1
|
Rafailidis P, Panagopoulos P, Koutserimpas C, Samonis G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:261. [PMID: 38534696 DOI: 10.3390/antibiotics13030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The treatment of Acinetobacter baumannii infections remains a challenge for physicians worldwide in the 21st century. The bacterium possesses a multitude of mechanisms to escape the human immune system. The consequences of A. baumannii infections on morbidity and mortality, as well on financial resources, remain dire. Furthermore, A. baumannii superinfections have also occurred during the COVID-19 pandemic. While prevention is important, the antibiotic armamentarium remains the most essential factor for the treatment of these infections. The main problem is the notorious resistance profile (including resistance to carbapenems and colistin) that this bacterium exhibits. While newer beta lactam/beta-lactamase inhibitors have entered clinical practice, with excellent results against various infections due to Enterobacteriaceae, their contribution against A. baumannii infections is almost absent. Hence, we have to resort to at least one of the following, sulbactam, polymyxins E or B, tigecycline or aminoglycosides, against multidrug-resistant (MDR) and extensively drug-resistant (XDR) A. baumannii infections. Furthermore, the notable addition of cefiderocol in the fight against A. baumannii infections represents a useful addition. We present herein the existing information from the last decade regarding therapeutic advances against MDR/XDR A. baumannii infections.
Collapse
Affiliation(s)
- Petros Rafailidis
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Periklis Panagopoulos
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, 115 25 Athens, Greece
| | - George Samonis
- Department of Oncology, Metropolitan Hospital, 185 47 Athens, Greece
- Department of Medicine, University of Crete, 715 00 Heraklion, Greece
| |
Collapse
|
2
|
Hong J, Ensom MHH, Lau TTY. What Is the Evidence for Co-trimoxazole, Clindamycin, Doxycycline, and Minocycline in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Pneumonia? Ann Pharmacother 2019; 53:1153-1161. [PMID: 31177803 DOI: 10.1177/1060028019856721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Objective: To review the evidence for trimethoprim-sulfamethoxazole (TMP-SMX), clindamycin, doxycycline, and minocycline in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Data Source: MEDLINE, PubMed, EMBASE, Google, Google Scholar, Cochrane Central Register of Controlled Trials from 1946 to May 20, 2019. The search was performed with the keywords methicillin-resistant Staphylococcus aureus, MRSA, Staphylococcus aureus, pneumonia, trimethoprim, sulfamethoxazole drug combination, trimethoprim, sulfamethoxazole, TMP-SMX, co-trimoxazole, clindamycin, doxycycline, and minocycline. Data Extraction: Studies reporting the use of the above antibiotics for MRSA pneumonia treatment with clinical outcomes were included. Search parameters were limited to English language and human studies only. Data Synthesis: The search yielded 16 relevant articles: 6 TMP-SMX, 8 clindamycin, zero doxycycline, and 2 minocycline. For TMP-SMX, prospective randomized trials showed variable results; however, these studies were not specifically designed to assess MRSA pneumonia treatment. Retrospective studies with clindamycin suggested that it could be used as monotherapy or in combination with other anti-MRSA antibiotics. There was no evidence for doxycycline use, but 2 small retrospective reviews appeared to support minocycline as a treatment option. Relevance to Patient Care and Clinical Practice: These antibiotics are often used in clinical practice as potential treatment options for MRSA pneumonia. This article reviews the evidence for the clinical efficacy and safety of these agents. Conclusions: There are limited data to support use of TMP-SMX, clindamycin, doxycycline, or minocycline in MRSA pneumonia treatment. Randomized controlled trials are required to determine the effectiveness of these antibiotics. Clinicians should base their decision to use these agents on a case-by-case basis depending on clinical status and susceptibility results.
Collapse
Affiliation(s)
- Jenny Hong
- Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada.,The University of British Columbia, Vancouver, BC, Canada
| | - Mary H H Ensom
- The University of British Columbia, Vancouver, BC, Canada
| | - Tim T Y Lau
- The University of British Columbia, Vancouver, BC, Canada.,Vancouver General Hospital, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
3
|
Fragkou PC, Poulakou G, Blizou A, Blizou M, Rapti V, Karageorgopoulos DE, Koulenti D, Papadopoulos A, Matthaiou DK, Tsiodras S. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms 2019; 7:microorganisms7060159. [PMID: 31159398 PMCID: PMC6617316 DOI: 10.3390/microorganisms7060159] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Treatment options for multidrug resistant Acinetobacter baumannii strains (MDR-AB) are limited. Minocycline has been used alone or in combination in the treatment of infections associated with AB. A systematic review of the clinical use of minocycline in nosocomial infections associated with MDR-AB was performed according to the PRISMA-P guidelines. PubMed-Medline, Scopus and Web of Science TM databases were searched from their inception until March 2019. Additional Google Scholar free searches were performed. Out of 2990 articles, 10 clinical studies (9 retrospective case series and 1 prospective single center trial) met the eligibility criteria. In total, 223 out of 268 (83.2%) evaluated patients received a minocycline-based regimen; and 200 out of 218 (91.7%) patients with available data received minocycline as part of a combination antimicrobial regimen (most frequently colistin or carbapenems). Pneumonia was the most common infection type in the 268 cases (80.6% with 50.4% ventilator-associated pneumonia). The clinical and microbiological success rates following minocycline treatment were 72.6% and 60.2%, respectively. Mortality was 20.9% among 167 patients with relevant data. In this systematic review, minocycline demonstrated promising activity against MDR-AB isolates. This review sets the ground for further studies exploring the role of minocycline in the treatment of MDR-AB associated infections.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Garyfallia Poulakou
- rd Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| | - Andromachi Blizou
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Myrto Blizou
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Vasiliki Rapti
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Drosos E Karageorgopoulos
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Despoina Koulenti
- Adult Critical Care Unit, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
- TCCRC, UQCCR, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Antonios Papadopoulos
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Dimitrios K Matthaiou
- Adult Critical Care Unit, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| | - Sotirios Tsiodras
- th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, 12462, Greece.
| |
Collapse
|
4
|
Mohd Sazlly Lim S, Sime FB, Roberts JA. Multidrug-resistant Acinetobacter baumannii infections: Current evidence on treatment options and the role of pharmacokinetics/pharmacodynamics in dose optimisation. Int J Antimicrob Agents 2019; 53:726-745. [DOI: 10.1016/j.ijantimicag.2019.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
|
5
|
Intravenous minocycline in multidrug-resistant infections: a profile of its use in the USA with a focus on Acinetobacter infections. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
In Vitro Assessment of Combined Polymyxin B and Minocycline Therapy against Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae. Antimicrob Agents Chemother 2017; 61:AAC.00073-17. [PMID: 28438930 DOI: 10.1128/aac.00073-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/15/2017] [Indexed: 01/03/2023] Open
Abstract
The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination.
Collapse
|
7
|
Silva T, Grenho L, Barros J, Silva JC, Pinto RV, Matos A, Colaço B, Fernandes MH, Bettencourt A, Gomes PS. A minocycline-releasing PMMA system as a space maintainer for staged bone reconstructions-in vitro antibacterial, cytocompatibility and anti-inflammatory characterization. ACTA ACUST UNITED AC 2017; 12:035009. [PMID: 28333042 DOI: 10.1088/1748-605x/aa68b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present work, we study the development and biological characterization of a polymethyl methacrylate (PMMA)-based minocycline delivery system, to be used as a space maintainer within craniofacial staged regenerative interventions. The developed delivery systems were characterized regarding solid state characteristics and assayed in vitro for antibacterial and anti-inflammatory activity, and cytocompatibility with human bone cells. A drug release profile allowed for an initial burst release and a more sustained and controlled release over time, with minimum inhibitory concentrations for the assayed and relevant pathogenic bacteria (i.e., Staphylococcus aureus, slime-producer Staphylococcus epidermidis and Escherichia coli) being easily attained in the early time points, and sustained up to 72 h. Furthermore, an improved osteoblastic cell response-with enhancement of cell adhesion and cell proliferation-and increased anti-inflammatory activity were verified in developed systems, compared to a control (non minocycline-loaded PMMA cement). The obtained results converge to support the possible efficacy of the developed PMMA-based minocycline delivery systems for the clinical management of complex craniofacial trauma. Here, biomaterials with space maintenance properties are necessary for the management of staged reconstructive approaches, thus minimizing the risk of peri-operative infections and enhancing the local tissue healing and early stages of regeneration.
Collapse
Affiliation(s)
- Tiago Silva
- Laboratory for Bone Metabolism and Regeneration-Faculty of Dental Medicine, U. Porto-Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Intravenous minocycline (Minocin®) is approved in the USA for use in patients with infections due to susceptible strains of Gram-positive and Gram-negative pathogens, including infections due to Acinetobacter spp. Minocycline is a synthetic tetracycline derivative that was originally introduced in the 1960s. A new intravenous formulation of minocycline was recently approved and introduced to address the increasing prevalence of multidrug-resistant (MDR) pathogens. Minocycline shows antibacterial activity against A. baumannii clinical isolates worldwide, and exhibits synergistic bactericidal activity against MDR and extensively drug-resistant (XDR) A. baumannii isolates when combined with other antibacterial agents. In retrospective studies, intravenous minocycline provided high rates of clinical success or improvement and was generally well tolerated among patients with MDR or carbapenem-resistant A. baumannii infections. While randomized clinical trial data would be useful to fully establish the place of minocycline in the management of these infections for which there are currently very few available options, clinical trials in patients with infections due to Acinetobacter spp. are difficult to perform. Nevertheless, current data indicate a potential role for intravenous minocycline in the treatment of patients MDR A. baumannii infections, particularly when combined with a second antibacterial agent (e.g. colistin).
Collapse
Affiliation(s)
- Sarah L Greig
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Lesley J Scott
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
9
|
Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence 2016; 8:403-416. [PMID: 27384881 DOI: 10.1080/21505594.2016.1207834] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance has been identified by the World Health Organization as "one of the three greatest threats to human health." Gram negative bacteria in particular drive this alarming trend. Carbapenem-resistant Enterobacteriaceae (CRE) such as Escherichia coli, Klebsiella pneumoniae, and Enterobacter species are of particular importance as they are associated with poor clinical outcomes and are common causes for a variety of infections including bacteremia, urinary tract infection, intra-abdominal infections and pneumonia. CRE are difficult to treat as carbapenem resistance is often accompanied by resistance to additional drug classes. For example, CRE may be extensively drug resistant or even pandrug resistant. Unfortunately, CRE infections have increased over the past 15 y while new and effective antibiotics have not kept pace. Recently, however, new agents have become available to help treat CRE infection, and several more are under development. This article reviews the efficacy, safety, and pharmacokinetic issues around 4 emerging agents to treat CRE - ceftazidime-avibactam, fosfomycin, tigecycline, and minocycline. In addition, an overview of agents in the antibiotic pipeline - meropenem-vaborbactam, imipenem-relebactam, plazomicin, and eravacycline is provided. More established agents, such as those in the polymyxin class and aminoglycoside class (other than the pipeline agent plazomicin), are not addressed here.
Collapse
Affiliation(s)
- Joshua T Thaden
- a Division of Infectious Diseases , Duke University Medical Center , Durham , NC , USA
| | - Jason M Pogue
- b Department of Pharmacy , Sinai Grace Hospital, Detroit Medical Center , Detroit , MI , USA
| | - Keith S Kaye
- c Division of Infectious Diseases , Wayne State University, Detroit Medical Center , Detroit , MI , USA
| |
Collapse
|
10
|
Colton B, McConeghy KW, Schreckenberger PC, Danziger LH. I.V. minocycline revisited for infections caused by multidrug-resistant organisms. Am J Health Syst Pharm 2016; 73:279-85. [DOI: 10.2146/ajhp150290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Ritchie DJ, Garavaglia-Wilson A. A review of intravenous minocycline for treatment of multidrug-resistant Acinetobacter infections. Clin Infect Dis 2015; 59 Suppl 6:S374-80. [PMID: 25371513 DOI: 10.1093/cid/ciu613] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Options for treatment of multidrug-resistant (MDR) Acinetobacter baumannii infections are extremely limited. Minocycline intravenous is active against many MDR strains of Acinetobacter, and Clinical and Laboratory Standards Institute breakpoints exist to guide interpretation of minocycline susceptibility results with Acinetobacter. In addition, minocycline intravenous holds a US Food and Drug Administration indication for treatment of infections caused by Acinetobacter. There is an accumulating amount of literature reporting successful use of minocycline intravenous for treatment of serious MDR Acinetobacter infections, particularly for nosocomial pneumonia. These results, coupled with the generally favorable tolerability of minocycline intravenous, support its use as a viable therapeutic option for treatment of MDR Acinetobacter infections.
Collapse
Affiliation(s)
- David J Ritchie
- Department of Pharmacy, Barnes-Jewish Hospital Pharmacy Practice Department, St Louis College of Pharmacy
| | - Alexandria Garavaglia-Wilson
- Pharmacy Practice Department, St Louis College of Pharmacy Infectious Diseases Clinic, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
12
|
Falagas ME, Vardakas KZ, Kapaskelis A, Triarides NA, Roussos NS. Tetracyclines for multidrug-resistant Acinetobacter baumannii infections. Int J Antimicrob Agents 2015; 45:455-60. [PMID: 25801348 DOI: 10.1016/j.ijantimicag.2014.12.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii infections have emerged as a serious threat worldwide. As novel agents have yet to be developed, understanding the effectiveness and safety of older antibiotics has become a priority. The purpose of this systematic review was to summarise the available clinical evidence on the use of tetracyclines for the treatment of A. baumannii infections. Ten retrospective studies regarding doxycycline and minocycline for the treatment of 185 A. baumannii infections (of which 65.4% were respiratory infections and 13% were bloodstream infections) in 156 patients were available. In most cases (86.4%), tetracyclines were administered in combination with another agent. The usual dosage of doxycycline or minocycline was 100mg intravenous or per os twice daily (usually with a 200mg loading dose for minocycline). Clinical success was achieved in 120 (76.9%) of 156 patients; in 87 (71.9%) of 121 respiratory infections and in 21 (87.5%) of 24 bloodstream infections. Twenty-two deaths occurred in 100 recorded cases. Microbiological eradication was attained in 72 (71.3%) of 101 available cases and documented microbiological eradication was reached in 59 (66.3%) of 89 available cases. Adverse events were noted in only 1 of 88 cases. Overall, although tetracycline-containing regimens showed encouraging results, more data from larger comparative trials are required to establish a role for these antibiotics in the treatment of MDR A. baumannii infections.
Collapse
Affiliation(s)
- Matthew E Falagas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Internal Medicine-Infectious Diseases, Iaso General Hospital, Athens, Greece; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| | - Konstantinos Z Vardakas
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Internal Medicine-Infectious Diseases, Iaso General Hospital, Athens, Greece
| | - Anastasios Kapaskelis
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Internal Medicine-Infectious Diseases, Iaso General Hospital, Athens, Greece
| | - Nikolaos A Triarides
- Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece; Department of Internal Medicine-Infectious Diseases, Iaso General Hospital, Athens, Greece
| | | |
Collapse
|