regression. Median concentration of H-ficolin in serum was 26 mg/l (range 6-83). Seven (7%) children had low H-ficolin (< 14 mg/l). During a cumulative chemotherapy exposure time of 82 years, 177 FN episodes were recorded, 35 (20%) of them with bacteraemia. Children with low H-ficolin had a significantly increased risk to develop FN [relative risk (RR) 2.24; 95% confidence interval (CI) 1.38-3.65; P = 0.004], resulting in prolonged duration of hospitalization and of intravenous anti-microbial therapy. Bacteraemia occurred more frequently in children with low H-ficolin (RR 2.82; CI 1.02-7.76; P = 0.045). In conclusion, low concentration of H-ficolin was associated with an increased risk of FN, particularly FN with bacteraemia, in children treated with chemotherapy for cancer. Low H-ficolin thus represents a novel risk factor for chemotherapy-related infections.
Collapse
Affiliation(s)
- L J Schlapbach
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
29
|
Zehnder A, Fisch U, Hirt A, Niggli FK, Simon A, Ozsahin H, Schlapbach LJ, Ammann RA. Prognosis in pediatric hematologic malignancies is associated with serum concentration of mannose-binding lectin-associated serine protease-2 (MASP-2). Pediatr Blood Cancer 2009; 53:53-7. [PMID: 19343776 DOI: 10.1002/pbc.22028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mannose-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are key components of the lectin pathway of complement activation. Their serum concentrations show a wide interindividual variability. This study investigated whether the concentration of MBL and MASP-2 is associated with prognosis in pediatric patients with cancer. METHODS In this retrospective multicenter study, MBL and MASP-2 were measured by commercially available ELISA in frozen remnants of serum taken at diagnosis. Associations of overall survival (OS) and event-free survival (EFS) with MBL and MASP-2 were assessed by multivariate Cox regression accounting for prognostically relevant clinical variables. RESULTS In the 372 patients studied, median serum concentration of MBL was 2,808 microg/L (range, 2-10,060) and 391 microg/L (46-2,771) for MASP-2. The estimated 4-year EFS was 0.60 (OS, 0.78). In the entire, heterogeneous sample, MBL and MASP-2 were not significantly associated with OS or EFS. In patients with hematologic malignancies, however, higher MASP-2 was associated with better EFS in a significant and clinically relevant way (hazard ratio per tenfold increase (HR), 0.22; 95% CI, 0.09-0.54; P = 0.001). This was due to patients with lymphoma (HR, 0.11; 95% CI, 0.03-0.47; P = 0.003), but less for those with acute leukemia (HR, 0.35; 95% CI, 0.11-1.15; P = 0.083). CONCLUSION In this study, higher MASP-2 was associated with better EFS in pediatric patients with hematologic malignancies, especially lymphoma. Whether MASP-2 is an independent prognostic factor affecting risk stratification and anticancer therapy needs to be assessed in prospective, disease-specific studies.
Collapse
Affiliation(s)
- Aina Zehnder
- Department of Pediatrics, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
te Poele EM, Tissing WJE, Kamps WA, de Bont ESJM. Risk assessment in fever and neutropenia in children with cancer: What did we learn? Crit Rev Oncol Hematol 2009; 72:45-55. [PMID: 19195908 DOI: 10.1016/j.critrevonc.2008.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/04/2008] [Accepted: 12/18/2008] [Indexed: 11/15/2022] Open
Abstract
Children with cancer treated with chemotherapy are susceptible to bacterial infections and serious infectious complications. However, fever and neutropenia can also result from other causes, for which no antibiotic treatment is needed. In the past decades attempts have been made to stratify the heterogeneous group of pediatric cancer patients with fever and neutropenia into high- and low-risk groups for bacterial infections or infectious complications. Strategies for risk assessment have resulted in treatment regimens with early discharge or even no hospital admission at all, and/or treatment with oral or no antibiotics. We will provide a historical overview of the changing approach to low-risk fever and neutropenia, and we will also try to identify clear and objective parameters for risk assessment strategies and illustrate their relationship to innate immunity. In the future, new insights into genetic susceptibility on neutropenic fever might be of use in children with cancer with fever and neutropenia.
Collapse
Affiliation(s)
- Esther M te Poele
- Department of Pediatrics, Division of Pediatric Oncology/Hematology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | |
Collapse
|
31
|
Pharmacologic rationale for early G-CSF prophylaxis in cancer patients and role of pharmacogenetics in treatment optimization. Crit Rev Oncol Hematol 2008; 72:21-44. [PMID: 19111474 DOI: 10.1016/j.critrevonc.2008.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/14/2008] [Accepted: 10/22/2008] [Indexed: 11/22/2022] Open
Abstract
The use of recombinant human granulocyte colony stimulating factors (G-CSF) has become an integral part of supportive care during cytotoxic chemotherapy. Current guidelines recommend the use of G-CSF in patients with substantial risk of febrile neutropenia. However, little consensus exists about optimal timing and tailoring of this therapy. Based on the known effects of chemotherapy and G-CSF on bone marrow compartments, we propose a model that supports the prophylactic rather than therapeutic use of G-CSF therapy. In addition, several genetic alterations in G-CSF signalling pathway have been described. These genetic variants may predict the risk of febrile neutropenia and response to G-CSF. Thus, future pharmacogenetic/omics studies in this field are warranted. Through the identification of patients at risk and the knowledge of biological basis for optimal timing, hopefully we should soon be able to improve the application of the existing guidelines for G-CSF therapy and patient's prognosis.
Collapse
|
32
|
Wicki S, Keisker A, Aebi C, Leibundgut K, Hirt A, Ammann RA. Risk prediction of fever in neutropenia in children with cancer: a step towards individually tailored supportive therapy? Pediatr Blood Cancer 2008; 51:778-83. [PMID: 18726920 DOI: 10.1002/pbc.21726] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Fever in severe chemotherapy-induced neutropenia (FN) is the most frequent manifestation of a potentially lethal complication of current intensive chemotherapy regimens. This study aimed at establishing models predicting the risk of FN, and of FN with bacteremia, in pediatric cancer patients. METHODS In a single-centre cohort study, characteristics potentially associated with FN and episodes of FN were retrospectively extracted from charts. Poisson regression accounting for chemotherapy exposure time was used for analysis. Prediction models were constructed based on a derivation set of two thirds of observations, and validated based on the remaining third of observations. RESULTS In 360 pediatric cancer patients diagnosed and treated for a cumulative chemotherapy exposure time of 424 years, 629 FN were recorded (1.48 FN per patient per year, 95% confidence interval (CI), 1.37-1.61), 145 of them with bacteremia (23% of FN; 0.34; 0.29-0.40). More intensive chemotherapy, shorter time since diagnosis, bone marrow involvement, central venous access device (CVAD), and prior FN were significantly and independently associated with a higher risk to develop both FN and FN with bacteremia. The prediction models explained more than 30% of the respective risks. CONCLUSIONS The two models predicting FN and FN with bacteremia were based on five easily accessible clinical variables. Before clinical application, they need to be validated by prospective studies.
Collapse
Affiliation(s)
- Silvia Wicki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Bloodstream infections in cancer patients with febrile neutropenia. Int J Antimicrob Agents 2008; 32 Suppl 1:S30-3. [DOI: 10.1016/j.ijantimicag.2008.06.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 11/21/2022]
|
34
|
Schlapbach LJ, Aebi C, Fisch U, Ammann RA, Otth M, Bigler S, Nelle M, Berger S, Kessler U. Higher cord blood levels of mannose-binding lectin-associated serine protease-2 in infants with necrotising enterocolitis. Pediatr Res 2008; 64:562-6. [PMID: 18596574 DOI: 10.1203/pdr.0b013e3181841335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Necrotising enterocolitis (NEC) causes significant morbidity and mortality in premature infants. The role of innate immunity in the pathogenesis of NEC remains unclear. Mannose-binding lectin (MBL) recognizes microorganisms and activates the complement system via MBL-associated serine protease-2 (MASP-2). The aim of this study was to investigate whether MBL and MASP-2 are associated with NEC. This observational case-control study included 32 infants with radiologically confirmed NEC and 64 controls. MBL and MASP-2 were measured in cord blood using ELISA. Multivariate logistic regression was performed. Of the 32 NEC cases (median gestational age, 30.5 wk), 13 (41%) were operated and 5 (16%) died. MASP-2 cord blood concentration ranged from undetectable (<10 ng/mL) to 277 ng/mL. Eighteen of 32 (56%) NEC cases had higher MASP-2 levels (> or =30 ng/mL) compared with 22 of 64 (34%) controls (univariate OR 2.46; 95% CI 1.03-5.85; p = 0.043). Higher cord blood MASP-2 levels were significantly associated with an increased risk of NEC in multivariate analysis (OR 3.00; 95% CI 1.17-7.93; p = 0.027). MBL levels were not associated with NEC (p = 0.64). In conclusion, infants later developing NEC had significantly higher MASP-2 cord blood levels compared with controls. Higher MASP-2 may favor complement-mediated inflammation and could thereby predispose to NEC.
Collapse
|
35
|
Sagedal S, Thiel S, Hansen TK, Mollnes TE, Rollag H, Hartmann A. Impact of the complement lectin pathway on cytomegalovirus disease early after kidney transplantation. Nephrol Dial Transplant 2008; 23:4054-60. [PMID: 18577532 DOI: 10.1093/ndt/gfn355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study retrospectively investigated the association between pre-transplant levels of mannose-binding lectin (MBL) plus the associated serine protease (MASP)-2 and the occurrence of cytomegalovirus (CMV) infection and symptomatic CMV disease during the first 12 weeks after kidney transplantation. Materials and methods. Altogether 159 consecutive single kidney transplant recipients were included. The patients were screened for CMV pp65 antigenaemia every second week. No CMV prophylaxis or pre-emptive treatment was given. MBL and MASP-2 were measured in samples taken at transplantation and 10 weeks later. RESULTS CMV infection, defined as at least one positive test, was found in 95 patients (59.8%). MBL and MASP-2 measured at transplantation were similar in patients with and without CMV infection. The incidence of CMV infection was also similar in 36 patients (58.3%) with pre-transplant MBL levels below the reference level (500 microg/L) and in patients with higher MBL levels (60.2%). Symptomatic CMV disease was diagnosed in 35 patients (22%), and MASP-2 levels at transplantation in the lower quartile range (<or=148 microg/L) was significantly associated with CMV disease during the first 12 weeks, P = 0.028. MBL levels decreased significantly from transplantation to 10 weeks later, and median (interquartile range) fell from 2597 (526-4939) microug/L to 1520 (270-3069) microg/L (P < 0.001). In contrast, MASP-2 levels increased significantly from 252 (148-382) microg/L to 380 (302-492) microg/L (P < 0.001). CONCLUSION Pre-transplant MBL levels do not influence the incidence of any CMV infection or symptomatic CMV disease during the first 12 weeks after kidney transplantation. However, low MASP-2 levels may play a role in the development of symptomatic CMV disease.
Collapse
Affiliation(s)
- Solbjørg Sagedal
- Department of Nephrology, Ullevål University Hospital, 0407 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|