1
|
Begum IA. The connection between endometriosis and secondary dysmenorrhea. J Reprod Immunol 2025; 168:104425. [PMID: 39823689 DOI: 10.1016/j.jri.2025.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/01/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Endometriosis (EMS) is a prevalent gynecological condition characterized by the presence of endometrial tissue outside the uterus, often leading to secondary dysmenorrhea (SD), chronic pelvic pain and infertility. This review explores the intricate connection between EMS- associated pain and SD, focusing on the pathophysiological mechanisms underlying dysmenorrhea in EMS. Key contributors to pain include inflammation, aberrant immune responses, neurogenic inflammation, peritoneal irritation, peripheral sensitization, central sensitization and cross-organ sensitization. Understanding the pain pathways in EMS highlights the complexity of symptom manifestation and underscores the necessity for a multidisciplinary approach to management. Clinical manifestations, including chronic pelvic pain, dyspareunia, infertility, gastrointestinal and bladder symptoms, fatigue and malaise, are discussed, emphasizing the diverse impact of EMS on women's health. Various treatment modalities, ranging from pharmacological interventions to surgical and complementary approaches, are outlined to provide comprehensive management strategies for EMS-related menstrual pain/SD. This review aims to enhance understanding and facilitate the effective management of EMS-associated SD, ultimately improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Ismat Ara Begum
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, South Korea.
| |
Collapse
|
2
|
Titiz M, Landini L, Souza Monteiro de Araujo D, Marini M, Seravalli V, Chieca M, Pensieri P, Montini M, De Siena G, Pasquini B, Vannuccini S, Iannone LF, Cunha TM, Brancolini G, Bellantoni E, Scuffi I, Mastricci A, Tesi M, Di Tommaso M, Petraglia F, Geppetti P, Nassini R, De Logu F. Schwann cell C5aR1 co-opts inflammasome NLRP1 to sustain pain in a mouse model of endometriosis. Nat Commun 2024; 15:10142. [PMID: 39587068 PMCID: PMC11589863 DOI: 10.1038/s41467-024-54486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Over 60% of women with endometriosis experience abdominopelvic pain and broader pain manifestations, including chronic back pain, fibromyalgia, chronic fatigue, vulvodynia, and migraine. Although the imbalance of proinflammatory mediators, including the complement component C5a, is associated with endometriosis-related pain, the mechanisms causing widespread pain and the C5a role remain unclear. Female mice and women with endometriosis exhibit increased plasma C5a levels and pain. We hypothesize the Schwann cells involvement in endometriotic pain. Here, we show that silencing the C5a receptor (C5aR1) in Schwann cells blocks the C5a-induced activation of the NLRP1 inflammasome and subsequent release of interleukin-1β (IL-1β). Macrophages, recruited to sciatic/trigeminal nerves by IL-1β from Schwann cells, increase oxidative stress, which activates the proalgesic TRPA1 pathway, resulting in widespread pain. These findings reveal a pathway involving Schwann cell C5aR1, NLRP1/IL-1β activation, macrophage recruitment, oxidative stress, and TRPA1 engagement, contributing to pain in a mouse model of endometriosis.
Collapse
Affiliation(s)
- Mustafa Titiz
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | | | - Matilde Marini
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Viola Seravalli
- Department of Health Science, Obstetrics and Gynecology Section, University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pasquale Pensieri
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy
| | - Gaetano De Siena
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Benedetta Pasquini
- Department of Chemistry "U.Schiff", University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology Unit, University of Florence, Florence, Italy
| | - Luigi Francesco Iannone
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Elisa Bellantoni
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Irene Scuffi
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Alessandra Mastricci
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Martina Tesi
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Mariarosaria Di Tommaso
- Department of Health Science, Obstetrics and Gynecology Section, University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences, Obstetrics and Gynecology Unit, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Pain Research Center, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Romina Nassini
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| | - Francesco De Logu
- Department of Health Science, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy.
| |
Collapse
|
3
|
Ochoa S, Rasquel-Oliveira FS, McKinnon B, Haro M, Subramaniam S, Yu P, Coetzee S, Anglesio MS, Wright KN, Meyer R, Gargett CE, Mortlock S, Montgomery GW, Rogers MS, Lawrenson K. M2 Macrophages are Major Mediators of Germline Risk of Endometriosis and Explain Pleiotropy with Comorbid Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624726. [PMID: 39605445 PMCID: PMC11601670 DOI: 10.1101/2024.11.21.624726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Endometriosis is a common gynecologic condition that causes chronic life-altering symptoms including pain, infertility, and elevated cancer risk. There is an urgent need for new non-hormonal targeted therapeutics to treat endometriosis, but until very recently, the cellular and molecular signatures of endometriotic lesions were undefined, severely hindering the development of clinical advances. Integrating inherited risk data from analyses of >450,000 individuals with ∼350,000 single cell transcriptomes from 21 patients, we uncover M2-macrophages as candidate drivers of disease susceptibility, and nominate IL1 signaling as a central hub impacted by germline genetic variation associated with endometriosis. Extensive functional follow-up confirmed these associations and revealed a pleiotropic role for this pathway in endometriosis. Population-scale expression quantitative trail locus analysis demonstrated that genetic variation controlling IL1A expression is also associated with endometriosis risk variants. Manipulation of IL1 signaling in state-of-the-art in vitro decidualized assembloids impacted epithelial differentiation, and in an in vivo endometriosis model, treatment with anakinra (an interleukin-1 receptor antagonist) resulted in a significant, dose-dependent reduction in both spontaneous pain and evoked pain. Together these studies highlight non-diagnostic cell types as central to endometriosis susceptibility and support IL1 signaling as an important actionable pathway for this disease.
Collapse
|
4
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Verri WA, Rogers MS. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci Transl Med 2024; 16:eadk8230. [PMID: 39504351 DOI: 10.1126/scitranslmed.adk8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Endometriosis is a debilitating and painful gynecological inflammatory disease affecting up to 15% of women and transgender men. Current treatments are ineffective for a substantial proportion of patients, underscoring the need for additional therapies with long-term benefits. Nociceptors release neuropeptides, such as calcitonin gene-related peptide (CGRP), which are known to shape immunity through neuroimmune communication. Given the comorbidity between endometriosis and migraine and the integral role of immune cells and inflammation in endometriosis, we investigated the role of CGRP-mediated neuroimmune communication in endometriosis. Using samples from eight patients with endometriosis and a nonsurgical mouse model of the disease, we found that mouse and human endometriosis lesions contain both CGRP and its coreceptor, receptor activity modifying protein 1 (RAMP1). In mice, nociceptor ablation reduced pain, monocyte recruitment, and lesion size, suggesting that nociceptor activation and neuropeptide release contribute to endometriosis lesion growth and pain. Mechanistically, CGRP changed the phenotype of macrophages to a pro-endometriosis phenotype. CGRP-stimulated macrophages demonstrated impaired efferocytosis and supported increased endometrial cell growth in a RAMP1-dependent manner. Treatment of lesion-bearing mice with US Food and Drug Administration-approved drugs that block CGRP-RAMP1 signaling reduced mechanical hyperalgesia, spontaneous pain, and lesion size. Together, our data demonstrated the effectiveness and underlying cellular mechanisms of nonhormonal and nonopioid CGRP/RAMP1 blockade in a mouse model of endometriosis, suggesting that targeting this axis may lead to clinical benefit for patients with endometriosis.
Collapse
Affiliation(s)
- Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago H Zaninelli
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Fernanda S Rasquel-Oliveira
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniëlle Peterse
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Lindholm
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Zaninelli TH, Fattori V, Heintz OK, Wright KR, Bennallack PR, Sim D, Bukhari H, Terry KL, Vitonis AF, Missmer SA, Andrello AC, Anchan RM, Godin SK, Bree D, Verri WA, Rogers MS. Targeting NGF but not VEGFR1 or BDNF signaling reduces endometriosis-associated pain in mice. J Adv Res 2024:S2090-1232(24)00360-6. [PMID: 39142441 DOI: 10.1016/j.jare.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Endometriosis is a chronic inflammatory disease that affects ∼10 % of women. A significant fraction of patients experience limited or no efficacy with current therapies. Tissue adjacent to endometriosis lesions often exhibits increased neurite and vascular density, suggesting that disease pathology involves neurotrophic activity and angiogenesis. OBJECTIVES We aim to evaluate the potential for key tyrosine-kinase-receptor-coupled neurotrophic molecules to contribute to endometriosis-associated pain in mice. METHODS Peritoneal fluid was collected from endometriosis patients undergoing surgery and the levels of NGF and VEGFR1 regulators (VEGFA, VEGFB, PLGF, and sVEGFR1) were quantified by ELISA. VEGFR1 regulator concentrations were used to calculate VEGFR1 occupancy. We used genetic depletion, neutralizing antibodies, and pharmacological approaches to specifically block neurotrophic ligands (NGF or BDNF) or receptors (VEGFR1, TRKs) in a murine model of endometriosis-associated pain. Endometriosis-associated pain was measured using von Frey filaments, quantification of spontaneous abdominal pain-related behavior, and thermal discomfort. Disease parameters were evaluated by lesion size and prevalence. To evaluate potential toxicity, we measured the effect of entrectinib dose and schedule on body weight, liver and kidney function, and bone structure (via micro-CT). RESULTS We found that entrectinib (pan-Trk inhibitor) or anti-NGF treatments reduced evoked pain, spontaneous pain, and thermal discomfort. In contrast, even though calculated receptor occupancy revealed that VEGFR1 agonist levels are sufficient to support signaling, blocking VEGFR1 via antibody or tamoxifen-induced knockout did not reduce pain or lesion size in mice. Targeting BDNF-TrkB with an anti-BDNF antibody also proved ineffective. Notably, changing dosing schedule to once weekly eliminated entrectinib-induced bone-loss without decreasing efficacy against pain. CONCLUSIONS This suggests NGF-TrkA signaling, but not BDNF-TrkB or VEGF-VEGFR1, mediates endometriosis-associated pain. Moreover, entrectinib blocks endometriosis-associated pain and reduces lesion sizes. Our results also indicated that entrectinib-like molecules are promising candidates for endometriosis treatment.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Olivia K Heintz
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kristeena R Wright
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Philip R Bennallack
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Danielle Sim
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hussain Bukhari
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn L Terry
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Allison F Vitonis
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, United States
| | - Stacey A Missmer
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Avacir C Andrello
- Department of Physics, Center of Exact Sciences, Londrina State University, Londrina, PR, Brazil
| | - Raymond M Anchan
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, United States; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Dara Bree
- Cygnal Therapeutics, Cambridge, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
6
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
7
|
Zeng Y, Hang F, Peng C, Zhao L, Ou S, Luo L, Liu B. Research progress in rodent models of endometriosis. J Reprod Immunol 2024; 163:104219. [PMID: 38422807 DOI: 10.1016/j.jri.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Endometriosis is a common and frequent disease in gynecology; its etiology and pathogenesis are partially understood and still not clear. The construction of suitable animal models is beneficial for basic research related to the disease. Currently, rodents have the advantages of low cost, fast reproduction, easy rearing, and a similar endometrial structure to humans. Depending on the purpose of the experiment, different molding methods have their advantages. In this paper, we describe the traditional methods of constructing endometriosis rodent models, compare their advantages and disadvantages, and introduce newly developed rodent models, such as cell line injection models, pain models, genetically engineered mouse models, fluorescent tracer models, iron overload models, chemical induction models, and methods of constructing rodent models of different subtypes of endometriosis. Fertility and treatment of endometriosis rodent models are also described. This study provides a reference for researchers in the selection of animal models for pathogenesis and drug treatment studies.
Collapse
Affiliation(s)
- Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Fu Hang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
8
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Wu M, Zhang Q, Shang L, Duan P. Microfluidics-derived hierarchical microparticles for the delivery of dienogest for localized endometriosis therapy. Acta Biomater 2024; 178:257-264. [PMID: 38387747 DOI: 10.1016/j.actbio.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Drug therapy is one of the most important strategies for treating gynecological diseases. Local drug delivery is promising for achieving optimal regional drug exposure, considering the complex anatomy and dynamic environment of the upper genital tract. Here, we present microparticle-based microcarriers with a hierarchical structure for localized dienogest (DNG) delivery and endometriosis treatment. The microparticles were fabricated by microfluidics and consisted of photo-crosslinked bovine serum albumin hydrogel particles (D@P-B MPs) encapsulating DNG-loaded PLGA (poly lactic-co-glycolic acid) microspheres. Such design enables the microparticles to have sustained release capacity and cell adhesion ability. Based on this, the microparticles were applied for the treatment of peritoneal endometriosis through intraperitoneal injection. The performance of the microparticles in inhibiting the growth of ectopic lesions as well as their anti-inflammatory, anti-angiogenesis, and pelvic pain-relieving effects are well demonstrated in vivo. These findings indicate that the present hierarchical microparticles are good candidates for localized treatment of endometriosis and are promising for the management of gynecological diseases. STATEMENT OF SIGNIFICANCE: We prepared photo-crosslinked bovine serum albumin hydrogel particles (D@P-B MPs) encapsulating DNG-loaded PLGA microspheres using microfluidic electrospray. Such hierarchical structure provided multiple functions of the particles as drug carriers. The hierarchical microparticles not only supported the sustained release of drugs but also provided adhesion to human ectopic endometrial stromal cells. The hierarchical microparticles represented a localized treatment method for endometriosis and is promising for the management of gynecological diseases.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Gynaecology, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Qingfei Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Luoran Shang
- Department of Gynaecology, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology, Institutes of Biomedical Sciences), Fudan University, Shanghai 200032, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ping Duan
- Department of Gynaecology, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
| |
Collapse
|
10
|
Park Y, Choo SP, Jung GS, Kim S, Lee MJ, Im W, Park H, Lee I, Lee JH, Cho S, Choi YS. Formononetin Inhibits Progression of Endometriosis via Regulation of p27, pSTAT3, and Progesterone Receptor: In Vitro and In Vivo Studies. Nutrients 2023; 15:3001. [PMID: 37447325 DOI: 10.3390/nu15133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES Formononetin is one of the phytoestrogens that functions like a selective estrogen receptor modulator (SERM). In this study, we evaluated the effects of formononetin on endometriosis progression in vitro and in vivo. MATERIALS AND METHODS After pathological confirmation, 10 eutopic and ectopic endometria were collected from patients with endometriosis. Ten eutopic endometria samples were collected from patients who did not have endometriosis. To determine the cytotoxic dose and therapeutic dose of formononetin, the concentration of 70% of the cells that survived after formononetin administration was estimated using a Cell counting kit-8 (CCK 8) assay. Western blot analysis was used to determine the relative expression levels of BAX, p53, pAKT, ERK, pERK, p27, and pSTAT3 in the eutopic endometria without endometriosis, eutopic endometria with endometriosis, and ectopic endometria with endometriosis as the formononetin concentration was increased. We confirmed the effect of formononetin on apoptosis and migration in endometriosis using fluorescence-activated cell sorting (FACS) and wound healing assays, respectively. A mouse model of endometriosis was prepared using a non-surgical method, as previously described. The mice were intraperitoneally administered formononetin for four weeks after dividing them into control, low-dose formononetin (40 mg/kg/day) treatment, and high-dose (80 mg/kg/day) formononetin treatment groups. All the mice were euthanized after formononetin treatment. Endometriotic lesions were retrieved and confirmed using hematoxylin and eosin (H&E) staining. Immunohistochemical (IHC) staining of p27 was performed. RESULTS We set the maximum concentration of formononetin administration to 80 μM through the CCK8 assay. Based on formononetin concentration, the expression levels of BAX, p53, pAKT, ERK, pERK, p27, and pSTAT3 proteins were measured using Western blot analysis (N = 4 per group). The expression level of pERK, p27, and pSTAT3 in eutopic endometrium with endometriosis tended to decrease with increasing formononetin concentration, and a significant decrease was noted at 80 μM. The expression of p27 in ectopic endometrium with endometriosis was also significantly decreased at 80 μM of formononetin. FACS analysis revealed that formononetin did not significantly affect apoptosis. In the wound healing assay, formononetin treatment revealed a more significant decrease in the proliferation of the eutopic endometrium in patients with endometriosis than in the eutopic endometrium without endometriosis. Relative expression of sex hormone receptors decreased with increasing formononetin doses. Although no significant differences were observed in the ER, PR-A, ERβ/ERα, and PR-B/PR-A, significant down-regulation of PR-B expression was noted after formononetin treatment at 80 μM. In the in vivo study, endometriotic lesions in the formononetin-treated group significantly decreased compared to those in the control group. The relative expression of p27 using IHC was highest in the control group and lowest in the high-dose formononetin treatment group. CONCLUSIONS Formononetin treatment was shown to inhibit the proliferation of eutopic and ectopic endometria in patients with endometriosis through the regulation of p27, pSTAT3, and PR-B. In an endometriosis mouse model, formononetin treatment significantly reduced the number of endometriotic lesions with decreased p27 expression. The results of this study suggest that formononetin may be used as a non-hormonal treatment option for endometriosis.
Collapse
Affiliation(s)
- Yunjeong Park
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Sung Pil Choo
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Gee Soo Jung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Sehee Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Wooseok Im
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyemin Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sihyun Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
13
|
Rodent Animal Models of Endometriosis-Associated Pain: Unmet Needs and Resources Available for Improving Translational Research in Endometriosis. Int J Mol Sci 2023; 24:ijms24032422. [PMID: 36768741 PMCID: PMC9917069 DOI: 10.3390/ijms24032422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic pain induced by endometriosis is a maladaptive pain experienced by half of women with this disease. The lack of pharmacological treatments suitable for the long-term relief of endometriosis-associated pain, without an impact on fertility, remains an urgent unmet need. Progress has been slowed by the absence of a reproducible rodent endometriosis model that fully replicates human physiopathological characteristics, including pain symptoms. Although pain assessment in rodents is a complicated task requiring qualified researchers, the choice of the behavioral test is no less important, since selecting inappropriate tests can cause erroneous data. Pain is usually measured with reflex tests in which hypersensitivity is evaluated by applying a noxious stimulus, yet this ignores the associated emotional component that could be evaluated via non-reflex tests. We conducted a systematic review of endometriosis models used in rodents and the number of them that studied pain. The type of behavioral test used was also analyzed and classified according to reflex and non-reflex tests. Finally, we determined the most used reflex tests for the study of endometriosis-induced pain and the main non-reflex behavioral tests utilized in visceral pain that can be extrapolated to the study of endometriosis and complement traditional reflex tests.
Collapse
|
14
|
Escudero-Lara A, Cabañero D, Maldonado R. Contribution of CD4+ cells in the emotional alterations induced by endometriosis in mice. Front Behav Neurosci 2022; 16:946975. [PMID: 36311856 PMCID: PMC9596757 DOI: 10.3389/fnbeh.2022.946975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a disease defined by the presence of endometrial tissue in extrauterine locations. This chronic condition is frequently associated with pain and emotional disorders and has been related with altered immune function. However, the specific involvement of immune cells in pain and behavioral symptoms of endometriosis has not been yet elucidated. Here, we implement a mouse model of non-surgical endometriosis in which immunocompetent mice develop abdomino-pelvic hypersensitivity, cognitive deficits, anxiety and depressive-like behaviors. This behavioral phenotype correlates with expression of inflammatory markers in the brain, including the immune cell marker CD4. Depletion of CD4 + cells decreases the anxiety-like behavior of mice subjected to the endometriosis model, whereas abdomino-pelvic hypersensitivity, depressive-like behavior and cognitive deficits remain unaltered. The present data reveal the involvement of the immune response characterized by CD4 + white blood cells in the anxiety-like behavior induced by endometriosis in mice. This model, which recapitulates the symptoms of human endometriosis, may be a useful tool to study the immune mechanisms involved in pain and behavioral alterations associated to endometriosis.
Collapse
Affiliation(s)
- Alejandra Escudero-Lara
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- David Cabañero,
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- *Correspondence: Rafael Maldonado,
| |
Collapse
|
15
|
Unveil the pain of endometriosis: from the perspective of the nervous system. Expert Rev Mol Med 2022; 24:e36. [PMID: 36059111 DOI: 10.1017/erm.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis is a chronic inflammatory disease with pelvic pain and uncharacteristic accompanying symptoms. Endometriosis-associated pain often persists despite treatment of the disease, thus it brings a deleterious impact on their personal lives as well as imposing a substantial economic burden on them. At present, mechanisms underlie endometriosis-associated pain including inflammatory reaction, injury, aberrant blood vessels and the morphological and functional anomaly of the peripheral and central nervous systems. The nerve endings are influenced by the physical and chemical factors surrounding the lesion, via afferent nerve to the posterior root of the spinal nerve, then to the specific cerebral cortex involved in nociception. However, our understanding of the aetiology and mechanism of this complex pain process caused by endometriosis remains incomplete. Identifying the pathogenesis of endometriosis is crucial to disease management, offering proper treatment, and helping patients to seek novel targets for the maintenance and contributors of chronic pain. The main aim of this review is to focus on every possible mechanism of pain related to endometriosis in both peripheral and central nervous systems, and to present related mechanisms of action from the interaction between peripheral lesions and nerves to the changes in transmission of pain, resulting in hyperalgesia and the corresponding alterations in cerebral cortex and brain metabolism.
Collapse
|
16
|
Maddern J, Grundy L, Harrington A, Schober G, Castro J, Brierley SM. A syngeneic inoculation mouse model of endometriosis that develops multiple comorbid visceral and cutaneous pain like behaviours. Pain 2022; 163:1622-1635. [PMID: 35050959 DOI: 10.1097/j.pain.0000000000002552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Endometriosis is a chronic and debilitating condition, commonly characterised by chronic pelvic pain (CPP) and infertility. Chronic pelvic pain can be experienced across multiple pelvic organs, with comorbidities commonly effecting the bowel, bladder, and vagina. Despite research efforts into endometriosis pathophysiology, little is known about how endometriosis induces CPP, and as such, therapeutic interventions are lacking. The aim of this study was to characterise a syngeneic mouse model of endometriosis that mimics naturally occurring retrograde menstruation, thought to precede endometriosis development in patients, and determine whether these mice exhibit signs of CPP and altered behaviour. We characterised the development of endometriosis over 10 weeks following uterine tissue inoculation, measured in vivo and ex vivo hypersensitivity to mechanical stimuli across multiple visceral organs, and assessed alterations in animal spontaneous behaviour. We confirmed that inoculated uterine horn tissue formed into endometriosis lesions throughout the peritoneal cavity, with significant growth by 8 to 10 weeks post inoculation. Additionally, we found that mice with fully developed endometriosis displayed hypersensitivity evoked by (1) vaginal distension, (2) colorectal distension, (3) bladder distension, and (4) cutaneous thermal stimulation, compared to their sham counterparts. Moreover, endometriosis mice displayed alterations in spontaneous behaviour indicative of (5) altered bladder function and (6) anxiety. This model creates a foundation for mechanistical studies into the diffuse CPP associated with endometriosis and the development of targeted therapeutic interventions to improve the quality of life of women with endometriosis.
Collapse
Affiliation(s)
- Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrea Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci 2022; 18:4400-4413. [PMID: 35864971 PMCID: PMC9295070 DOI: 10.7150/ijbs.72707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis remains a common but challenging gynecological disease among reproductive-aged women with an unclear pathogenesis and limited therapeutic options. Numerous pieces of evidence suggest that NF-κB signaling, a major regulator of inflammatory responses, is overactive in endometriotic lesions and contributes to the onset, progression, and recurrence of endometriosis. Several factors, such as estrogen, progesterone, oxidative stress, and noncoding RNAs, can regulate NF-κB signaling in endometriosis. In the present review, we discuss the mechanisms by which these factors regulate NF-κB during endometriosis progression and provide an update on the role of NF-κB in affecting endometriotic cells, peritoneal macrophages (PMs) as well as endometriosis-related symptoms, such as pain and infertility. Furthermore, the preclinical drugs for blocking NF-κB signaling in endometriosis are summarized, including plant-derived medicines, NF-κB inhibitors, other known drugs, and the potential anti-NF-κB drugs predicted through the Drug-Gene Interaction Database. The present review discusses most of the studies concerning the multifaceted role of NF-κB signaling in endometriosis and provides a summary of NF-κB-targeted treatment in detail.
Collapse
Affiliation(s)
- Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
18
|
Marquardt RM, Nafiujjaman M, Kim TH, Chung SJ, Hadrick K, Kim T, Jeong JW. A Mouse Model of Endometriosis with Nanoparticle Labeling for In Vivo Photoacoustic Imaging. Reprod Sci 2022; 29:2947-2959. [PMID: 35641854 DOI: 10.1007/s43032-022-00980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Endometriosis is a condition of the female reproductive tract characterized by endometrium-like tissue growing outside the uterus. Though it is a common cause of pelvic pain and infertility, there is currently no reliable noninvasive method to diagnose the presence of endometriosis without surgery, and the pathophysiological mechanisms that lead to the occurrence of symptoms require further inquiry. Due to patient heterogeneity and delayed diagnosis, animal models are commonly used to study the development of endometriosis, but these are costly due to the large number of animals needed to test various treatments and experimental conditions at multiple endpoints. Here, we describe a method for synthesis of multimodal imaging gold-fluorescein isothiocyanate (FITC) nanoparticles with preclinical application via induction of nanoparticle-labeled endometriosis-like lesions in mice. Labeling donor endometrial tissue fragments with gold-FITC nanoparticles prior to induction of endometriosis in recipients enables in vivo detection of the gold-labeled lesions with photoacoustic imaging. The same imaging method can be used to visualize embryos noninvasively in pregnant mice. Furthermore, the conjugated FITC dye on the gold nanoparticles allows easy isolation of labeled lesion tissue under a fluorescence dissection microscope. After dissection, the presence of gold-FITC nanoparticles and endometrium-like histology of lesions can be verified through fluorescence imaging, gold enhancement, and immunostaining. This method for in vivo imaging of endometriosis-like lesions and fluorescence-guided dissection will permit new experimental possibilities for the longitudinal study of endometriosis development and progression as well as endometriosis-related infertility.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, College of Natural Science, East Lansing, MI, USA
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Seock-Jin Chung
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kay Hadrick
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
19
|
Landini L, Souza Monteiro de Araujo D, Titiz M, Geppetti P, Nassini R, De Logu F. TRPA1 Role in Inflammatory Disorders: What Is Known So Far? Int J Mol Sci 2022; 23:ijms23094529. [PMID: 35562920 PMCID: PMC9101260 DOI: 10.3390/ijms23094529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses. TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect modulation of a large series of intracellular pathways, orchestrates a range of cellular processes, such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway has been proposed as a protective mechanism to detect and respond to harmful agents in various pathological conditions, including several inflammatory diseases. Specific attention has been paid to TRPA1 contribution to the transition of inflammation and immune responses from an early defensive response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as beneficial tools for the treatment of inflammatory conditions.
Collapse
|
20
|
Tejada MA, Santos-Llamas AI, Escriva L, Tarin JJ, Cano A, Fernández-Ramírez MJ, Nunez-Badinez P, De Leo B, Saunders PTK, Vidal V, Barthas F, Vincent K, Sweeney PJ, Sillito RR, Armstrong JD, Nagel J, Gomez R. Identification of Altered Evoked and Non-Evoked Responses in a Heterologous Mouse Model of Endometriosis-Associated Pain. Biomedicines 2022; 10:501. [PMID: 35203710 PMCID: PMC8962432 DOI: 10.3390/biomedicines10020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop and refine a heterologous mouse model of endometriosis-associated pain in which non-evoked responses, more relevant to the patient experience, were evaluated. Immunodeficient female mice (N = 24) were each implanted with four endometriotic human lesions (N = 12) or control tissue fat (N = 12) on the abdominal wall using tissue glue. Evoked pain responses were measured biweekly using von Frey filaments. Non-evoked responses were recorded weekly for 8 weeks using a home cage analysis (HCA). Endpoints were distance traveled, social proximity, time spent in the center vs. outer areas of the cage, drinking, and climbing. Significant differences between groups for von Frey response, climbing, and drinking were detected on days 14, 21, and 35 post implanting surgery, respectively, and sustained for the duration of the experiment. In conclusion, a heterologous mouse model of endometriosis-associated evoked a non-evoked pain was developed to improve the relevance of preclinical models to patient experience as a platform for drug testing.
Collapse
Affiliation(s)
- Miguel A. Tejada
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Ana I. Santos-Llamas
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Lesley Escriva
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Juan J. Tarin
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
| | - Maria J. Fernández-Ramírez
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, 46010 Valencia, Spain
| | - Paulina Nunez-Badinez
- Bayer AG. Research & Early Development, Pharmaceuticals, Reproductive Health, Müllerstr. 178, 13342 Berlin, Germany; (P.N.-B.); (B.D.L.)
| | - Bianca De Leo
- Bayer AG. Research & Early Development, Pharmaceuticals, Reproductive Health, Müllerstr. 178, 13342 Berlin, Germany; (P.N.-B.); (B.D.L.)
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victor Vidal
- Faculty of Science, International University of La Rioja, Avda de la paz 137, 26006 Logrono, Spain;
| | | | - Katy Vincent
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;
| | - Patrick J. Sweeney
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
| | - Rowland R. Sillito
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
| | - James Douglas Armstrong
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Jens Nagel
- Bayer AG. Research & Early Development, Pharmaceuticals, Exploratory Pathobiology, Aprather Weg 18a, 42096 Wuppertal, Germany;
| | - Raúl Gomez
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
21
|
Burns KA, Pearson AM, Slack JL, Por ED, Scribner AN, Eti NA, Burney RO. Endometriosis in the Mouse: Challenges and Progress Toward a ‘Best Fit’ Murine Model. Front Physiol 2022; 12:806574. [PMID: 35095566 PMCID: PMC8794744 DOI: 10.3389/fphys.2021.806574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 01/13/2023] Open
Abstract
Endometriosis is a prevalent gynecologic condition associated with pelvic pain and infertility characterized by the implantation and growth of endometrial tissue displaced into the pelvis via retrograde menstruation. The mouse is a molecularly well-annotated and cost-efficient species for modeling human disease in the therapeutic discovery pipeline. However, as a non-menstrual species with a closed tubo-ovarian junction, the mouse poses inherent challenges as a preclinical model for endometriosis research. Over the past three decades, numerous murine models of endometriosis have been described with varying degrees of fidelity in recapitulating the essential pathophysiologic features of the human disease. We conducted a search of the peer-reviewed literature to identify publications describing preclinical research using a murine model of endometriosis. Each model was reviewed according to a panel of ideal model parameters founded on the current understanding of endometriosis pathophysiology. Evaluated parameters included method of transplantation, cycle phase and type of tissue transplanted, recipient immune/ovarian status, iterative schedule of transplantation, and option for longitudinal lesion assessment. Though challenges remain, more recent models have incorporated innovative technical approaches such as in vivo fluorescence imaging and novel hormonal preparations to overcome the unique challenges posed by murine anatomy and physiology. These models offer significant advantages in lesion development and readout toward a high-fidelity mouse model for translational research in endometriosis.
Collapse
Affiliation(s)
- Katherine A. Burns
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine A. Burns,
| | - Amelia M. Pearson
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jessica L. Slack
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
| | - Elaine D. Por
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
| | - Alicia N. Scribner
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, United States
| | - Nazmin A. Eti
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Richard O. Burney
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, United States
- Richard O. Burney,
| |
Collapse
|
22
|
Hiramoto S, Asano H, Miyamoto T, Takegami M, Kawabata A. Risk factors and pharmacotherapy for chemotherapy-induced peripheral neuropathy in paclitaxel-treated female cancer survivors: A retrospective study in Japan. PLoS One 2021; 16:e0261473. [PMID: 34972132 PMCID: PMC8719717 DOI: 10.1371/journal.pone.0261473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting adverse reaction in cancer patients treated with several cytotoxic anticancer agents including paclitaxel. Duloxetine, an antidepressant known as a serotonin-noradrenalin reuptake inhibitor, is the only agent that has moderate evidence for the use to treat painful CIPN. The present retrospective cohort study aimed to analyze risk factors for paclitaxel-induced peripheral neuropathy (PIPN), and investigate ongoing prescription drug use for PIPN in Japan. Female breast and gynecologic cancer patients who underwent paclitaxel-based chemotherapy at a single center in Japan between January 2016 and December 2019 were enrolled in this study. Patients' information obtained from electronic medical records were statistically analyzed to test possible risk factors on PIPN diagnosis. Patients' age, total paclitaxel dose, the history of female hormone-related diseases, hypertension and body mass index (BMI), but not additional platinum agents, were significantly associated with increased PIPN diagnosis. Drugs prescribed for PIPN included duloxetine, pregabalin, mecobalamin and Goshajinkigan, a polyherbal medicine, regardless of poor evidence for their effectiveness against CIPN, and were greatly different between breast and gynecologic cancer patients diagnosed with PIPN at the departments of Surgery and Gynecology, respectively. Thus, older age, greater total paclitaxel dose, the history of estrogen-related diseases, hypertension and BMI are considered risk factors for PIPN in paclitaxel-based chemotherapy of female cancer patients. It appears an urgent need to establish a guideline of evidence-based pharmacotherapy for PIPN.
Collapse
Affiliation(s)
- Shiori Hiramoto
- Division of Pharmacology and Pathophysiology Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
- Division of Pharmacy, Kindai University Hospital, Osakasayama, Japan
| | - Hajime Asano
- Division of Pharmacy, Kindai University Hospital, Osakasayama, Japan
| | - Tomoyoshi Miyamoto
- Division of Pharmacology and Pathophysiology Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Manabu Takegami
- Division of Pharmacy, Kindai University Hospital, Osakasayama, Japan
| | - Atsufumi Kawabata
- Division of Pharmacology and Pathophysiology Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| |
Collapse
|
23
|
Godin SK, Wagner J, Huang P, Bree D. The role of peripheral nerve signaling in endometriosis. FASEB Bioadv 2021; 3:802-813. [PMID: 34632315 PMCID: PMC8493968 DOI: 10.1096/fba.2021-00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
A hallmark of endometriosis - a chronic debilitating condition whose causes are poorly understood - is neuronal innervation of lesions. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with endometriosis but also contribute to a pro-growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells. The diverse array of contributions that neurons play in endometriosis indicate that it should be considered as a nerve-centric disease. This review is focused on the emerging field of exoneural biology and how it applies to the field of endometriosis, in particular the role that peripheral nerves play in driving and maintaining endometriotic lesions. A better understanding of the mechanisms of neuronal contribution to endometriosis, as well as their interactions with accompanying stromal and immune cells, will unearth novel disease-relevant pathways and targets, providing additional, more selective therapeutic horizons.
Collapse
|
24
|
Dorning A, Dhami P, Panir K, Hogg C, Park E, Ferguson GD, Hargrove D, Karras J, Horne AW, Greaves E. Bioluminescent imaging in induced mouse models of endometriosis reveals differences in four model variations. Dis Model Mech 2021; 14:dmm049070. [PMID: 34382636 PMCID: PMC8419713 DOI: 10.1242/dmm.049070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the aetiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of 'lesions' generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behaviour of mice with induced endometriosis and the impact of the gonadotropin-releasing hormone antagonist Cetrorelix on lesion regression and sensory behaviour. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were, as well as their cellular composition. The severity of pain-like behaviour also varied across models. Although Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behaviour. Collectively, our results demonstrate key differences in the progression of the 'disease' across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes/heterogeneity observed in women, should become a standard approach to discovery science in the field of endometriosis.
Collapse
Affiliation(s)
- Ashley Dorning
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Priya Dhami
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kavita Panir
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Chloe Hogg
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emma Park
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gregory D. Ferguson
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Diane Hargrove
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - James Karras
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
25
|
Kappa opioid receptor modulation of endometriosis pain in mice. Neuropharmacology 2021; 195:108677. [PMID: 34153313 DOI: 10.1016/j.neuropharm.2021.108677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022]
Abstract
The kappa opioid receptor is a constituent of the endogenous opioid analgesia system widely expressed in somatosensory nervous pathways and also in endometrial tissues. This work investigates the possible involvement of kappa opioid receptor on the nociceptive, behavioral and histopathological manifestations of endometriosis in a murine model. Female mice receiving endometrial implants develop a persistent mechanical hypersensitivity in the pelvic area that is stronger during the estrus phase of the estrous cycle. The kappa opioid receptor agonist U50,488H produces a dose-dependent relief of this mechanical hypersensitivity, regardless of the cycle phase. Repeated exposure to a low dose of U50,488H (1 mg/kg/day s.c. for one month) provides sustained relief of mechanical hypersensitivity, without tolerance development or sedative side effects. Interestingly, this treatment also inhibits a decreased rearing behavior associated with spontaneous pain or discomfort in endometriosis mice. This KOR-mediated pain relief does not prevent the anxiety-like behavior or the cognitive impairment exhibited by endometriosis mice, and the growth of endometriotic cysts is also unaltered. These data provide evidence of strong pain-relieving properties of kappa opioid receptor stimulation in female mice with endometriosis pain. The persistence of affective and cognitive manifestations suggests that these comorbidities are independent of pelvic pain and simultaneous treatment of these comorbidities may be necessary for successful management of endometriosis.
Collapse
|
26
|
Collin A, Vein J, Wittrant Y, Pereira B, Amode R, Guillet C, Richard D, Eschalier A, Balayssac D. A new clinically-relevant rat model of letrozole-induced chronic nociceptive disorders. Toxicol Appl Pharmacol 2021; 425:115600. [PMID: 34081940 DOI: 10.1016/j.taap.2021.115600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022]
Abstract
Among postmenopausal women with estrogen receptor-positive breast cancer, more than 80% receive hormone therapy including aromatase inhibitors (AIs). Half of them develop chronic arthralgia - characterized by symmetric articular pain, carpal tunnel syndrome, morning stiffness, myalgia and a decrease in grip strength - which is associated with treatment discontinuation. Only a few animal studies have linked AI treatment to nociception, and none to arthralgia. Thus, we developed a new chronic AI-induced nociceptive disorder model mimicking clinical symptoms induced by AIs, using subcutaneous letrozole pellets in ovariectomized (OVX) rats. Following plasma letrozole dosage at the end of the experiment (day 73), only rats with at least 90 ng/ml of letrozole were considered significantly exposed to letrozole (OVX + high LTZ group), whereas treated animals with less than 90 ng/ml were pooled in the OVX + low LTZ group. Chronic nociceptive disorder set in rapidly and was maintained for more than 70 days in the OVX + high LTZ group. Furthermore, OVX + high LTZ rats saw no alteration in locomotion, myalgia or experimental anxiety during this period. Bone parameters of the femora were significantly altered in all OVX rats compared to Sham+vehicle pellet. A mechanistic analysis focused on TRPA1, receptor suspected to mediate AI-evoked pain, and showed no modification in its expression in the DRG. This new long-lasting chronic rat model, efficiently reproduces the symptoms of AI-induced nociceptive disorder affecting patients' daily activities and quality-of-life. It should help to study the pathophysiology of this disorder and to promote the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Aurore Collin
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France.
| | - Julie Vein
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - Yohann Wittrant
- Université Clermont Auvergne, INRA, UNH, 63000 Clermont-Ferrand, France; INRAE, UMR 1019, UNH, 63122 Saint-Genès Champanelle, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Direction de la recherche clinique et de l'innovation, F-63000 Clermont-Ferrand, France
| | - Raalib Amode
- School of Pharmacy, Faculty of Science, University of East Anglia, UK
| | - Christelle Guillet
- Université Clermont Auvergne, INRA, UMR1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Damien Richard
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Laboratoire de Pharmacologie et de Toxicologie, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, F-63000 Clermont-Ferrand, France
| | - David Balayssac
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Direction de la recherche clinique et de l'innovation, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
27
|
Maddern J, Grundy L, Castro J, Brierley SM. Pain in Endometriosis. Front Cell Neurosci 2020; 14:590823. [PMID: 33132854 PMCID: PMC7573391 DOI: 10.3389/fncel.2020.590823] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is a chronic and debilitating condition affecting ∼10% of women. Endometriosis is characterized by infertility and chronic pelvic pain, yet treatment options remain limited. In many respects this is related to an underlying lack of knowledge of the etiology and mechanisms contributing to endometriosis-induced pain. Whilst many studies focus on retrograde menstruation, and the formation and development of lesions in the pathogenesis of endometriosis, the mechanisms underlying the associated pain remain poorly described. Here we review the recent clinical and experimental evidence of the mechanisms contributing to chronic pain in endometriosis. This includes the roles of inflammation, neurogenic inflammation, neuroangiogenesis, peripheral sensitization and central sensitization. As endometriosis patients are also known to have co-morbidities such as irritable bowel syndrome and overactive bladder syndrome, we highlight how common nerve pathways innervating the colon, bladder and female reproductive tract can contribute to co-morbidity via cross-organ sensitization.
Collapse
Affiliation(s)
- Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, North Terrace Campus, Adelaide, SA, Australia
| |
Collapse
|
28
|
Escudero-Lara A, Cabañero D, Maldonado R. Surgical Induction of Endometriosis in Female Mice. Bio Protoc 2020; 10:e3763. [PMID: 33659421 DOI: 10.21769/bioprotoc.3763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/24/2020] [Accepted: 08/17/2020] [Indexed: 11/02/2022] Open
Abstract
Endometriosis is a common gynecological disease characterized by the presence of endometrial tissue outside the uterine cavity. It is frequently associated with pain, infertility and a reduced quality of life, and it lacks adequate treatment. Several rodent models of endometriosis have been developed through heterologous and homologous transplantation of endometrial tissue into the abdominal compartment. Here we describe a surgical procedure to generate a syngeneic model of endometriosis in immunocompetent mice with intact uterine and ovarian tissues. In this model, four uterine fragments from a donor mouse at diestrus are sutured to the abdominal wall of a recipient mouse. One month after surgeries, endometrial implants develop into cysts with glandular epithelium and stroma, mimicking the endometriotic lesions observed in women with endometriosis. Therefore, this mouse model provides a valuable tool to study the pathophysiology of endometriosis and the efficacy of potential treatments.
Collapse
Affiliation(s)
- Alejandra Escudero-Lara
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|