1
|
Park SH, Tsuzuki S, Contino KF, Ollodart J, Eber MR, Yu Y, Steele LR, Inaba H, Kamata Y, Kimura T, Coleman I, Nelson PS, Muñoz-Islas E, Jiménez-Andrade JM, Martin TJ, Mackenzie KD, Stratton JR, Hsu FC, Peters CM, Shiozawa Y. Crosstalk between bone metastatic cancer cells and sensory nerves in bone metastatic progression. Life Sci Alliance 2024; 7:e202302041. [PMID: 39266299 PMCID: PMC11393574 DOI: 10.26508/lsa.202302041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Although the role of peripheral nerves in cancer progression has been appreciated, little is known regarding cancer/sensory nerve crosstalk and its contribution to bone metastasis and associated pain. In this study, we revealed that the cancer/sensory nerve crosstalk plays a crucial role in bone metastatic progression. We found that (i) periosteal sensory nerves expressing calcitonin gene-related peptide (CGRP) are enriched in mice with bone metastasis; (ii) cancer patients with bone metastasis have elevated CGRP serum levels; (iii) bone metastatic patient tumor samples express elevated calcitonin receptor-like receptor (CRLR, a CGRP receptor component); (iv) higher CRLR levels in cancer patients are negatively correlated with recurrence-free survival; (v) CGRP induces cancer cell proliferation through the CRLR/p38/HSP27 pathway; and (vi) blocking sensory neuron-derived CGRP reduces cancer cell proliferation in vitro and bone metastatic progression in vivo. This suggests that CGRP-expressing sensory nerves are involved in bone metastatic progression and that the CGRP/CRLR axis may serve as a potential therapeutic target for bone metastasis.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shunsuke Tsuzuki
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Kelly F Contino
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jenna Ollodart
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yang Yu
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laiton R Steele
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hiroyuki Inaba
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Department of Oncology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | | | - Thomas J Martin
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Fang-Chi Hsu
- Department of Biostatistics and Data Science Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Wang W, Gong Z, Wang K, Tian M, Zhang Y, Li X, You X, Wu J. Activation of the BMP2-SMAD1-CGRP pathway in dorsal root ganglia contributes to bone cancer pain in a rat model. Heliyon 2024; 10:e27350. [PMID: 38496903 PMCID: PMC10944225 DOI: 10.1016/j.heliyon.2024.e27350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Peripheral nerve remodeling and sensitization are involved in cancer-related bone pain. As a member of the transforming growth factor-β class, bone morphogenetic protein 2 (BMP2) is recognized to have a role in the development of the neurological and skeletal systems. Our previous work showed that BMP2 is critical for bone cancer pain (BCP) sensitization. However, the mechanism remains unknown. In the current study, we demonstrated a substantial increase in BMP2 expression in the dorsal root ganglia (DRG) in a rat model of BCP. Knockdown of BMP2 expression ameliorated BCP in rats. Furthermore, the DRG neurons of rats with BCP expressed higher levels of calcitonin gene-related peptide (CGRP), and BCP was successfully suppressed by intrathecal injection of a CGRP receptor blocker (CGRP8-37). Downregulation of BMP2 expression reduced the expression of CGRP in the DRG of rats with BCP and relieved pain behavior. Moreover, we revealed that upregulation of CGRP expression in the DRG may be induced by activation of the BMPR/Smad1 signaling pathway. These findings suggest that BMP2 contributes to BCP by upregulating CGRP in DRG neurons via activating BMPR/Smad1 signaling pathway and that therapeutic targeting of the BMP2-Smad1-CGRP pathway may ameliorate BCP in the context of advanced cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Zhihao Gong
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Mi Tian
- Department of Intensive Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| | - Xin Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China
| |
Collapse
|
3
|
Xie S, Gao Z, Zhang J, Xing C, Dong Y, Wang L, Wang Z, Li Y, Li G, Han G, Gong T. Monoclonal Antibody Targeting CGRP Relieves Cisplatin-Induced Neuropathic Pain by Attenuating Neuroinflammation. Neurotox Res 2024; 42:8. [PMID: 38194189 DOI: 10.1007/s12640-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Chemotherapy-induced neuropathic pain (CIPN) is a common side effect of antitumor chemotherapeutic agents. It describes a pathological state of pain related to the cumulative dosage of the drug, significantly limiting the efficacy of antitumor treatment. Sofas strategies alleviating CIPN still lack. Calcitonin gene-related peptide (CGRP) is a neuropeptide involved in many pathologic pains. In this study, we explored the effects of CGRP blocking on CIPN and potential mechanisms. Total dose of 20.7 mg/kg cisplatin was used to establish a CIPN mouse model. Mechanical and thermal hypersensitivity was measured using von Frey hairs and tail flick test. Western blot and immunofluorescence were utilized to evaluate the levels of CGRP and activated astrocytes in mouse spinal cord, respectively. In addition, real-time quantitative PCR (RT-qPCR) was used to detect the level of inflammatory cytokines such as IL-6, IL-1β, and NLRP3 in vitro and in vivo. There are markedly increased CGRP expression and astrocyte activation in the spinal cord of mice following cisplatin treatment. Pretreatment with a monoclonal antibody targeting CGRP (ZR8 mAb) effectively reduced cisplatin-induced mechanical hypersensitivity and thermal nociceptive sensitization and attenuated neuroinflammation as marked by downregulated expression of IL-6, IL-1β, and NLRP3 in the mice spinal cord and spleen. Lastly, ZR8 mAb does not interfere with the antitumor effects of cisplatin in tumor-bearing mice. Our findings indicate that neutralizing CGRP with monoclonal antibody could effectively alleviate CIPN by attenuating neuroinflammation. CGRP is a promising therapeutic target for CIPN.
Collapse
Affiliation(s)
- Shun Xie
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Zhenfang Gao
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Cong Xing
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Medicine, Henan University, Kaifeng, 475004, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Lanyin Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Zhiding Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Yuxiang Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, 100048, China.
| | - Taiqian Gong
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, 230032, China.
- Department of Thoracic Surgery, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
4
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
5
|
Fila M, Sobczuk A, Pawlowska E, Blasiak J. Epigenetic Connection of the Calcitonin Gene-Related Peptide and Its Potential in Migraine. Int J Mol Sci 2022; 23:ijms23116151. [PMID: 35682830 PMCID: PMC9181031 DOI: 10.3390/ijms23116151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The calcitonin gene-related peptide (CGRP) is implicated in the pathogenesis of several pain-related syndromes, including migraine. Targeting CGRP and its receptor by their antagonists and antibodies was a breakthrough in migraine therapy, but the need to improve efficacy and limit the side effects of these drugs justify further studies on the regulation of CGRP in migraine. The expression of the CGRP encoding gene, CALCA, is modulated by epigenetic modifications, including the DNA methylation, histone modification, and effects of micro RNAs (miRNAs), circular RNAs, and long-coding RNAs (lncRNAs). On the other hand, CGRP can change the epigenetic profile of neuronal and glial cells. The promoter of the CALCA gene has two CpG islands that may be specifically methylated in migraine patients. DNA methylation and lncRNAs were shown to play a role in the cell-specific alternative splicing of the CALCA primary transcript. CGRP may be involved in changes in neural cytoarchitecture that are controlled by histone deacetylase 6 (HDAC6) and can be related to migraine. Inhibition of HDAC6 results in reduced cortical-spreading depression and a blockade of the CGRP receptor. CGRP levels are associated with the expression of several miRNAs in plasma, making them useful peripheral markers of migraine. The fundamental role of CGRP in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of CGRP should be further explored for efficient and safe antimigraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
6
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Abstract
Recent decades have demonstrated significant strides in cancer screening, diagnostics and therapeutics. As such there have been dramatic changes in survival following a diagnosis of cancer.
Collapse
Affiliation(s)
- Matthew R D Brown
- The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | | | - David J Magee
- The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK.
| |
Collapse
|
8
|
Sun C, An Q, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 2021; 27:1409-1424. [PMID: 34397151 PMCID: PMC8504526 DOI: 10.1111/cns.13720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Calcitonin gene‐related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. Methods Astroglial cells (C6) were treated with CGRP and differentially enrichments of H3K9ac on gene promoters were examined using ChIP‐seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on astrocyte activation and H3K9ac signaling in CCI‐induced neuropathic pain. Specific inhibitors were employed to delineate the involved signaling. Results Intrathecal injection of CGRP and CCI increased the number of astrocytes displaying H3K9ac in the spinal dorsal horn of rats. Treatment of CGRP was able to up‐regulate H3K9ac and glial fibrillary acidic protein (GFAP) expression in astroglial cells. ChIP‐seq data indicated that CGRP significantly altered H3K9ac enrichments on gene promoters in astroglial cells following CGRP treatment, including 151 gaining H3K9ac and 111 losing this mark, which mostly enriched in proliferation, autophagy, and macrophage chemotaxis processes. qRT‐PCR verified expressions of representative candidate genes (ATG12, ATG4C, CX3CR1, MMP28, MTMR14, HMOX1, RET) and RTCA verified astrocyte proliferation. Additionally, CGRP treatment increased the expression of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn. CGRP antagonist and HAT inhibitor attenuated mechanical and thermal hyperalgesia in CCI rats. Such analgesic effects were concurrently associated with the reduced levels of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn of CCI rats. Conclusion Our findings highly indicate that CGRP is associated with the development of neuropathic pain through astrocytes‐mediated neuroinflammatory responses via H3K9ac in spinal dorsa horn following nerve injury. This study found that CGRP act on their astrocytic receptors and lead to H3K9 acetylation (H3K9ac), which are mainly associated with proliferation‐, autophagy‐, and inflammation‐related gene expression. The number of astrocytes with H3K9ac expression is increased after nerve injury. Inhibition of CGRP attenuates the development of neuropathic pain, which was accompanied by the suppression of H3K9ac, CX3CR1, and IL‐1β expression in CCI rats.
Collapse
Affiliation(s)
- Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
9
|
An Q, Sun C, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 2021; 18:117. [PMID: 34020664 PMCID: PMC8139106 DOI: 10.1186/s12974-021-02168-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. METHODS Microglial cells (BV2) were treated with CGRP and differentially enrichments of H3K27me3 on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on microglial activation and EZH2/H3K27me3 signaling in CCI-induced neuropathic pain. RESULTS Overexpressions of EZH2 and H3K27me3 were confirmed in spinal microglia of CCI rats by immunofluorescence. CGRP treatment induced the increased of H3K27me3 expression in the spinal dorsal horn and cultured microglial cells (BV2) through EZH2. ChIP-seq data indicated that CGRP significantly altered H3K27me3 enrichments on gene promoters in microglia following CGRP treatment, including 173 gaining H3K27me3 and 75 losing this mark, which mostly enriched in regulation of cell growth, phagosome, and inflammation. qRT-PCR verified expressions of representative candidate genes (TRAF3IP2, BCL2L11, ITGAM, DAB2, NLRP12, WNT3, ADAM10) and real-time cell analysis (RTCA) verified microglial proliferation. Additionally, CGRP treatment and CCI increased expressions of ITGAM, ADAM10, MCP-1, and CX3CR1, key mediators of microglial activation in spinal dorsal horn and cultured microglial cells. Such increased effects induced by CCI were suppressed by CGRP antagonist and EZH2 inhibitor, which were concurrently associated with the attenuated mechanical and thermal hyperalgesia in CCI rats. CONCLUSION Our findings highly indicate that CGRP is implicated in the genesis of neuropathic pain through regulating microglial activation via EZH2-mediated H3K27me3 in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
10
|
Kronschläger MT, Siegert ASM, Resch FJ, Rajendran PS, Khakh BS, Sandkühler J. Lamina-specific properties of spinal astrocytes. Glia 2021; 69:1749-1766. [PMID: 33694249 PMCID: PMC8252791 DOI: 10.1002/glia.23990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Astrocytes are indispensable for proper neuronal functioning. Given the diverse needs of neuronal circuits and the variety of tasks astrocytes perform, the perceived homogeneous nature of astrocytes has been questioned. In the spinal dorsal horn, complex neuronal circuitries regulate the integration of sensory information of different modalities. The dorsal horn is organized in a distinct laminar manner based on termination patterns of high‐ and low‐threshold afferent fibers and neuronal properties. Neurons in laminae I (L1) and II (L2) integrate potentially painful, nociceptive information, whereas neurons in lamina III (L3) and deeper laminae integrate innocuous, tactile information from the periphery. Sensory information is also integrated by an uncharacterized network of astrocytes. How these lamina‐specific characteristics of neuronal circuits of the dorsal horn are of functional importance for properties of astrocytes is currently unknown. We addressed if astrocytes in L1, L2, and L3 of the upper dorsal horn of mice are differentially equipped for the needs of neuronal circuits that process sensory information of different modalities. We found that astrocytes in L1 and L2 were characterized by a higher density, higher expression of GFAP, Cx43, and GLAST and a faster coupling speed than astrocytes located in L3. L1 astrocytes were more responsive to Kir4.1 blockade and had higher levels of AQP4 compared to L3 astrocytes. In contrast, basic membrane properties, network formation, and somatic intracellular calcium signaling were similar in L1–L3 astrocytes. Our data indicate that the properties of spinal astrocytes are fine‐tuned for the integration of nociceptive versus tactile information.
Collapse
Affiliation(s)
- Mira T Kronschläger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Anna S M Siegert
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Felix J Resch
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol Lett 2020; 20:253. [PMID: 32994816 PMCID: PMC7509602 DOI: 10.3892/ol.2020.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Nerves have been widely demonstrated to exert major effects in tumor-associated microenvironments. Due to the characteristic innervation of the oral cavity and the fact that cancer-associated pain is a distinct feature of oral squamous cell carcinoma (OSCC), the sensory nerves may dominate in the OSCC-nerve microenvironment. As the most abundant neuropeptide in the trigeminal ganglion, the calcitonin gene-related peptide (CGRP) exerts a dual effect on cancer development and cancer-associated pain in various types of cancer. The present review explored the potential molecular mechanisms of the roles of CGRP in cancer development and cancer-associated pain, suggesting that CGRP may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
12
|
Thai J, Kyloh M, Travis L, Spencer NJ, Ivanusic JJ. Identifying spinal afferent (sensory) nerve endings that innervate the marrow cavity and periosteum using anterograde tracing. J Comp Neurol 2020; 528:1903-1916. [PMID: 31970770 DOI: 10.1002/cne.24862] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/04/2023]
Abstract
While sensory and sympathetic neurons are known to innervate bone, previous studies have found it difficult to unequivocally identify and characterize only those that are of sensory origin. In this study, we have utilized an in vivo anterograde tracing technique to selectively label spinal afferent (sensory) nerve endings that innervate the periosteum and marrow cavity of murine long bones. Unilateral injections of dextran-biotin (anterograde tracer; 20% in saline, 50-100 nl) were made into L3-L5 dorsal root ganglia. After a 10-day recovery period to allow sufficient time for selective anterograde transport of the tracer to nerve terminal endings in bone, the periosteum (whole-mount) and underlying bone were collected, processed to reveal anterograde labeling, and immuno-labeled with antibodies directed against protein gene product (pan-neuronal marker; PGP9.5), tyrosine hydroxylase (sympathetic neuron marker; TH), calcitonin gene-related protein (peptidergic nociceptor marker; CGRP), and/or neurofilament 200 (myelinated axon marker; NF200). Anterograde-labeled nerve endings were dispersed throughout the periosteum and marrow cavity and could be identified in close apposition to blood vessels and at sites distant from them. The periosteum and the marrow cavity were each innervated by myelinated (NF200+) sensory neurons, and unmyelinated (NF200-) sensory neurons that were either peptidergic (CGRP+) or nonpeptidergic (CGRP-). Spinal afferent nerve endings did not express TH, and lacked the cylindrical morphology around blood vessels characteristic of sympathetic innervation. This approach to selective labeling of sensory nerve terminal endings will help to better identify how different sub-populations of sensory neurons, and their peripheral nerve terminal endings, interact with bone.
Collapse
Affiliation(s)
- Jenny Thai
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Melinda Kyloh
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Lee Travis
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Zhang Q, Guo Y, Chen H, Jiang Y, Tang H, Gong P, Xiang L. The influence of receptor activity–modifying protein‐1 overexpression on angiogenesis in mouse brain capillary endothelial cells. J Cell Biochem 2018; 120:10087-10096. [PMID: 30556185 DOI: 10.1002/jcb.28292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Huilu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Haiyang Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
14
|
Vellucci R, Terenzi R, Kanis JA, Kress HG, Mediati RD, Reginster JY, Rizzoli R, Brandi ML. Understanding osteoporotic pain and its pharmacological treatment. Osteoporos Int 2018; 29:1477-1491. [PMID: 29619540 DOI: 10.1007/s00198-018-4476-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Osteoporosis, a disorder that affects millions of people worldwide, is characterized by decreased bone mass and microstructural alterations giving rise to an increased risk of fractures. Osteoporotic fractures can cause acute and chronic pain that mainly affects elderly patients with multiple comorbidities and commonly on different drug regimens. The aim of this paper is to summarize the pathogenesis and systemic treatment of osteoporotic pain. This narrative review summarizes the main pathogenetic aspects of osteoporotic pain and the cornerstones of its treatment. Osteoporotic fractures induce both acute and chronic nociceptive and neuropathic pain. Central sensitization seems to play a pivotal role in developing and maintaining chronicity of post-fracture pain in osteoporosis. Antiosteoporosis drugs are able to partially control pain, but additional analgesics are always necessary for pain due to bone fractures. Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors reduce acute pain but with a poor effect on the chronic neuropathic component of pain and with relevant side effects. Opioid drugs can control the whole spectrum of acute and chronic bone pain, but they differ with respect to their efficacy on neuropathic components, their tolerability and safety. Chronic pain after osteoporotic fractures requires a multifaceted approach, which includes a large spectrum of drugs (antiosteoporosis treatment, acetaminophen, NSAIDs, selective COX-2 inhibitors, weak and strong opioids) and non-pharmacological treatment. Based on a better understanding of the pathogenesis of osteoporotic and post-fracture pain, a guided stepwise approach to post-fracture osteoporotic pain will also better meet the needs of these patients.
Collapse
Affiliation(s)
- R Vellucci
- Palliative Care and Pain Therapy Unit, University Hospital of Careggi, Florence, Italy
| | - R Terenzi
- Department of Surgery and Translational Medicine, University of Florence, AOU Careggi Largo Brambilla n.3, 50134, Florence, Italy
| | - J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, UK
- Institute for Health and Ageing, Catholic University of Australia, Melbourne, Australia
| | - H G Kress
- Department of Special Anaesthesia and Pain Medicine, Medical University/AKH of Vienna, Vienna, Austria
| | - R D Mediati
- Palliative Care and Pain Therapy Unit, University Hospital of Careggi, Florence, Italy
| | | | - R Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| | - M L Brandi
- Department of Surgery and Translational Medicine, University of Florence, AOU Careggi Largo Brambilla n.3, 50134, Florence, Italy.
| |
Collapse
|
15
|
Hu W, He T, Huo Y, Hong Y. Involvement of Adrenomedullin in Bone Cancer Pain in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.601.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
A Novel Model of Cancer-Induced Peripheral Neuropathy and the Role of TRPA1 in Pain Transduction. Pain Res Manag 2017; 2017:3517207. [PMID: 30510606 PMCID: PMC6232795 DOI: 10.1155/2017/3517207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Background Models of cancer-induced neuropathy are designed by injecting cancer cells near the peripheral nerves. The interference of tissue-resident immune cells does not allow a direct contact with nerve fibres which affects the tumor microenvironment and the invasion process. Methods Anaplastic tumor-1 (AT-1) cells were inoculated within the sciatic nerves (SNs) of male Copenhagen rats. Lumbar dorsal root ganglia (DRGs) and the SNs were collected on days 3, 7, 14, and 21. SN tissues were examined for morphological changes and DRG tissues for immunofluorescence, electrophoretic tendency, and mRNA quantification. Hypersensitivities to cold, mechanical, and thermal stimuli were determined. HC-030031, a selective TRPA1 antagonist, was used to treat cold allodynia. Results Nociception thresholds were identified on day 6. Immunofluorescent micrographs showed overexpression of TRPA1 on days 7 and 14 and of CGRP on day 14 until day 21. Both TRPA1 and CGRP were coexpressed on the same cells. Immunoblots exhibited an increase in TRPA1 expression on day 14. TRPA1 mRNA underwent an increase on day 7 (normalized to 18S). Injection of HC-030031 transiently reversed the cold allodynia. Conclusion A novel and a promising model of cancer-induced neuropathy was established, and the role of TRPA1 and CGRP in pain transduction was examined.
Collapse
|
17
|
Brown M, Farquhar-Smith P. Pain in cancer survivors; filling in the gaps. Br J Anaesth 2017; 119:723-736. [DOI: 10.1093/bja/aex202] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Ivanusic JJ. Molecular Mechanisms That Contribute to Bone Marrow Pain. Front Neurol 2017; 8:458. [PMID: 28955292 PMCID: PMC5601959 DOI: 10.3389/fneur.2017.00458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022] Open
Abstract
Pain associated a bony pathology puts a significant burden on individuals, society, and the health-care systems worldwide. Pathology that involves the bone marrow activates sensory nerve terminal endings of peripheral bone marrow nociceptors, and is the likely trigger for pain. This review presents our current understanding of how bone marrow nociceptors are influenced by noxious stimuli presented in pathology associated with bone marrow. A number of ion channels and receptors are emerging as important modulators of the activity of peripheral bone marrow nociceptors. Nerve growth factor (NGF) sequestration has been trialed for the management of inflammatory bone pain (osteoarthritis), and there is significant evidence for interaction of NGF with bone marrow nociceptors. Activation of transient receptor potential cation channel subfamily V member 1 sensitizes bone marrow nociceptors and could contribute to increased sensitivity of patients to noxious stimuli in various bony pathologies. Acid-sensing ion channels sense changes to tissue pH in the bone marrow microenvironment and could be targeted to treat pathology that involves acidosis of the bone marrow. Piezo2 is a mechanically gated ion channel that has recently been reported to be expressed by most myelinated bone marrow nociceptors and might be a target for treatments directed against mechanically induced bone pain. These ion channels and receptors could be useful targets for the development of peripherally acting drugs to treat pain of bony origin.
Collapse
Affiliation(s)
- Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody. J Neurosci 2017. [PMID: 28642283 DOI: 10.1523/jneurosci.0576-17.2017] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large body of evidence supports an important role for calcitonin gene-related peptide (CGRP) in migraine pathophysiology. This evidence gave rise to a global effort to develop a new generation of therapeutics that inhibit the interaction of CGRP with its receptor in migraineurs. Recently, a new class of such drugs, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs), were found to be effective in reducing the frequency of migraine. The purpose of this study was to better understand how the CGRP-mAb fremanezumab (TEV-48125) modulates meningeal sensory pathways. To answer this question, we used single-unit recording to determine the effects of fremanezumab (30 mg/kg, IV) and its isotype control Ab on spontaneous and evoked activity in naive and cortical spreading depression (CSD)-sensitized trigeminovascular neurons in the spinal trigeminal nucleus of anesthetized male and female rats. The study demonstrates that, in both sexes, fremanezumab inhibited naive high-threshold (HT) neurons, but not wide-dynamic range trigeminovascular neurons, and that the inhibitory effects on the neurons were limited to their activation from the intracranial dura but not facial skin or cornea. In addition, when given sufficient time, fremanezumab prevents the activation and sensitization of HT neurons by CSD. Mechanistically, these findings suggest that HT neurons play a critical role in the initiation of the perception of headache and the development of cutaneous allodynia and central sensitization. Clinically, the findings may help to explain the therapeutic benefit of CGRP-mAb in reducing headaches of intracranial origin such as migraine with aura and why this therapeutic approach may not be effective for every migraine patient.SIGNIFICANCE STATEMENT Calcitonin gene-related peptide (CGRP) monoclonal antibodies (CGRP-mAbs) are capable of preventing migraine. However, their mechanism of action is unknown. In the current study, we show that, if given enough time, a CGRP-mAb can prevent the activation and sensitization of high-threshold (central) trigeminovascular neurons by cortical spreading depression, but not their activation from the skin or cornea, suggesting a potential explanation for selectivity to migraine headache, but not other pains, and a predominantly peripheral site of action.
Collapse
|
20
|
Diener SA, Breimhorst M, Vogt T, Krämer HH, Drummond PD, Geber C, Birklein F. Differential effect of Incobotulinumtoxin A on pain, neurogenic flare and hyperalgesia in human surrogate models of neurogenic pain. Eur J Pain 2017; 21:1326-1335. [PMID: 28440002 DOI: 10.1002/ejp.1031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The effectiveness of Botulinum-neurotoxin A (BoNT/A) to treat pain in human pain models is very divergent. This study was conducted to clarify if the pain models or the route of BoNT/A application might be responsible for these divergent findings. METHODS Sixteen healthy subjects (8 males, mean age 27 ± 5 years) were included in a first set of experiments consisting of three visits: (1) Visit: Quantitative sensory testing (QST) was performed before and after intradermal capsaicin injection (CAPS, 15 μg) on one thigh and electrical current stimulation (ES, 1 Hz) on the contralateral thigh. During stimulation pain and the neurogenic flare response (laser-Doppler imaging) were assessed. (2) Four weeks later, BoNT/A (Xeomin® , 25 MU) was injected intracutaneously on both sides. (3) Seven days later, the area of BoNT/A application was determined by the iodine-starch staining and the procedure of the (1) visit was exactly repeated. In consequence of these results, 8 healthy subjects (4 males, mean age 26 ± 3 years) were included into a second set of experiments. The experimental setting was exactly the same with the exception that stimulation frequency of ES was increased to 4 Hz and BoNT/A was injected subcutaneously into the thigh, which was stimulated by capsaicin. RESULTS BoNT/A reduced the 1 Hz ES flare size (p < 0.001) and pain ratings (p < 0.01), but had no effect on 4 Hz ES and capsaicin-induced pain, hyperalgesia, or flare size, regardless of the depth of BoNT/A injection (i.c./s.c). Moreover, i.c. BoNT/A injection significantly increased warm detection and heat pain thresholds in naive skin (WDT, Δ 2.2 °C, p < 0.001; HPT Δ 1.8 °C, p < 0.005). CONCLUSION BoNT/A has a moderate inhibitory effect on peptidergic and thermal C-fibers in healthy human skin. SIGNIFICANCE The study demonstrates that BoNT/A (Incobotulinumtoxin A) has differential effects in human pain models: It reduces the neurogenic flare and had a moderate analgesic effects in low frequency but not high frequency current stimulation of cutaneous afferent fibers at C-fiber strength; BoNT/A had no effect in capsaicin-induced (CAPS) neurogenic flare or pain, or on hyperalgesia to mechanical or heat stimuli in both pain models. Intracutaneous BoNT/A increases warm and heat pain thresholds on naïve skin.
Collapse
Affiliation(s)
- S A Diener
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.,Department of Neurology, Kantonsspital St. Gallen, Switzerland
| | - M Breimhorst
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Th Vogt
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - H H Krämer
- Department of Neurology, Justus-Liebig University Gießen, Germany
| | - P D Drummond
- School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| | - C Geber
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.,DRK Schmerz-Zentrum Mainz, Germany
| | - F Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.,School of Psychology and Exercise Science, Murdoch University, Perth, WA, Australia
| |
Collapse
|
21
|
Cornelison LE, Hawkins JL, Durham PL. Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons. Neuroscience 2016; 339:491-501. [PMID: 27746346 DOI: 10.1016/j.neuroscience.2016.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
Abstract
Orofacial pain conditions including temporomandibular disorder (TMD) and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. The goal of this study was to investigate the role of calcitonin gene-related peptide (CGRP) in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary nociceptive neurons. Adult male Sprague-Dawley rats were injected intercisternally with CGRP or co-injected with the receptor antagonist CGRP8-37 or KT 5720, a protein kinase A (PKA) inhibitor. Nocifensive head withdrawal response to mechanical stimulation was investigated using von Frey filaments. Expression of PKA, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the spinal cord and phosphorylated extracellular signal-regulated kinase (P-ERK) in the ganglion was studied using immunohistochemistry. Some animals were co-injected with CGRP and Fast Blue dye and the ganglion was imaged using fluorescent microscopy. CGRP increased nocifensive responses to mechanical stimulation when compared to control. Co-injection of CGRP8-37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated PKA and GFAP expression in the spinal cord, and P-ERK in ganglion neurons. Seven days post injection, Fast Blue was observed in ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that facilitate increased neuron-glia communication within the ganglion associated with trigeminal sensitization.
Collapse
Affiliation(s)
- Lauren E Cornelison
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | - Jordan L Hawkins
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA
| | - Paul L Durham
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA.
| |
Collapse
|
22
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK. Targeting glia for bone cancer pain. Expert Opin Ther Targets 2016; 20:1365-1374. [PMID: 27428617 DOI: 10.1080/14728222.2016.1214716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bone cancer pain (BCP) remains to be a clinical challenge with limited pharmaceutical interventions. Therefore, novel therapeutic targets for the management of BCP are in desperate need. Recently, a growing body of evidence has suggested that glial cells may play a pivotal role in the pathogenesis of BCP. Areas covered: This review summarizes the recent progress in the understanding of glia in BCP and reveals the potential therapeutic targets in glia for BCP treatment. Expert opinion: Pharmacological interventions inhibiting the activation of glial cells, suppressing glia-derived proinflammatory cytokines, cell surface receptors, and the intracellular signaling pathways may be beneficial for the pain management of advanced cancer patients. However, these pharmacological interventions should not disrupt the normal function of glia cells since they play a vital supportive and protective role in the central nervous system.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- c Department of Urology , Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Hui-Quan Liu
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Qiang Liu
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Shu-Ping Chen
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Da-Wei Ye
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Yu-Ke Tian
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
24
|
Nencini S, Ivanusic JJ. The Physiology of Bone Pain. How Much Do We Really Know? Front Physiol 2016; 7:157. [PMID: 27199772 PMCID: PMC4844598 DOI: 10.3389/fphys.2016.00157] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
Pain is associated with most bony pathologies. Clinical and experimental observations suggest that bone pain can be derived from noxious stimulation of the periosteum or bone marrow. Sensory neurons are known to innervate the periosteum and marrow cavity, and most of these have a morphology and molecular phenotype consistent with a role in nociception. However, little is known about the physiology of these neurons, and therefore information about mechanisms that generate and maintain bone pain is lacking. The periosteum has received greater attention relative to the bone marrow, reflecting the easier access of the periosteum for experimental assessment. With the electrophysiological preparations used, investigators have been able to record from single periosteal units in isolation, and there is a lot of information available about how they respond to different stimuli, including those that are noxious. In contrast, preparations used to study sensory neurons that innervate the bone marrow have been limited to recording multi-unit activity in whole nerves, and whilst they clearly report responses to noxious stimulation, it is not possible to define responses for single sensory neurons that innervate the bone marrow. There is only limited evidence that peripheral sensory neurons that innervate bone can be sensitized or that they can be activated by multiple stimulus types, and at present this only exists in part for periosteal units. In the central nervous system, it is clear that spinal dorsal horn neurons can be activated by noxious stimuli applied to bone. Some can be sensitized under pathological conditions and may contribute in part to secondary or referred pain associated with bony pathology. Activity related to stimulation of sensory nerves that innervate bone has also been reported in neurons of the spinoparabrachial pathway and the somatosensory cortices, both known for roles in coding information about pain. Whilst these provide some clues as to the way information about bone pain is centrally coded, they need to be expanded to further our understanding of other central territories involved. There is a lot more to learn about the physiology of peripheral sensory neurons that innervate bone and their central projections.
Collapse
Affiliation(s)
- Sara Nencini
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|