1
|
Browne TJ, Smith KM, Gradwell MA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord. Sci Rep 2024; 14:26354. [PMID: 39487174 PMCID: PMC11530558 DOI: 10.1038/s41598-024-73620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024] Open
Abstract
Spinal projection neurons (PNs) are defined by long axons that travel from their origin in the spinal cord to the brain where they relay sensory information from the body. The existence and function of a substantial axon collateral network, also arising from PNs and remaining within the spinal cord, is less well appreciated. Here we use a retrograde viral transduction strategy to characterise a novel subpopulation of deep dorsal horn spinoparabrachial neurons. Brainbow assisted analysis confirmed that virally labelled PN cell bodies formed a discrete cell column in the lateral part of Lamina V (LVlat) and the adjoining white matter. These PNs exhibited large dendritic territories biased to regions lateral and ventral to the cell body column and extending considerable rostrocaudal distances. Optogenetic activation of LVLat PNs confirmed this population mediates widespread signalling within spinal cord circuits, including activation in the superficial dorsal horn. This signalling was also demonstrated with patch clamp recordings during LVLat PN photostimulation, with a range of direct and indirect connections identified and evidence of a postsynaptic population of inhibitory interneurons. Together, these findings confirm a substantial role for PNs in local spinal sensory processing, as well as relay of sensory signals to the brain.
Collapse
Affiliation(s)
- Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| | - Kelly M Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
3
|
Farah A, Patel R, Poplawski P, Wastie BJ, Tseng M, Barry AM, Daifallah O, Dubb A, Paul I, Cheng HL, Feroz F, Su Y, Chan M, Zeilhofer HU, Price T, Bennett DL, Bannister K, Dawes JM. A role for leucine-rich, glioma inactivated 1 in regulating pain sensitivity. Brain 2024:awae302. [PMID: 39301592 DOI: 10.1093/brain/awae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
Neuronal hyperexcitability is a key driver of persistent pain states including neuropathic pain. Leucine-rich, glioma inactivated 1 (LGI1), is a secreted protein known to regulate excitability within the nervous system and is the target of autoantibodies from neuropathic pain patients. Therapies that block or reduce antibody levels are effective at relieving pain in these patients, suggesting that LGI1 has an important role in clinical pain. Here we have investigated the role of LGI1 in regulating neuronal excitability and pain-related sensitivity by studying the consequences of genetic ablation in specific neuron populations using transgenic mouse models. LGI1 has been well studied at the level of the brain, but its actions in the spinal cord and peripheral nervous system (PNS) are poorly understood. We show that LGI1 is highly expressed in DRG and spinal cord dorsal horn neurons in both mouse and human. Using transgenic muse models, we genetically ablated LGI1, either specifically in nociceptors (LGI1fl/Nav1.8+), or in both DRG and spinal neurons (LGI1fl/Hoxb8+). On acute pain assays, we find that loss of LGI1 resulted in mild thermal and mechanical pain-related hypersensitivity when compared to littermate controls. In from LGI1fl/Hoxb8+ mice, we find loss of Kv1 currents and hyperexcitability of DRG neurons. LGI1fl/Hoxb8+ mice displayed a significant increase in nocifensive behaviours in the second phase of the formalin test (not observed in LGI1fl/Nav1.8+ mice) and extracellular recordings in LGI1fl/Hoxb8+ mice revealed hyperexcitability in spinal dorsal horn neurons, including enhanced wind-up. Using the spared nerve injury model, we find that LGI1 expression is dysregulated in the spinal cord. LGI1fl/Nav1.8+ mice showed no differences in nerve injury induced mechanical hypersensitivity, brush-evoked allodynia or spontaneous pain behaviour compared to controls. However, LGI1fl/Hoxb8+ mice showed a significant exacerbation of mechanical hypersensitivity and allodynia. Our findings point to effects of LGI1 at both the level of the DRG and spinal cord, including an important impact of spinal LGI1 on pathological pain. Overall, we find a novel role for LGI1 with relevance to clinical pain.
Collapse
Affiliation(s)
- Adham Farah
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Ryan Patel
- Wolfson Sensory, Pain & Regeneration Centre, Guy's Campus, Kings College London, SE1 1 UL, UK
| | - Piotr Poplawski
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Benjamin J Wastie
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Allison M Barry
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, Department of Neuroscience, University of Texas at Dallas, Texas 75080, USA
| | - Omar Daifallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Akash Dubb
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Ivan Paul
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Hoi Lao Cheng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Faisal Feroz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Yuhe Su
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Marva Chan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Theodore Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, Department of Neuroscience, University of Texas at Dallas, Texas 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Kirsty Bannister
- Wolfson Sensory, Pain & Regeneration Centre, Guy's Campus, Kings College London, SE1 1 UL, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Krotov V, Belan P, Voitenko N. Approach for Electrophysiological Studies of Spinal Lamina X Neurons. Bio Protoc 2024; 14:e5035. [PMID: 39100598 PMCID: PMC11292132 DOI: 10.21769/bioprotoc.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
Despite playing diverse physiological roles, the area surrounding the central canal, lamina X, remains one of the least studied spinal cord regions. Technical challenges and limitations of the commonly used experimental approaches are the main difficulties that hamper lamina X research. In the current protocol, we describe a reliable method for functional investigation of lamina X neurons that requires neither time-consuming slicing nor sophisticated in vivo experiments. Our approach relies on ex vivo hemisected spinal cord preparation that preserves the rostrocaudal and mediolateral spinal architecture as well as the dorsal roots, and infrared LED oblique illumination for visually guided patch clamp in thick blocks of tissue. When coupled with electric stimulation of the spared dorsal roots, electrophysiological recordings provide information on primary afferent inputs to lamina X neurons from myelinated and non-myelinated fibers and allow estimating primary afferent-driven presynaptic inhibition. Overall, we describe a simple, time-efficient, inexpensive, and versatile approach for lamina X research. Key features • Quick and easy preparation procedure that grants access to lamina X neurons without spinal cord slicing • Preserved rostrocaudal and mediolateral connectivity and preserved primary afferent supply • Ability to perform electrophysiological recordings in combination with dorsal root stimulations allowing to study afferent inputs and presynaptic inhibition of lamina X neurons.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
- Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|
5
|
Khan M, Zafar H, Gilani SA, Farooqui WA, Ahmad A. The effects of lumbar stabilization exercises with and without jaw movements in non-specific low back pain (A randomized controlled trial). Pak J Med Sci 2024; 40:1116-1121. [PMID: 38952498 PMCID: PMC11190411 DOI: 10.12669/pjms.40.6.9208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 07/03/2024] Open
Abstract
Objective This study aimed to investigate the added effect of jaw clenching on the efficacy of lumbar stabilization exercises to manage chronic non-specific low back pain. Methods This randomized controlled trial was conducted at the Sindh Institute of Physical Medicine and Rehabilitation (SIPM&R) Karachi from April 2021 to April 2023. Eighty patients with chronic non-specific low back pain participated in this study. Forty patients each were randomly allocated to the lumbar stability exercise (LSE) group' and the lumbar stability exercise with teeth clenching (LSETC) group. Patients in both groups performed respective exercises twice weekly for 12 weeks. The Numeric Pain Rating Scale (NPRS), Roland Morris Disability Questionnaire (RMDQ), and Pressure Biofeedback Unit (PBU) were used to assess pain, disability, and muscle endurance respectively. Data were collected at the baseline, after six weeks and 12 weeks of intervention. A p-value of <0.05 was considered statistically significant. Results Both groups showed statistically significant improvements in pain, disability, and muscle endurance. Upon further stratification, participants aged 20-30 years in the LSETC group showed significantly higher scores than the LSE group for NPRS, RMDQ, and PBU after 12 weeks. Overall, the LSETC group showed relatively higher improvement in mean scores for NPRS, RMDQ, and PBU than the LSE group. Conclusion Lumbar stabilization exercises with and without jaw movement are effective for the treatment of chronic non-specific low back pain. The addition of teeth clenching enhanced the effectiveness of lumbar stability exercises, especially in young adults. Trial Registration: Clinicaltrials.gov (NCT04801212), Prospectively registered on March 16, 2021.
Collapse
Affiliation(s)
- Muhammad Khan
- Muhammad Khan, PT, MSPT Institute of Physical Therapy & Rehabilitation, Jinnah Sindh Medical University, Karachi, Pakistan. University Institute of Physiotherapy, The University of Lahore, Lahore, Pakistan
| | - Hamayun Zafar
- Hamayun Zafar, PT, PhD Dept. of Rehabilitation Sciences, College of Applied Medical Sciences & Medical Research Chair, King Saud University Riyadh, Saudi Arabia. University Institute of Physiotherapy, The University of Lahore, Lahore, Pakistan
| | - Syed Amir Gilani
- Syed Amir Gilani, MBBS, DMRD, MPH, PhD(Ultrasound), PhD (Public Health), University Institute of Physiotherapy, The University of Lahore, Lahore, Pakistan
| | - Waqas Ahmed Farooqui
- Waqas Ahmed Farooqui, MSc, PhD School of Public Health, Dow University of Health Sciences, Karachi, Pakistan
| | - Ashfaq Ahmad
- Ashfaq Ahmad, University Institute of Physiotherapy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Rusbridge C. Neuropathic pain in cats: Mechanisms and multimodal management. J Feline Med Surg 2024; 26:1098612X241246518. [PMID: 38710218 PMCID: PMC11156241 DOI: 10.1177/1098612x241246518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PRACTICAL RELEVANCE Chronic pain is a significant welfare concern in cats, and neuropathic pain, which arises from aberrant processing of sensory signals within the nervous system, is a subcategory of this type of pain. To comprehend this condition and how multimodal pharmacotherapy plays a central role in alleviating discomfort, it is crucial to delve into the anatomy of nociception and pain perception. In addition, there is an intricate interplay between emotional health and chronic pain in cats, and understanding and addressing the emotional factors that contribute to pain perception, and vice versa, is essential for comprehensive care.Clinical approach:Neuropathic pain is suspected if there is abnormal sensation in the area of the distribution of pain, together with a positive response to trial treatment with drugs effective for neuropathic pain. Ideally, this clinical suspicion would be supported by confirmation of a lesion at this neurolocalisation using diagnostic modalities such as MRI and neuroelectrophysiology. Alternatively, there may be a history of known trauma at that site. A variety of therapies, including analgesic, anti-inflammatory and adjuvant drugs, and neuromodulation (eg, TENS or acupuncture), can be employed to address different facets of pain pathways.Aim:This review article, aimed at primary care/ general practitioners, focuses on the identification and management of neuropathic pain in cats. Three case vignettes are included and a structured treatment algorithm is presented to guide veterinarians in tailoring interventions.Evidence base:The review draws on current literature, where available, along with the author's extensive experience and research.
Collapse
Affiliation(s)
- Clare Rusbridge
- BVMS, PhD, DipECVN, FRCVS School of Veterinary Medicine, The University of Surrey, Guildford, Surrey, UK; and Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-on-Tees, UK
| |
Collapse
|
7
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
8
|
Brewer CL, Kauer JA. Low-Frequency Stimulation of Trpv1-Lineage Peripheral Afferents Potentiates the Excitability of Spino-Periaqueductal Gray Projection Neurons. J Neurosci 2024; 44:e1184232023. [PMID: 38050062 PMCID: PMC10860615 DOI: 10.1523/jneurosci.1184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
High-threshold dorsal root ganglion (HT DRG) neurons fire at low frequencies during inflammatory injury, and low-frequency stimulation (LFS) of HT DRG neurons selectively potentiates excitatory synapses onto spinal neurons projecting to the periaqueductal gray (spino-PAG). Here, in male and female mice, we have identified an underlying peripheral sensory population driving this plasticity and its effects on the output of spino-PAG neurons. We provide the first evidence that Trpv1-lineage sensory neurons predominantly induce burst firing, a unique mode of neuronal activity, in lamina I spino-PAG projection neurons. We modeled inflammatory injury by optogenetically stimulating Trpv1+ primary afferents at 2 Hz for 2 min (LFS), as peripheral inflammation induces 1-2 Hz firing in high-threshold C fibers. LFS of Trpv1+ afferents enhanced the synaptically evoked and intrinsic excitability of spino-PAG projection neurons, eliciting a stable increase in the number of action potentials (APs) within a Trpv1+ fiber-induced burst, while decreasing the intrinsic AP threshold and increasing the membrane resistance. Further experiments revealed that this plasticity required Trpv1+ afferent input, postsynaptic G protein-coupled signaling, and NMDA receptor activation. Intriguingly, an inflammatory injury and heat exposure in vivo also increased APs per burst, in vitro These results suggest that inflammatory injury-mediated plasticity is driven though Trpv1+ DRG neurons and amplifies the spino-PAG pathway. Spinal inputs to the PAG could play an integral role in its modulation of heat sensation during peripheral inflammation, warranting further exploration of the organization and function of these neural pathways.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
9
|
Li J, Serafin EK, Baccei ML. Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage. Pain 2023; 164:905-917. [PMID: 36149785 PMCID: PMC10033328 DOI: 10.1097/j.pain.0000000000002787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | | | | |
Collapse
|
10
|
Krotov V, Agashkov K, Romanenko S, Halaidych O, Andrianov Y, Safronov BV, Belan P, Voitenko N. Elucidating afferent-driven presynaptic inhibition of primary afferent input to spinal laminae I and X. Front Cell Neurosci 2023; 16:1029799. [PMID: 36713779 PMCID: PMC9874151 DOI: 10.3389/fncel.2022.1029799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Although spinal processing of sensory information greatly relies on afferent-driven (AD) presynaptic inhibition (PI), our knowledge about how it shapes peripheral input to different types of nociceptive neurons remains insufficient. Here we examined the AD-PI of primary afferent input to spinal neurons in the marginal layer, lamina I, and the layer surrounding the central canal, lamina X; two nociceptive-processing regions with similar patterns of direct supply by Aδ- and C-afferents. Unmyelinated C-fibers were selectively activated by electrical stimuli of negative polarity that induced an anodal block of myelinated Aβ/δ-fibers. Combining this approach with the patch-clamp recording in an ex vivo spinal cord preparation, we found that attenuation of the AD-PI by the anodal block of Aβ/δ-fibers resulted in the appearance of new mono- and polysynaptic C-fiber-mediated excitatory postsynaptic current (EPSC) components. Such homosegmental Aβ/δ-AD-PI affected neurons in the segment of the dorsal root entrance as well as in the adjacent rostral segment. In their turn, C-fibers from the L5 dorsal root induced heterosegmental AD-PI of the inputs from the L4 Aδ- and C-afferents to the neurons in the L4 segment. The heterosegmental C-AD-PI was reciprocal since the L4 C-afferents inhibited the L5 Aδ- and C-fiber inputs, as well as some direct L5 Aβ-fiber inputs. Moreover, the C-AD-PI was found to control the spike discharge in spinal neurons. Given that the homosegmental Aβ/δ-AD-PI and heterosegmental C-AD-PI affected a substantial percentage of lamina I and X neurons, we suggest that these basic mechanisms are important for shaping primary afferent input to the neurons in the spinal nociceptive-processing network.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,*Correspondence: Volodymyr Krotov,
| | - Kirill Agashkov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Sergii Romanenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Oleh Halaidych
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yaroslav Andrianov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Boris V. Safronov
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine,Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|
11
|
Albisetti GW, Ganley RP, Pietrafesa F, Werynska K, Magalhaes de Sousa M, Sipione R, Scheurer L, Bösl MR, Pelczar P, Wildner H, Zeilhofer HU. Inhibitory Kcnip2 neurons of the spinal dorsal horn control behavioral sensitivity to environmental cold. Neuron 2023; 111:92-105.e5. [PMID: 36323322 PMCID: PMC9831669 DOI: 10.1016/j.neuron.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood. Using intersectional genetics in combination with circuit tracing and functional neuron manipulation, we identified Kcnip2-expressing inhibitory (Kcnip2GlyT2) interneurons of the mouse spinal dorsal horn as critical elements of a neural circuit that tunes sensitivity to cold. Diphtheria toxin-mediated ablation of these neurons increased cold sensitivity without affecting responses to other somatosensory modalities, while their chemogenetic activation reduced cold and also heat sensitivity. We also show that Kcnip2GlyT2 neurons become activated preferentially upon exposure to cold temperatures and subsequently inhibit spinal nociceptive output neurons that project to the lateral parabrachial nucleus. Our results thus identify a hitherto unknown spinal circuit that tunes cold sensitivity.
Collapse
Affiliation(s)
- Gioele W. Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Robert P. Ganley
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Francesca Pietrafesa
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | | | - Rebecca Sipione
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Michael R. Bösl
- Institute of Experimental Biomedicine I, University Hospital Würzburg, and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, 4001 Basel, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland,Corresponding author
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland,Center for Neuroscience Zurich (ZNZ), 8057 Zürich, Switzerland,Drug Discovery Network Zurich (DDNZ), 8057 Zürich, Switzerland,Corresponding author
| |
Collapse
|
12
|
Krotov V, Agashkov K, Krasniakova M, Safronov BV, Belan P, Voitenko N. Segmental and descending control of primary afferent input to the spinal lamina X. Pain 2022; 163:2014-2020. [PMID: 35297816 PMCID: PMC9339045 DOI: 10.1097/j.pain.0000000000002597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Departments of Sensory Signaling and
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | | | | | - Boris V. Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Departments of Sensory Signaling and
- Kyiv Academic University, Kyiv, Ukraine
- Private Institution Dobrobut Academy, Kyiv, Ukraine
| |
Collapse
|
13
|
The Welfare of Fighting Dogs: Wounds, Neurobiology of Pain, Legal Aspects and the Potential Role of the Veterinary Profession. Animals (Basel) 2022; 12:ani12172257. [PMID: 36077977 PMCID: PMC9454875 DOI: 10.3390/ani12172257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Dog fights are cruel and harmful events which have a clear impact on animal welfare. For this reason, many countries have banned these events via statute. However, in some regions of the world they are still legal. Moreover, the enforcement of legal bans can be problematic in countries where they are illegal, and they may still occur. This article provides background information on dog fighting and the welfare implications of it. This includes consideration for the pain inflicted, and its mechanisms of perception and recognition. It also analyzes the injuries and emotions experienced by the animals and considers the profile of the breeders and handlers involved in the activity. Since welfare concerns often extend beyond the animals’ fighting lives, a discussion around the possibilities of reintroduction into suitable environments for these animals is also made. Finally, attention is turned to the role that veterinarians can and should play in dealing with these issues of welfare. Abstract Throughout history it has been common to practice activities which significantly impact on animal welfare. Animal fighting, including dogfighting, is a prime example where animals often require veterinary care, either to treat wounds and fractures or to manage pain associated with tissue and where death may even result. Amongst the detrimental health effects arising are the sensory alterations that these injuries cause, which not only include acute or chronic pain but can also trigger a greater sensitivity to other harmful (hyperalgesia) or even innocuous stimuli (allodynia). These neurobiological aspects are often ignored and the erroneous assumption made that the breeds engaged in organized fighting have a high pain threshold or, at least, they present reduced or delayed responses to painful stimuli. However, it is now widely recognized that the damage these dogs suffer is not only physical but psychological, emotional, and sensory. Due to the impact fighting has on canine welfare, it is necessary to propose solution strategies, especially educational ones, i.e., educating people and training veterinarians, the latter potentially playing a key role in alerting people to all dog welfare issues. Therefore, the aim of this review is to describe the risk factors associated with dogfighting generally (dog temperament, age, sex, nutrition, testosterone levels, environment, isolation conditions, socialization, education, or training). A neurobiological approach to this topic is taken to discuss the impact on dog pain and emotion. Finally, a general discussion of the format of guidelines and laws that seek to sanction them is presented. The role that veterinarians can play in advancing dog welfare, rehabilitating dogs, and educating the public is also considered.
Collapse
|
14
|
Trendafilova T, Adhikari K, Schmid AB, Patel R, Polgár E, Chisholm KI, Middleton SJ, Boyle K, Dickie AC, Semizoglou E, Perez-Sanchez J, Bell AM, Ramirez-Aristeguieta LM, Khoury S, Ivanov A, Wildner H, Ferris E, Chacón-Duque JC, Sokolow S, Saad Boghdady MA, Herchuelz A, Faux P, Poletti G, Gallo C, Rothhammer F, Bedoya G, Zeilhofer HU, Diatchenko L, McMahon SB, Todd AJ, Dickenson AH, Ruiz-Linares A, Bennett DL. Sodium-calcium exchanger-3 regulates pain "wind-up": From human psychophysics to spinal mechanisms. Neuron 2022; 110:2571-2587.e13. [PMID: 35705078 PMCID: PMC7613464 DOI: 10.1016/j.neuron.2022.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is "wind-up," in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3). NCX3 was expressed in mouse dorsal horn neurons, and mice lacking NCX3 showed normal, acute pain but hypersensitivity to the second phase of the formalin test and chronic constriction injury. Dorsal horn neurons lacking NCX3 showed increased intracellular calcium following repetitive stimulation, slowed calcium clearance, and increased wind-up. Moreover, virally mediated enhanced spinal expression of NCX3 reduced central sensitization. Our study highlights Ca2+ efflux as a pathway underlying temporal summation and persistent pain, which may be amenable to therapeutic targeting.
Collapse
Affiliation(s)
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK; Department of Genetics, Evolution and Environment, University College London, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Erika Polgár
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Kim I Chisholm
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Steven J Middleton
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Kieran Boyle
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | | | | | - Andrew M Bell
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | | | - Samar Khoury
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Aleksandar Ivanov
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Eleanor Ferris
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Juan-Camilo Chacón-Duque
- Department of Genetics, Evolution and Environment, University College London, London, UK; Centre for Palaeogenetics, Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Sophie Sokolow
- Laboratoire de Pharmacodynamie et de Thérapeutique Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium; School of Nursing, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - André Herchuelz
- Laboratoire de Pharmacodynamie et de Thérapeutique Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Faux
- CNRS, EFS, ADES, Aix-Marseille Université, Marseille, France
| | - Giovanni Poletti
- Unidad de Neurobiologia Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carla Gallo
- Unidad de Neurobiologia Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellin, Colombia
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Luda Diatchenko
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Andrew J Todd
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, London, UK; CNRS, EFS, ADES, Aix-Marseille Université, Marseille, France; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
| |
Collapse
|
15
|
Cui X, Liu K, Gao X, Zhu B. Advancing the Understanding of Acupoint Sensitization and Plasticity Through Cutaneous C-Nociceptors. Front Neurosci 2022; 16:822436. [PMID: 35620665 PMCID: PMC9127573 DOI: 10.3389/fnins.2022.822436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Acupoint is the key area for needling treatment, but its physiology is not yet understood. Nociceptors, one of the responders in acupoints, are responsible for acupuncture manipulation and delivering acupuncture signals to the spinal or supraspinal level. Recent evidence has shown that various diseases led to sensory hypersensitivity and functional plasticity in sensitized acupoints, namely, acupoint sensitization. Neurogenic inflammation is the predominant pathological characteristic for sensitized acupoints; however, the underlying mechanism in acupoint sensitization remains unclear. Recent studies have reported that silent C-nociceptors (SNs), a subtype of C nociceptors, can be “awakened” by inflammatory substances released by sensory terminals and immune cells under tissue injury or visceral dysfunction. SNs can transform from mechano-insensitive nociceptors in a healthy state to mechanosensitive nociceptors. Activated SNs play a vital role in sensory and pain modulation and can amplify sensory inputs from the injured tissue and then mediate sensory hyperalgesia. Whether activated SNs is involved in the mechanism of acupoint sensitization and contributes to the delivery of mechanical signals from needling manipulation remains unclear? In this review, we discuss the known functions of cutaneous C nociceptors and SNs and focus on recent studies highlighting the role of activated SNs in acupoint functional plasticity.
Collapse
|
16
|
Mendell LM. The Path to Discovery of Windup and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:833104. [PMID: 35295805 PMCID: PMC8915729 DOI: 10.3389/fpain.2022.833104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
|
17
|
Browne TJ, Smith KM, Gradwell MA, Iredale JA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Spinoparabrachial projection neurons form distinct classes in the mouse dorsal horn. Pain 2021; 162:1977-1994. [PMID: 33779126 PMCID: PMC8208100 DOI: 10.1097/j.pain.0000000000002194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
ABSTRACT Projection neurons in the spinal dorsal horn relay sensory information to higher brain centres. The activation of these populations is shaped by afferent input from the periphery, descending input from the brain, and input from local interneuron circuits. Much of our recent understanding of dorsal horn circuitry comes from studies in transgenic mice; however, information on projection neurons is still based largely on studies in monkey, cat, and rat. We used viral labelling to identify and record from mouse parabrachial nucleus (PBN) projecting neurons located in the dorsal horn of spinal cord slices. Overall, mouse lamina I spinoparabrachial projection neurons (SPBNs) exhibit many electrophysiological and morphological features that overlap with rat. Unbiased cluster analysis distinguished 4 distinct subpopulations of lamina I SPBNs, based on their electrophysiological properties that may underlie different sensory signalling features in each group. We also provide novel information on SPBNs in the deeper lamina (III-V), which have not been previously studied by patch clamp analysis. These neurons exhibited higher action potential discharge frequencies and received weaker excitatory synaptic input than lamina I SPBNs, suggesting this deeper population produces different sensory codes destined for the PBN. Mouse SPBNs from both regions (laminae I and III-V) were often seen to give off local axon collaterals, and we provide neuroanatomical evidence they contribute to excitatory input to dorsal horn circuits. These data provide novel information to implicate excitatory input from parabrachial projection neuron in dorsal horn circuit activity during processing of nociceptive information, as well as defining deep dorsal horn projection neurons that provide an alternative route by which sensory information can reach the PBN.
Collapse
Affiliation(s)
- Tyler J. Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Kelly M. Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Jacqueline A. Iredale
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
18
|
Das Gupta RR, Scheurer L, Pelczar P, Wildner H, Zeilhofer HU. Neuron-specific spinal cord translatomes reveal a neuropeptide code for mouse dorsal horn excitatory neurons. Sci Rep 2021; 11:5232. [PMID: 33664406 PMCID: PMC7933427 DOI: 10.1038/s41598-021-84667-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 01/24/2023] Open
Abstract
The spinal dorsal horn harbors a sophisticated and heterogeneous network of excitatory and inhibitory neurons that process peripheral signals encoding different sensory modalities. Although it has long been recognized that this network is crucial both for the separation and the integration of sensory signals of different modalities, a systematic unbiased approach to the use of specific neuromodulatory systems is still missing. Here, we have used the translating ribosome affinity purification (TRAP) technique to map the translatomes of excitatory glutamatergic (vGluT2+) and inhibitory GABA and/or glycinergic (vGAT+ or Gad67+) neurons of the mouse spinal cord. Our analyses demonstrate that inhibitory and excitatory neurons are not only set apart, as expected, by the expression of genes related to the production, release or re-uptake of their principal neurotransmitters and by genes encoding for transcription factors, but also by a differential engagement of neuromodulator, especially neuropeptide, signaling pathways. Subsequent multiplex in situ hybridization revealed eleven neuropeptide genes that are strongly enriched in excitatory dorsal horn neurons and display largely non-overlapping expression patterns closely adhering to the laminar and presumably also functional organization of the spinal cord grey matter.
Collapse
Affiliation(s)
- Rebecca Rani Das Gupta
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8090, Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, 4001, Basel, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8090, Zurich, Switzerland.
| |
Collapse
|
19
|
Browne TJ, Hughes DI, Dayas CV, Callister RJ, Graham BA. Projection Neuron Axon Collaterals in the Dorsal Horn: Placing a New Player in Spinal Cord Pain Processing. Front Physiol 2020; 11:560802. [PMID: 33408637 PMCID: PMC7779806 DOI: 10.3389/fphys.2020.560802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
The pain experience depends on the relay of nociceptive signals from the spinal cord dorsal horn to higher brain centers. This function is ultimately achieved by the output of a small population of highly specialized neurons called projection neurons (PNs). Like output neurons in other central nervous system (CNS) regions, PNs are invested with a substantial axon collateral system that ramifies extensively within local circuits. These axon collaterals are widely distributed within and between spinal cord segments. Anatomical data on PN axon collaterals have existed since the time of Cajal, however, their function in spinal pain signaling remains unclear and is absent from current models of spinal pain processing. Despite these omissions, some insight on the potential role of PN axon collaterals can be drawn from axon collateral systems of principal or output neurons in other CNS regions, such as the hippocampus, amygdala, olfactory cortex, and ventral horn of the spinal cord. The connectivity and actions of axon collaterals in these systems have been well-defined and used to confirm crucial roles in memory, fear, olfaction, and movement control, respectively. We review this information here and propose a framework for characterizing PN axon collateral function in the dorsal horn. We highlight that experimental approaches traditionally used to delineate axon collateral function in other CNS regions are not easily applied to PNs because of their scarcity relative to spinal interneurons (INs), and the lack of cellular organization in the dorsal horn. Finally, we emphasize how the rapid development of techniques such as viral expression of optogenetic or chemogenetic probes can overcome these challenges and allow characterization of PN axon collateral function. Obtaining detailed information of this type is a necessary first step for incorporation of PN collateral system function into models of spinal sensory processing.
Collapse
Affiliation(s)
- Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
20
|
Abstract
The spinal gray matter region around the central canal, lamina X, is critically involved in somatosensory processing and visceral nociception. Although several classes of primary afferent fibers terminate or decussate in this area, little is known about organization and functional significance of the afferent supply of lamina X neurons. Using the hemisected ex vivo spinal cord preparation, we show that virtually all lamina X neurons receive primary afferent inputs, which are predominantly mediated by the high-threshold Aδ- fibers and C-fibers. In two-thirds of the neurons tested, the inputs were monosynaptic, implying a direct targeting of the population of lamina X neurons by the primary nociceptors. Beside the excitatory inputs, 48% of the neurons also received polysynaptic inhibitory inputs. A complex pattern of interactions between the excitatory and inhibitory components determined the output properties of the neurons, one-third of which fired spikes in response to the nociceptive dorsal root stimulation. In this respect, the spinal gray matter region around the central canal is similar to the superficial dorsal horn, the major spinal nociceptive processing area. We conclude that lamina X neurons integrate direct and indirect inputs from several types of thin primary afferent fibers and play an important role in nociception.
Collapse
|
21
|
Browne TJ, Gradwell MA, Iredale JA, Madden JF, Callister RJ, Hughes DI, Dayas CV, Graham BA. Transgenic Cross-Referencing of Inhibitory and Excitatory Interneuron Populations to Dissect Neuronal Heterogeneity in the Dorsal Horn. Front Mol Neurosci 2020; 13:32. [PMID: 32362812 PMCID: PMC7180513 DOI: 10.3389/fnmol.2020.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
The superficial dorsal horn (SDH, LI-II) of the spinal cord receives and processes multimodal sensory information from skin, muscle, joints, and viscera then relay it to the brain. Neurons within the SDH fall into two broad categories, projection neurons and interneurons. The later can be further subdivided into excitatory and inhibitory types. Traditionally, interneurons within the SDH have been divided into overlapping groups according to their neurochemical, morphological and electrophysiological properties. Recent clustering analyses, based on molecular transcript profiles of cells and nuclei, have predicted many more functional groups of interneurons than expected using traditional approaches. In this study, we used electrophysiological and morphological data obtained from genetically-identified excitatory (vGLUT2) and inhibitory (vGAT) interneurons in transgenic mice to cluster cells into groups sharing common characteristics and subsequently determined how many clusters can be assigned by combinations of these properties. Consistent with previous reports, we show differences exist between excitatory and inhibitory interneurons in terms of their excitability, nature of the ongoing excitatory drive, action potential (AP) properties, sub-threshold current kinetics, and morphology. The resulting clusters based on statistical and unbiased assortment of these data fell well short of the numbers of molecularly predicted clusters. There was no clear characteristic that in isolation defined a population, rather multiple variables were needed to predict cluster membership. Importantly though, our analysis highlighted the appropriateness of using transgenic lines as tools to functionally subdivide both excitatory and inhibitory interneuron populations.
Collapse
Affiliation(s)
- Tyler J. Browne
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Mark A. Gradwell
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Jacqueline A. Iredale
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Jessica F. Madden
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Robert J. Callister
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher V. Dayas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute (HMRI), Callaghan, NSW, Australia
| |
Collapse
|
22
|
Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Sci Rep 2019; 9:19231. [PMID: 31848358 PMCID: PMC6917718 DOI: 10.1038/s41598-019-55462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Lamina I spino-parabrachial neurons (SPNs) receive peripheral nociceptive input, process it and transmit to the supraspinal centres. Although responses of SPNs to cutaneous receptive field stimulations have been intensively studied, the mechanisms of signal processing in these neurons are poorly understood. Therefore, we used an ex-vivo spinal cord preparation to examine synaptic and cellular mechanisms determining specific input-output characteristics of the neurons. The vast majority of the SPNs received a few direct nociceptive C-fiber inputs and generated one spike in response to saturating afferent stimulation, thus functioning as simple transducers of painful stimulus. However, 69% of afferent stimulation-induced action potentials in the entire SPN population originated from a small fraction (19%) of high-output neurons. These neurons received a larger number of direct Aδ- and C-fiber inputs, generated intrinsic bursts and efficiently integrated a local network activity via NMDA-receptor-dependent mechanisms. The high-output SPNs amplified and integrated the nociceptive input gradually encoding its intensity into the number of generated spikes. Thus, different mechanisms of signal processing allow lamina I SPNs to play distinct roles in nociception.
Collapse
|
23
|
Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019; 104:637-653. [PMID: 31751545 PMCID: PMC6868508 DOI: 10.1016/j.neuron.2019.09.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic.
Collapse
Affiliation(s)
- Margarita Calvo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J Davies
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Greg A Weir
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus 8000, Denmark
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, and John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Michael Costigan
- Departments of Anesthesia and Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA.
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Smith KM, Browne TJ, Davis OC, Coyle A, Boyle KA, Watanabe M, Dickinson SA, Iredale JA, Gradwell MA, Jobling P, Callister RJ, Dayas CV, Hughes DI, Graham BA. Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn. eLife 2019; 8:49190. [PMID: 31713514 PMCID: PMC6908433 DOI: 10.7554/elife.49190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022] Open
Abstract
Nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate spinal interneurons that express the calcium-binding protein calretinin (CR). We show that these interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relay signals to lamina I projection neurons. Photoactivation of CR interneurons in vivo resulted in a significant nocifensive behavior that was morphine sensitive, caused a conditioned place aversion, and was enhanced by spared nerve injury. Furthermore, halorhodopsin-mediated inhibition of these interneurons elevated sensory thresholds. Our results suggest that dorsal horn circuits that involve excitatory CR neurons are important for the generation and amplification of pain and identify these interneurons as a future analgesic target.
Collapse
Affiliation(s)
- Kelly M Smith
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia.,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Tyler J Browne
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Olivia C Davis
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - A Coyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Sally A Dickinson
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Jacqueline A Iredale
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Mark A Gradwell
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Robert J Callister
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| |
Collapse
|
25
|
|
26
|
Petitjean H, Bourojeni FB, Tsao D, Davidova A, Sotocinal SG, Mogil JS, Kania A, Sharif-Naeini R. Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons. Cell Rep 2019; 28:1429-1438.e4. [DOI: 10.1016/j.celrep.2019.07.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023] Open
|
27
|
Greenspon CM, Battell EE, Devonshire IM, Donaldson LF, Chapman V, Hathway GJ. Lamina-specific population encoding of cutaneous signals in the spinal dorsal horn using multi-electrode arrays. J Physiol 2018; 597:377-397. [PMID: 30390415 PMCID: PMC6332738 DOI: 10.1113/jp277036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/31/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Traditional, widely used in vivo electrophysiological techniques for the investigation of spinal processing of somatosensory information fail to account for the diverse functions of each lamina. To overcome this oversimplification, we have used multi-electrode arrays, in vivo, to simultaneously record neuronal activity across all laminae of the spinal dorsal horn. Multi-electrode arrays are sensitive enough to detect lamina- and region-specific encoding of different subtypes of afferent fibres and to detect short-lived changes in synaptic plasticity as measured by the application of cutaneous electrical stimulation of varying intensity and frequency. Differential encoding of innocuous and noxious thermal and mechanical stimuli were also detected across the laminae with the technique, as were the effects of the application of capsaicin. This new approach to the study of the dorsal spinal cord produces significantly more information per experiment, permitting accelerated research whilst also permitting the effects of pharmacological tools to modulate network responses. ABSTRACT The dorsal horn (DH) of the spinal cord is a complex laminar structure integrating peripheral signals into the central nervous system. Spinal somatosensory processing is commonly measured electrophysiologically in vivo by recording the activity of individual wide-dynamic-range neurons in the deep DH and extrapolating their behaviour to all cells in every lamina. This fails to account for the specialized processes that occur in each lamina and the considerable heterogeneity in cellular phenotype within and between laminae. Here we overcome this oversimplification by employing linear multi-electrode arrays (MEAs) in the DH of anaesthetized rats to simultaneously measure activity across all laminae. The MEAs, comprising 16 channels, were inserted into the lumbar dorsal horn and peripheral neurons activated electrically via transcutaneous electrodes and ethologically with von Frey hairs (vFHs) or an aluminium heating block. Ascending electrical stimuli showed fibre thresholds with distinct dorsoventral innervation profiles. Wind up was observed across the DH during the C-fibre and post-discharge latencies following 0.5 Hz stimulation. Intrathecal application of morphine (5 ng/50 μl) significantly reduced Aδ- and C-fibre-evoked activity in deep and superficial DH. Light vFHs (≤10 g) predominantly activated intermediate and deep laminae whereas noxious vFHs (26 g) also activated the superficial laminae. Noxious heat (55°C) induced significantly greater activity in the superficial and deep laminae than the innocuous control (30°C). The application of these arrays produced the first description of the processing of innocuous and noxious stimuli throughout the intact DH.
Collapse
Affiliation(s)
- Charles M Greenspon
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Emma E Battell
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ian M Devonshire
- Bio-Support Unit, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Lucy F Donaldson
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK.,Arthritis Research UK Pain Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Victoria Chapman
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK.,Arthritis Research UK Pain Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Gareth J Hathway
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
28
|
Barik A, Thompson JH, Seltzer M, Ghitani N, Chesler AT. A Brainstem-Spinal Circuit Controlling Nocifensive Behavior. Neuron 2018; 100:1491-1503.e3. [PMID: 30449655 DOI: 10.1016/j.neuron.2018.10.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
Response to danger needs to be rapid and appropriate. In humans, nocifensive behaviors often precede conscious pain perception. Much is known about local spinal cord circuits for simple reflexive responses, but the mechanisms underlying more complex behaviors remain poorly understood. We now describe a brainstem circuit that controls escape responses to select noxious stimuli. Tracing experiments characterized a highly interconnected excitatory circuit involving the dorsal spinal cord, parabrachial nucleus (PBNl), and reticular formation (MdD). A combination of chemogenetic, optogenetic, and genetic ablation approaches revealed that PBNlTac1 neurons are activated by noxious stimuli and trigger robust escape responses to heat through connections to the MdD. Remarkably, MdDTac1 neurons receive excitatory input from the PBN and target both the spinal cord and PBN; activation of these neurons phenocopies the behavioral effects of PBNlTac1 neuron stimulation. These findings identify a substrate for controlling appropriate behavioral responses to painful stimuli.
Collapse
Affiliation(s)
- Arnab Barik
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - James Hunter Thompson
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - Mathew Seltzer
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - Nima Ghitani
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health (NCCIH), NIH, Bethesda MD, USA.
| |
Collapse
|