1
|
Ocay DD, Lobo K, Kim A, Halpin M, Berde CB. Development and validation of a home quantitative sensory testing tool-kit to assess changes in sensory and pain processing: a study in healthy young adults. Pain 2024:00006396-990000000-00647. [PMID: 38981069 DOI: 10.1097/j.pain.0000000000003320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
ABSTRACT Quantitative sensory testing (QST) is a set of methods for quantifying somatosensory functioning. Limitations of laboratory-based QST (LQST) include high cost, complexity in training, lack of portability, and time requirements for testing. Translating QST to a home setting could facilitate future research and clinical care. The objective of this study was to develop a home QST (HQST) tool-kit that is cost-effective, easy to use, and detects changes in sensory and pain processing. Thirty-two young healthy adults underwent sensory testing on their nondominant forearm using standard in-person LQST, followed by "simulated HQST" using video guidance in a separate room from the investigator before and after application of either a lidocaine or capsaicin cream. We observed good agreement between HQST and LQST scores, with significant correlations observed between the pinprick, pressure, cold and heat measures (|ρ| range = 0.36-0.54). The participants rated the HQST protocol as highly acceptable and safe but can be improved in future implementations. Home QST was able to detect hypoesthesia to vibration after lidocaine cream application (P = 0.024, d = 0.502) and could detect hypoalgesia and hyperalgesia to pressure and heat pain sensitivity tests after application of lidocaine and capsaicin creams, respectively (P-value range = <0.001-0.036, d-value range = 0.563-0.901). Despite limitations, HQST tool-kits may become a cost-effective, convenient, and scalable approach for improving sensory profiling in clinical care and clinical research.
Collapse
Affiliation(s)
- Don Daniel Ocay
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Kimberly Lobo
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Angela Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Meghan Halpin
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Charles B Berde
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Multifocal tDCS Targeting the Motor Network Modulates Event-Related Cortical Responses During Prolonged Pain. THE JOURNAL OF PAIN 2023; 24:226-236. [PMID: 36162791 DOI: 10.1016/j.jpain.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023]
Abstract
Multifocal transcranial direct current stimulation (tDCS) targeting several brain regions is promising for inducing cortical plasticity. It remains unknown whether multifocal tDCS aimed at the resting-state motor network (network-tDCS) can revert N2-P2 cortical responses otherwise attenuated during prolonged experimental pain. Thirty-eight healthy subjects participated in 2 sessions separated by 24 hours (Day1, Day2) of active (n = 19) or sham (n = 19) network-tDCS. Experimental pain induced by topical capsaicin was maintained for 24 hours and assessed using a numerical rating scale. Electrical detection and pain thresholds, and N2-P2 evoked potentials (electroencephalography) to noxious electrical stimulation were recorded before capsaicin-induced pain (Day1-baseline), after capsaicin application (Day1-post-cap), and after 2 sessions of network-tDCS (Day2). Capsaicin induced moderate pain at Day1-post-cap, which further increased at Day2 in both groups (P = .01). Electrical detection/pain thresholds did not change over time. N2-P2 responses were reduced on Day1-post-cap compared to Day1-baseline (P = .019). At Day2 compared with Day1-post-cap, N2-P2 responses were significantly higher in the Active network-tDCS group (P<.05), while the sham group remained inhibited. These results suggest that tDCS targeting regions associated with the motor network may modulate the late evoked brain responses to noxious peripheral stimulation otherwise initially inhibited by capsaicin-induced pain. PERSPECTIVE: This study extends the evidence of N2-P2 reduction due to capsaicin-induced pain from 30 minutes to 24 hrs. Moreover, 2 sessions of tDCS targeting the motor network in the early stage of nociceptive pain may revert the inhibition of N2-P2 associated with capsaicin-induced pain.
Collapse
|
3
|
Bechthold E, Schreiber JA, Ritter N, Grey L, Schepmann D, Daniliuc C, González-Cano R, Nieto FR, Seebohm G, Wünsch B. Synthesis of tropane-based σ1 receptor antagonists with antiallodynic activity. Eur J Med Chem 2022; 230:114113. [DOI: 10.1016/j.ejmech.2022.114113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
|
4
|
Kopp N, Civenni G, Marson D, Laurini E, Pricl S, Catapano CV, Humpf HU, Almansa C, Nieto FR, Schepmann D, Wünsch B. Chemoenzymatic synthesis of 2,6-disubstituted tetrahydropyrans with high σ 1 receptor affinity, antitumor and analgesic activity. Eur J Med Chem 2021; 219:113443. [PMID: 33901806 DOI: 10.1016/j.ejmech.2021.113443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
1,3-Dioxanes 1 and cyclohexanes 2 bearing a phenyl ring and an aminoethyl moiety in 1,3-relationship to each other represent highly potent σ1 receptor antagonists. In order to increase the chemical stability of the acetalic 1,3-dioxanes 1 and the polarity of the cyclohexanes 2, tetrahydropyran derivatives 3 equipped with the same substituents were designed, synthesized and pharmacologically evaluated. The key step of the synthesis was a lipase-catalyzed enantioselective acetylation of the alcohol (R)-5 leading finally to enantiomerically pure test compounds 3a-g. With respect to σ1 receptor affinity and selectivity over a broad range of related (σ2, PCP binding site) and further targets, the enantiomeric benzylamines 3a and cyclohexylmethylamines 3b represent the most promising drug candidates of this series. However, the eudismic ratio for σ1 binding is only in the range of 2.5-3.3. Classical molecular dynamics (MD) simulations confirmed the same binding pose for both the tetrahydropyran 3 and cyclohexane derivatives 2 at the σ1 receptor, according to which: i) the protonated amino moiety of (2S,6R)-3a engages the same key polar interactions with Glu172 (ionic) and Phe107 (π-cation), ii) the lipophilic parts of (2S,6R)-3a are hosted in three hydrophobic regions of the σ1 receptor, and iii) the O-atom of the tetrahydropyran derivatives 3 does not show a relevant interaction with the σ1 receptor. Further in silico evidences obtained by the application of free energy perturbation and steered MD techniques fully supported the experimentally observed difference in receptor/ligand affinities. Tetrahydropyrans 3 require a lower dissociative force peak than cyclohexane analogs 2. Enantiomeric benzylamines 3a and cyclohexylmethylamines 3b were able to inhibit the growth of the androgen negative human prostate cancer cell line DU145. The cyclohexylmethylamine (2S,6R)-3b showed the highest σ1 affinity (Ki(σ1) = 0.95 nM) and the highest analgesic activity in vivo (67%).
Collapse
Affiliation(s)
- Nicole Kopp
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Gianluca Civenni
- Institute of Oncology Research, Università della Svizzera Italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Carlo V Catapano
- Institute of Oncology Research, Università della Svizzera Italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149, Münster, Germany
| | - Carmen Almansa
- Esteve Pharmaceuticals S.A., Baldiri Reixach 4-8, 08028, Barcelona, Spain
| | - Francisco Rafael Nieto
- Department of Pharmacology and Neurosciences Institute (Biomedical Research Center), University of Granada and Biosanitary Research Institute, 18010, Granada, Spain
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany; GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Germany.
| |
Collapse
|
5
|
Mouraux A, Bannister K, Becker S, Finn DP, Pickering G, Pogatzki-Zahn E, Graven-Nielsen T. Challenges and opportunities in translational pain research - An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur J Pain 2021; 25:731-756. [PMID: 33625769 PMCID: PMC9290702 DOI: 10.1002/ejp.1730] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For decades, basic research on the underlying mechanisms of nociception has held promise to translate into efficacious treatments for patients with pain. Despite great improvement in the understanding of pain physiology and pathophysiology, translation to novel, effective treatments for acute and chronic pain has however been limited, and they remain an unmet medical need. In this opinion paper bringing together pain researchers from very different disciplines, the opportunities and challenges of translational pain research are discussed. The many factors that may prevent the successful translation of bench observations into useful and effective clinical applications are reviewed, including interspecies differences, limited validity of currently available preclinical disease models of pain, and limitations of currently used methods to assess nociception and pain in non-human and human models of pain. Many paths are explored to address these issues, including the backward translation of observations made in patients and human volunteers into new disease models that are more clinically relevant, improved generalization by taking into account age and sex differences, and the integration of psychobiology into translational pain research. Finally, it is argued that preclinical and clinical stages of developing new treatments for pain can be improved by better preclinical models of pathological pain conditions alongside revised methods to assess treatment-induced effects on nociception in human and non-human animals. Significance: For decades, basic research of the underlying mechanisms of nociception has held promise to translate into efficacious treatments for patients with pain. Despite great improvement in the understanding of pain physiology and pathophysiology, translation to novel, effective treatments for acute and chronic pain has however been limited, and they remain an unmet medical need.
Collapse
Affiliation(s)
- André Mouraux
- Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - David P Finn
- Pharmacology and Therapeutics, Centre for Pain Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Gisèle Pickering
- Department of Clinical Pharmacology, Inserm CIC 1405, University Hospital, CHU Clermont-Ferrand, France.,Fundamental and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Critical Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Ferland CE, Villemure C, Michon PE, Gandhi W, Ma ML, Chouchou F, Parent AJ, Bushnell MC, Lavigne G, Rainville P, Ware MA, Jackson PL, Schweinhardt P, Marchand S. Multicenter assessment of quantitative sensory testing (QST) for the detection of neuropathic-like pain responses using the topical capsaicin model. Can J Pain 2018; 2:266-279. [PMID: 35005384 PMCID: PMC8730652 DOI: 10.1080/24740527.2018.1525682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background The use of quantitative sensory testing (QST) in multicenter studies has been quite limited, due in part to lack of standardized procedures among centers. Aim The aim of this study was to assess the application of the capsaicin pain model as a surrogate experimental human model of neuropathic pain in different centers and verify the variation in reports of QST measures across centers. Methods A multicenter study conducted by the Quebec Pain Research Network in six laboratories allowed the evaluation of nine QST parameters in 60 healthy subjects treated with topical capsaicin to model unilateral pain and allodynia. The same measurements (without capsaicin) were taken in 20 patients with chronic neuropathic pain recruited from an independent pain clinic. Results Results revealed that six parameters detected a significant difference between the capsaicin-treated and the control skin areas: (1) cold detection threshold (CDT) and (2) cold pain threshold (CPT) are lower on the capsaicin-treated side, indicating a decreased in cold sensitivity; (3) heat pain threshold (HPT) was lower on the capsaicin-treated side in healthy subjects, suggesting an increased heat pain sensitivity; (4) dynamic mechanical allodynia (DMA); (5) mechanical pain after two stimulations (MPS2); and (6) mechanical pain summation after ten stimulations (MPS10), are increased on the capsaicin-treated side, suggesting an increased in mechanical pain (P < 0.002). CDT, CPT and HPT showed comparable effects across all six centers, with CPT and HPT demonstrating the best sensitivity. Data from the patients showed significant difference between affected and unaffected body side but only with CDT. Conclusion These results provide further support for the application of QST in multicenter studies examining normal and pathological pain responses.
Collapse
Affiliation(s)
- Catherine E Ferland
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC, Canada.,Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Chantal Villemure
- Alan Edwards Pain Management Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Pierre-Emmanuel Michon
- Division des Neurosciences cliniques et cognitives, centre de recherche CERVO, Université Laval, Quebec, QC, Canada
| | - Wiebke Gandhi
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - My-Linh Ma
- Research Centre, Shriners Hospitals for Children-Canada, Montreal, QC, Canada
| | - Florian Chouchou
- Département santé buccale, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Alexandre J Parent
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M Catherine Bushnell
- National Centre for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Gilles Lavigne
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département santé buccale, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Pierre Rainville
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Mark A Ware
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Alan Edwards Pain Management Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Philip L Jackson
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Division des Neurosciences cliniques et cognitives, centre de recherche CERVO, Université Laval, Quebec, QC, Canada.,School of Psychology, Université Laval, Quebec, QC, Canada
| | - Petra Schweinhardt
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Serge Marchand
- Quebec Pain Research Network, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS, Sherbrooke, QC, Canada.,Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Québec, Canada
| |
Collapse
|
8
|
Vollert J, Magerl W, Baron R, Binder A, Enax-Krumova EK, Geisslinger G, Gierthmühlen J, Henrich F, Hüllemann P, Klein T, Lötsch J, Maier C, Oertel B, Schuh-Hofer S, Tölle TR, Treede RD. Pathophysiological mechanisms of neuropathic pain: comparison of sensory phenotypes in patients and human surrogate pain models. Pain 2018; 159:1090-1102. [DOI: 10.1097/j.pain.0000000000001190] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Enax-Krumova EK, Pohl S, Westermann A, Maier C. Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia. BMC Neurol 2017; 17:60. [PMID: 28335745 PMCID: PMC5364678 DOI: 10.1186/s12883-017-0839-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In unilateral neuropathic pain. e.g. after peripheral nerve injury, both positive and negative sensory signs occur often, accompanied by minor but equally directed contralateral sensory changes. To mimic this feature, we experimentally aimed to induce concomitant c-fibre sensitization and block in healthy subjects and analyzed the bilateral sensory changes by quantitative sensory testing (QST) using the protocol of the German Research Network on Neuropathic Pain. METHODS Twenty eight healthy subjects were firstly randomized in 2 groups to receive either topical capsaicin (0.6%, 12 cm2, application duration: 15 min.) or a lidocaine/prilocaine patch (25/25 mg, 10 cm2, application duration: 60 min.) on the right volar forearm. Secondly, 7-14 days later in the same area either at first capsaicin (for 15 min.) and immediately afterwards local anesthetics (for 60 min.) was applied (Cap/LA), or in inversed order with the same application duration (LA/Cap). Before, after each application and 7-14 days later a QST was performed bilaterally. STATISTICS Wilcoxon-test, ANOVA, p < 0.05. RESULTS Single application of 0,6% capsaicin induced thermal hypoesthesia, cold hypoalgesia, heat hyperalgesia and tactile allodynia. Lidocaine/prilocaine alone induced thermal and tactile hypoesthesia as well as mechanical and cold hypoalgesia, and a heat hyperalgesia (to a smaller extent). Ipsilaterally both co-applications induced a combination of the above mentioned changes. Significant contralateral sensory changes occurred only after the co-application with concomitant sensitization and hypoesthesia and comprised increased cold (Cap/LA, LA/Cap) and mechanical detection as well as cold pain threshold (LA/Cap). CONCLUSION The present experimental model using combined application of capsaicin and LA imitates partly the complex sensory changes observed in patients with unilateral neuropathic pain and might be used as an additional surrogate model. Only the concomitant use both agents in the same area induces both positive and negative sensory signs ipsilaterally as well as parallel contralateral sensory changes (to a lesser extent). TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT01540877 , registered on 23 February 2012.
Collapse
Affiliation(s)
- Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, D-44789, Bochum, Germany.
| | - Stephanie Pohl
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH Bochum, Ruhr University Bochum, Bochum, Germany
| | - Andrea Westermann
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH Bochum, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH Bochum, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|