1
|
Qin W, Ma Z, Bai G, Qin W, Li L, Hao D, Wang Y, Yan J, Han X, Niu W, Niu L, Jiao K. Neurovascularization inhibiting dual responsive hydrogel for alleviating the progression of osteoarthritis. Nat Commun 2025; 16:1390. [PMID: 39910066 PMCID: PMC11799281 DOI: 10.1038/s41467-025-56727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Treating osteoarthritis (OA) associated pain is a challenge with the potential to significantly improve patients lives. Here, we report on a hydrogel for extracellular RNA scavenging and releasing bevacizumab to block neurovascularization at the osteochondral interface, thereby mitigating OA pain and disease progression. The hydrogel is formed by cross-linking aldehyde-phenylboronic acid-modified sodium alginate/polyethyleneimine-grafted protocatechuic acid (OSAP/PPCA) and bevacizumab sustained-release nanoparticles (BGN@Be), termed OSPPB. The dynamic Schiff base bonds and boronic ester bonds allow for injectability, self-healing, and pH/reactive oxygen species dual responsiveness. The OSPPB hydrogel can significantly inhibit angiogenesis and neurogenesis in vitro. In an in vivo OA model, intraarticular injection of OSPPB accelerates the healing process of condyles and alleviates chronic pain by inhibiting neurovascularization at the osteochondral interface. The injectable hydrogel represents a promising technique to treat OA and OA associated pain.
Collapse
Affiliation(s)
- Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Zhangyu Ma
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Guo Bai
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Wen Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Ling Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Dongxiao Hao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Yuzhu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Jianfei Yan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Wen Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
2
|
Ma Z, Wan Q, Qin W, Qin W, Yan J, Zhu Y, Wang Y, Ma Y, Wan M, Han X, Zhao H, Hou Y, Tay FR, Niu L, Jiao K. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci 2025; 17:3. [PMID: 39762209 PMCID: PMC11704193 DOI: 10.1038/s41368-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.
Collapse
Affiliation(s)
- Zhangyu Ma
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qianqian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Janfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yina Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuzhu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meichen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haoyan Zhao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Hou
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Zortea JM, Baggio DF, da Luz FMR, Lejeune VBP, Spagnol FJ, Chichorro JG. Comparative study of the effects of ibuprofen, acetaminophen, and codeine in a model of orofacial postoperative pain in male and female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9887-9895. [PMID: 38935129 DOI: 10.1007/s00210-024-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Pain management is a primary goal after oral surgeries, but little is known about sex differences in the sensitivity to analgesics. This study aimed to compare the efficacy of three drugs with analgesic potential on heat and mechanical hyperalgesia, spontaneous pain and locomotion on male and female rats subjected to a model of orofacial postoperative pain. Male and female Wistar rats were submitted to intraoral incision or sham surgery, and on postoperative day 3, the effect of the ibuprofen (30 and 100 mg/kg), acetaminophen (100 and 300 mg/kg) and codeine (3 and 10 mg/kg) was assessed on responses to heat and mechanical facial stimulation, facial grooming, and locomotion. Ibuprofen reduced heat and mechanical hyperalgesia and grooming behavior in male and female rats in a non-sedative dose; acetaminophen dose-dependently reduced the mechanical hyperalgesia and abolished the heat hyperalgesia and the grooming behavior but caused sedation in both sexes; codeine dose-dependently reduced the mechanical hyperalgesia in male and female rats, and reduced the heat hyperalgesia, but females were less sensitive than males. It reduced spontaneous facial grooming in both sexes, but induced hyperlocomotion in females. Ibuprofen presented the most favorable profile, since it reduced over 50% heat and mechanical hyperalgesia in male and female rats, and significantly reduced spontaneous pain, without causing sedation or affecting locomotion. The identification of sex differences in the sensitivity and safety profile of frequently used analgesics can help guide the choice of more effective individualized therapies for pain control.
Collapse
Affiliation(s)
- Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Fernanddo José Spagnol
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
4
|
Fang ZY, Yang Y, Yao Y, Liu SS, Liu LK, Lu SJ, Zeng H, Cai B, Xu LL. Oral behaviors and anxiety are significant predictors of jaw function limitation in patients with anterior disc displacement without reduction. Arch Oral Biol 2024; 166:106033. [PMID: 38986191 DOI: 10.1016/j.archoralbio.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE We aimed to describe jaw function characteristics in patients with anterior disc displacement without reduction (ADDWoR) using the jaw function limitation scale (JFLS), and to investigate the effects of biopsychosocial risk factors on limited jaw function. DESIGN In this cross-sectional study of 636 patients with ADDWoR (females, 568; males, 68), we used the JFLS to assess jaw function. Behavioral, psychological, sociodemographic, and biomedical data were collected. Multivariate logistic regression analysis was used to determine risk factors affecting limited jaw function. A receiver operating characteristic curve was used to evaluate the predictive effect of these risk factors. RESULTS ADDWoR-associated limitations included restricted jaw mobility and mastication, which exceeded median global functional limitations scale scores, especially mouth opening to bite an apple and chewing tough food. Females had greater limitations in jaw mobility, verbal and emotional communication, and overall. Multivariate logistic regression analysis findings indicated that oral behaviors, anxiety, sex, pain intensity, and maximal mouth opening (MMO) were predictive of limited jaw function (area under the curve, 72 %). CONCLUSION Patients with ADDWoR reported mastication and jaw mobility restrictions, with females having more pronounced limitations, and specific risk factors identified as significant predictors of jaw function limitations. Along with pain relief and improvement in MMO, appropriate psychological counseling and oral behavioral correction facilitates recovery of jaw function in such patients.
Collapse
Affiliation(s)
- Zhong-Yi Fang
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Yuan Yao
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Sha-Sha Liu
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Li-Kun Liu
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Shen-Ji Lu
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Hong Zeng
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Bin Cai
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Li-Li Xu
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
5
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Cohen SP, Caterina MJ, Yang SY, Socolovsky M, Sommer C. Pain in the Context of Sensory Deafferentation. Anesthesiology 2024; 140:824-848. [PMID: 38470115 DOI: 10.1097/aln.0000000000004881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Pain that accompanies deafferentation is one of the most mysterious and misunderstood medical conditions. Prevalence rates for the assorted conditions vary considerably but the most reliable estimates are greater than 50% for strokes involving the somatosensory system, brachial plexus avulsions, spinal cord injury, and limb amputation, with controversy surrounding the mechanistic contributions of deafferentation to ensuing neuropathic pain syndromes. Deafferentation pain has also been described for loss of other body parts (e.g., eyes and breasts) and may contribute to between 10% and upwards of 30% of neuropathic symptoms in peripheral neuropathies. There is no pathognomonic test or sign to identify deafferentation pain, and part of the controversy surrounding it stems from the prodigious challenges in differentiating cause and effect. For example, it is unknown whether cortical reorganization causes pain or is a byproduct of pathoanatomical changes accompanying injury, including pain. Similarly, ascertaining whether deafferentation contributes to neuropathic pain, or whether concomitant injury to nerve fibers transmitting pain and touch sensation leads to a deafferentation-like phenotype can be clinically difficult, although a detailed neurologic examination, functional imaging, and psychophysical tests may provide clues. Due in part to the concurrent morbidities, the physical, psychologic, and by extension socioeconomic costs of disorders associated with deafferentation are higher than for other chronic pain conditions. Treatment is symptom-based, with evidence supporting first-line antineuropathic medications such as gabapentinoids and antidepressants. Studies examining noninvasive neuromodulation and virtual reality have yielded mixed results.
Collapse
Affiliation(s)
- Steven P Cohen
- Departments of Anesthesiology, Neurology, Physical Medicine and Rehabilitation, Psychiatry and Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Departments of Physical Medicine and Rehabilitation and Anesthesiology, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Michael J Caterina
- Neurosurgery Pain Research Institute and Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Su-Yin Yang
- Psychology Service, Woodlands Health, and Adjunct Faculty, Lee Kong Chian School of Medicine, Singapore
| | - Mariano Socolovsky
- Department of Neurosurgery, University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Baggio DF, da Luz FMR, Zortea JM, Lejeune VBP, Chichorro JG. Sex differences in carbamazepine effects in a rat model of trigeminal neuropathic pain. Eur J Pharmacol 2024; 967:176386. [PMID: 38311280 DOI: 10.1016/j.ejphar.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Carbamazepine (CBZ) represents the first-line treatment for trigeminal neuralgia, a condition of facial pain that affects mainly women. The chronic constriction of the infraorbital nerve (CCI-ION) is a widely used model to study this condition, but most studies do not include females. Thus, this study aimed to characterize sensory and affective changes in female rats after CCI-ION and compare the effect of CBZ in both sexes. Mechanical allodynia was assessed 15 days after CCI-ION surgery in rats treated with CBZ (10 and 30 mg/kg, i.p.) or vehicle, together with the open-field test. Independent groups were tested on the Conditioned Place Preference (CPP) paradigm and ultrasonic vocalization (USV) analysis. Blood samples were collected for dosage of the main CBZ metabolite. CBZ at 30 mg/kg impaired locomotion of CCI-ION male and sham and CCI-ION female rats and resulted in significantly higher plasma concentrations of 10-11-EPX-CBZ in the latter. Only male CCI-ION rats showed increased facial grooming which was significantly reduced by CBZ at 10 mg/kg. CBZ at 10 mg/kg significantly reduced mechanical allodynia and induced CPP only in female CCI-ION rats. Also, female CCI-ION showed reduced emission of appetitive USV but did not show anxiety-like behavior. In conclusion, male and female CCI-ION rats presented differences in the expression of the affective-motivational pain component and CBZ was more effective in females than males. Further studies using both sexes in trigeminal neuropathic pain models are warranted for a better understanding of potential differences in the pathophysiological mechanisms and efficacy of pharmacological treatments.
Collapse
Affiliation(s)
- Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Fiatcoski F, Jesus CHA, de Melo Turnes J, Chichorro JG, Kopruszinski CM. Sex differences in descending control of nociception (DCN) responses after chronic orofacial pain induction in rats and the contribution of kappa opioid receptors. Behav Brain Res 2024; 459:114789. [PMID: 38036264 DOI: 10.1016/j.bbr.2023.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Descending control of nociception (DCN), a measure of efficiency of descending pain inhibition, can be assessed in animals by the combined application of test and conditioning noxious stimuli. Evidence from pre-clinical and clinical studies indicates that this mechanism of pain control may differ between sexes and might be impaired in many chronic pain states. However, little is known about sex differences in DCN efficiency in models of acute and chronic orofacial pain. Herein, we first evaluated DCN responses in male and female rats by the applying formalin into the upper lip or capsaicin into the forepaw as the conditioning stimulus, followed by mechanical stimulation (Randall-Selitto) of the hind paw as the test stimulus. The same protocol (i.e., capsaicin in the forepaw followed by mechanical stimulation of the hind paw) was evaluated in male and female rats on day 3 after intraoral incision and on day 15 and 30 after chronic constriction injury of the infraorbital nerve (CCI-ION). Additionally, we assessed the effect of the kappa opioid receptor (KOR) antagonist Norbinaltorphimine (nor-BNI) on DCN responses of female nerve-injured rats. This study shows that naïve female rats exhibit less efficient DCN compared to males. Postoperative pain did not alter DCN responses in female and male rats, but CCI-ION induced loss of DCN responses in females but not in males. Systemic pretreatment with nor-BNI prevented the loss of DCN induced by CCI-ION in female rats. The results reveal sex differences in DCN responses and female-specific impairment of DCN following chronic orofacial pain. Moreover, the findings suggest that, at least for females, blocking KOR could be a promising therapeutic approach to prevent maladaptive changes in chronic orofacial pain.
Collapse
Affiliation(s)
- Fernanda Fiatcoski
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Joelle de Melo Turnes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | |
Collapse
|
9
|
Vinyes D, Traverso PH, Murillo JH, Sánchez-Padilla M, Muñoz-Sellart M. Improvement in post-orthodontic chronic musculoskeletal pain after local anesthetic injections in the trigeminal area: a case series. J Int Med Res 2023; 51:3000605231214064. [PMID: 38017361 PMCID: PMC10686034 DOI: 10.1177/03000605231214064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023] Open
Abstract
Orthodontic treatment has been associated with chronic extraoral pain that is often resistant to common treatments such as drugs or physiotherapy, adversely affecting patients' quality of life. In this case series, we discuss the potential impact of orthodontics on chronic cervical spine pain or gonalgia and explore the long-term effect of local anesthetic injections as a possible therapeutic intervention. Six orthodontic patients with chronic cervical spine pain or gonalgia that substantially affected their quality of life were treated with injections of 0.5% procaine into individual lesions and at palpable points of tissue tension in the oral mucosa and extraoral myofascial areas. All patients in this case series reported significant improvement in their chronic pain, with no residual pain recorded at the 6-month follow-up. Injecting local anesthetic at stress points in the oral mucosal and extraoral myofascial regions may be an effective treatment for post-orthodontic neck and knee pain. Further research is required to better understand the potential benefits of this intervention for patients experiencing orthodontic-related musculoskeletal pain.
Collapse
Affiliation(s)
- David Vinyes
- Institute of Neural Therapy and Regulatory Medicine, Sabadell, Barcelona, Spain
- Master’s Degree in Continuing Education in Medical and Dental Neural Therapy, University of Barcelona, Barcelona, Spain
- Neural Therapy Research Foundation, Sabadell, Barcelona, Spain
| | - Paula Hermosilla Traverso
- Master’s Degree in Continuing Education in Medical and Dental Neural Therapy, University of Barcelona, Barcelona, Spain
- La Granja Family Health Center (CESFAM), La Granja Municipality, Santiago, Chile
| | - Julia Hartley Murillo
- Master’s Degree in Continuing Education in Medical and Dental Neural Therapy, University of Barcelona, Barcelona, Spain
| | - Maider Sánchez-Padilla
- Gimbernat University School, Universitat Autònoma de Barcelona, Sant Cugat del Vallès, Barcelona, Spain
| | - Montserrat Muñoz-Sellart
- Institute of Neural Therapy and Regulatory Medicine, Sabadell, Barcelona, Spain
- Master’s Degree in Continuing Education in Medical and Dental Neural Therapy, University of Barcelona, Barcelona, Spain
- Neural Therapy Research Foundation, Sabadell, Barcelona, Spain
| |
Collapse
|
10
|
Ma X, Zhu T, Ke J. Progress in animal models of trigeminal neuralgia. Arch Oral Biol 2023; 154:105765. [PMID: 37480619 DOI: 10.1016/j.archoralbio.2023.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This review aims to systematically summarize the methods of establishing various models of trigeminal neuralgia (TN), the scope of application, and current animals used in TN research and the corresponding pain measurements, hoping to provide valuable reference for researchers to select appropriate TN animal models and make contributions to the research of pathophysiology and management of the disease. DESIGN The related literatures of TN were searched through PubMed database using different combinations of the following terms and keywords including but not limited: animal models, trigeminal neuralgia, orofacial neuropathic pain. To find the maximum number of eligible articles, no filters were used in the search. The references of eligible studies were analyzed and reviewed comprehensively. RESULTS This study summarized the current animal models of TN, categorized them into the following groups: chemical induction, photochemical induction, surgery and genetic engineering, and introduced various measurement methods to evaluate animal pain behaviors. CONCLUSIONS Although a variety of methods are used to establish disease models, there is no ideal TN model that can reflect all the characteristics of the disease. Therefore, there is still a need to develop more novel animal models in order to further study the etiology, pathological mechanism and potential treatment of TN.
Collapse
Affiliation(s)
- Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
11
|
Schwarting RKW. Behavioral analysis in laboratory rats: Challenges and usefulness of 50-kHz ultrasonic vocalizations. Neurosci Biobehav Rev 2023; 152:105260. [PMID: 37268181 DOI: 10.1016/j.neubiorev.2023.105260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Many rodent species emit and detect vocalizations in the ultrasonic range. Rats use three classes of ultrasonic vocalizations depending on developmental stage, experience and the behavioral situation. Calls from one class emitted by juvenile and adult rats, the so-called 50-kHz calls, are typical for appetitive and social situations. This review provides a brief historical account on the introduction of 50-kHz calls in behavioral research followed by a survey of their scientific applications focusing on the last five years, where 50-kHz publications reached a climax. Then, specific methodological challenges will be addressed, like how to measure and report 50-kHz USV, the problem of assignment of acoustic signals to a specific sender in a social situation, and individual variability in call propensity. Finally, the intricacy of interpreting 50-kHz results will be discussed focusing on the most prevalent ones, namely as communicative signals and/or readouts of the sender's emotional status.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
12
|
Lopes RV, Baggio DF, Ferraz CR, Bertozzi MM, Saraiva-Santos T, Verri Junior WA, Chichorro JG. Maresin-2 inhibits inflammatory and neuropathic trigeminal pain and reduces neuronal activation in the trigeminal ganglion. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100093. [PMID: 37397816 PMCID: PMC10313899 DOI: 10.1016/j.crneur.2023.100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action.
Collapse
Affiliation(s)
- Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri Junior
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
13
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
14
|
LEJEUNE VBP, LOPES RV, BAGGIO DF, KOREN LDO, ZANOVELI JM, CHICHORRO JG. Antinociceptive and anxiolytic-like effects of Lavandula angustifolia essential oil on rat models of orofacial pain. J Appl Oral Sci 2023; 30:e20220304. [PMID: 36629536 PMCID: PMC9828878 DOI: 10.1590/1678-7757-2002-0304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nociceptive and inflammatory orofacial pain is highly prevalent in the population, which justifies the search for safer analgesics. There is increasing evidence of the analgesic and anxiolytic potential of Lavandula angustifolia essential oil (LAV EO), which may represent, when administered through inhalation, may represent a safer alternative for pain treatment. OBJECTIVE to evaluate whether LAV EO has antinociceptive effect in the formalin test, and anti-hyperalgesic and anxiolytic-like effects in rats subjected to a model of orofacial postoperative pain. METHODOLOGY Female Wistar rats were exposed to LAV EO (5%) by inhalation for 30 minutes. After exposure, animals were injected with formalin (2.5%, 50 μL) or saline into the hind paw or upper lip and the number of flinches or facial grooming time, respectively, were evaluated. Likewise, on day 3 after intraoral mucosa incision, the animals were exposed to LAV EO and facial mechanical, and heat hyperalgesia were assessed. The influence of LAV EO inhalation on anxiety-like behavior was assessed in operated rats by testing them on the open field (OF) and elevated plus maze (EPM). RESULTS LAV EO reduced the phase II of the paw formalin test and both phases of the orofacial formalin test. On day three post-incision, LAV EO reduced heat and mechanical hyperalgesia, from 30 minutes up to three hours, and reduced the anxiety-like behavior in operated rats without causing locomotor deficit. CONCLUSION LAV EO inhalation results in antinociceptive and anxiolytic-like effects in orofacial pain models, which encourages further studies on LAV EO indications and effectiveness on orofacial pain conditions.
Collapse
Affiliation(s)
- Vanessa Bordenowsky Pereira LEJEUNE
- Universidade Federal do ParanáDepartamento de FarmacologiaCuritibaParanáBrasilUniversidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Farmacologia, Curitiba, Paraná, Brasil.
| | - Raphael Vieira LOPES
- Universidade Federal do ParanáDepartamento de FarmacologiaCuritibaParanáBrasilUniversidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Farmacologia, Curitiba, Paraná, Brasil.
| | - Darciane Favero BAGGIO
- Universidade Federal do ParanáDepartamento de FarmacologiaCuritibaParanáBrasilUniversidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Farmacologia, Curitiba, Paraná, Brasil.
| | - Laura de Oliveira KOREN
- Universidade Federal do ParanáDepartamento de FarmacologiaCuritibaParanáBrasilUniversidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Farmacologia, Curitiba, Paraná, Brasil.
| | - Janaina Menezes ZANOVELI
- Universidade Federal do ParanáDepartamento de FarmacologiaCuritibaParanáBrasilUniversidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Farmacologia, Curitiba, Paraná, Brasil.
| | - Juliana Geremias CHICHORRO
- Universidade Federal do ParanáDepartamento de FarmacologiaCuritibaParanáBrasilUniversidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Departamento de Farmacologia, Curitiba, Paraná, Brasil.
| |
Collapse
|
15
|
Hummig W, Baggio DF, Lopes RV, dos Santos SMD, Ferreira LEN, Chichorro JG. Antinociceptive effect of ultra-low dose naltrexone in a pre-clinical model of postoperative orofacial pain. Brain Res 2023; 1798:148154. [DOI: 10.1016/j.brainres.2022.148154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
16
|
Baggio DF, da Luz FMR, Lopes RV, Ferreira LEN, Araya EI, Chichorro JG. Sex Dimorphism in Resolvin D5-induced Analgesia in Rat Models of Trigeminal Pain. THE JOURNAL OF PAIN 2022; 24:717-729. [PMID: 36584931 DOI: 10.1016/j.jpain.2022.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Resolvin D5 (RvD5) is a specialized pro-resolving lipid mediator with potent anti-inflammatory and analgesic properties. Orofacial pain conditions, especially those that are chronic, present clinical challenges in terms of pharmacological management. Thus, new therapeutic options are clearly warranted. Herein, we investigated the antinociceptive effect of RvD5 in the chronic constriction injury of the infraorbital nerve (CCI-ION) model and in the orofacial formalin test in female and male Wistar rats. Our results indicated that repeated subarachnoid medullary injections of RvD5 at 10 ng resulted in a significant reduction of heat and mechanical hyperalgesia induced by the CCI-ION in male and female rats, but males were more sensitive to RvD5 effects. In addition, after CCI-ION, interleukin-6 (IL-6) level was increased in the trigeminal nucleus caudalis of male, but not female rats, which was reduced by RvD5 repeated treatment. No changes in the levels of IL-1β were found. Minocycline blocked the effect of RvD5 in male rats but failed to affect RvD5 antinociceptive effect in females. Moreover, a single medullary injection of RvD5 caused a significant reduction of formalin-induced facial grooming, in phases I and II of the test, but only in male rats. This study demonstrated for the first time the analgesic effect of RvD5 in trigeminal pain models, and corroborated previous evidence of sex dichotomy, with a greater effect in males. This article presents a translational potential of RvD5 for targeted therapies aiming at the control of acute and chronic trigeminal pain, but further studies are needed to elucidate its sex-related mechanisms. PERSPECTIVE: This study demonstrated that RvD5 may provide the benefits for trigeminal neuropathic pain treatment in male and female rats, but its effect on inflammatory orofacial pain seems to be restricted only to males. Also, it provided the evidence for sex dichotomy in the mechanisms related to the antinociceptive effect of RvD5.
Collapse
Affiliation(s)
- Darciane F Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Fernanda M R da Luz
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Raphael V Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| | | | - Erika I Araya
- Departament de Medicina, Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| |
Collapse
|
17
|
Jesus CHA, Ferreira MV, Gasparin AT, Rosa ES, Genaro K, Crippa JADS, Chichorro JG, Cunha JMD. Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model. Behav Brain Res 2022; 435:114076. [PMID: 36028000 DOI: 10.1016/j.bbr.2022.114076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Neuropathic pain (NP) is a complex health problem that includes sensorial manifestations such as evoked and ongoing pain. Cannabidiol (CBD) has shown potential in the treatment of NP and the combination between opioids and cannabinoids has provided promising results on pain relief. Thus, our study aimed to investigate the effect of treatment combination between CBD and morphine on evoked and ongoing pain, and the effect of CBD on morphine-induced tolerance in the model of chronic constriction injury (CCI) of the sciatic nerve in rats. Mechanical thresholds (i.e., evoked pain) were evaluated before and 7 days after surgery. We also employed a 4-day conditioned place preference (CPP) protocol, to evaluate relief of ongoing pain (6-9 days after surgery). Treatment with morphine (2 and 4 mg/kg) or CBD (30 mg/kg) induced a significant antinociceptive effect on evoked pain. The combination of CBD (30 mg/kg) and morphine (1 mg/kg) produced an enhanced antinociceptive effect, when compared to morphine alone (1 mg/Kg). Treatment with morphine (1 and 2 mg/kg) or CBD (30 mg/kg) alone failed to induce significant scores in the CPP test. However, combined treatment of CBD (30 mg/kg) and morphine (1 mg/kg) provided significant positive scores, increased the number of entrances in the drug-paired chamber in the CPP test and did not alter locomotor activity in rats. Lastly, treatment with CBD partially attenuated morphine-induced tolerance. In summary, our results support the indication of CBD as an adjuvant to opioid therapy for the attenuation of NP and opioid-induced analgesic tolerance.
Collapse
Affiliation(s)
- Carlos Henrique Alves Jesus
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Aléxia Thamara Gasparin
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Evelize Stacoviaki Rosa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
de Freitas Domingues JS, Dos Santos SMD, das Neves Rodrigues Ferreira J, Monti BM, Baggio DF, Hummig W, Araya EI, de Paula E, Chichorro JG, Ferreira LEN. Antinociceptive effects of bupivacaine and its sulfobutylether-β-cyclodextrin inclusion complex in orofacial pain. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1405-1417. [PMID: 35909169 DOI: 10.1007/s00210-022-02278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Bupivacaine hydrochloride (BVC) represents an option to produce long-lasting analgesia, and complexation in cyclodextrins has shown improvements in biopharmaceutical properties. This study aimed to characterize and test the cytotoxicity and antinociceptive effects of BVC complexed in sulfobutylether-β-cyclodextrin (SBEβCD). The kinetics and stoichiometry of complexation and BVC-SBEβCD association constant were evaluated by phase solubility study and Job's plot. Evidence of the BVC-SBEβCD complex formation was obtained from scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The cytotoxicity was evaluated in keratinocyte (HaCaT) and neuroblastoma (SH-SY5Y). Antinociceptive effects were registered via orofacial pain models: the formalin test, carrageenan-induced hyperalgesia, and postoperative pain (intraoral incision). The complex formation occurred at a 1:1 BVC-SBEβCD molar ratio, with a low association constant (13.2 M-1). SEM, DSC, and FTIR results demonstrated the host-guest interaction. The IC50% values determined in SH-SY5Y were 216 µM and 149 µM for BVC and BVC-SBEβCD, respectively (p < 0.05). There was no difference in HaCaT IC50%. In orofacial pain model, BVC-SBEβCD significantly prolonged antinociceptive effect, in about 2 h, compared to plain BVC. SBEβCD can be used as a drug delivery system for bupivacaine, whereas the complex showed long-lasting analgesic effects.
Collapse
Affiliation(s)
| | | | | | - Bianca Miguel Monti
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Wagner Hummig
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | |
Collapse
|
19
|
Araya EI, Baggio DF, Koren LDO, Schwarting RKW, Chichorro JG. Trigeminal neuropathic pain reduces 50-kHz ultrasonic vocalizations in rats, which are restored by analgesic drugs. Eur J Pharmacol 2022; 922:174905. [PMID: 35354072 DOI: 10.1016/j.ejphar.2022.174905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Trigeminal neuralgia (TN) is a severe form of neuropathic pain frequently associated with anxiety. The chronic constriction injury of the infraorbital nerve (CCI-ION) of rodents is a well-established model to study sensory alterations related to TN. However, few studies have addressed the emotional component of pain, which is fundamental to increase its translational capability. Emission of ultrasonic vocalization (USV) is considered a reliable measure of the emotional state of rats. Rats emit 50-kHz USVs in social and appetitive situations, whereas 22-kHz USVs may index a negative state. Studies suggest that persistent pain causes reduction in 50-kHz calls, but this may also indicate anxiety-like behavior. Thus, we hypothesize that CCI-ION would decrease 50-kHz calls and that pharmacological pain relief would restore USVs, without interfering with anxiety-like behavior. On day 15 after surgery, male rats were treated with local lidocaine, midazolam or carbamazepine to determine their effect on facial mechanical hyperalgesia, USV and anxiety-like behavior. The results showed that CCI-ION induced hyperalgesia, which was attenuated by lidocaine or carbamazepine, developed anxiety-like behavior, which was reduced only by midazolam, and displayed a reduced number of 50-kHz calls, compared to sham. Lidocaine and carbamazepine increased 50-kHz calls emitted by CCI-ION rats, but midazolam failed to change them. These data add information on the translational aspects of CCI-ION model and carbamazepine treatment for trigeminal neuropathic pain. Furthermore, they suggest that the reduction of USV in persistent pain conditions is related to spontaneous pain and reinforce the idea that it reflects the emotional component of pain.
Collapse
Affiliation(s)
- Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil.
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil
| | - Laura de Oliveira Koren
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil
| | - Rainer K W Schwarting
- Department of Psychology, Behavioral Neuroscience, Experimental and Biological Psychology, and Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
20
|
Chronic facial inflammatory pain-induced anxiety is associated with bilateral deactivation of the rostral anterior cingulate cortex. Brain Res Bull 2022; 184:88-98. [PMID: 35339627 DOI: 10.1016/j.brainresbull.2022.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Patients with chronic pain, especially orofacial pain, often suffer from affective disorders, including anxiety. Previous studies largely focused on the role of the caudal anterior cingulate cortex (cACC) in affective responses to pain, long-term potentiation (LTP) in cACC being thought to mediate the interaction between anxiety and chronic pain. But recent evidence indicates that the rostral ACC (rACC), too, is implicated in processing affective pain. However, whether such processing is associated with neuronal and/or synaptic plasticity is still unknown. We addressed this issue in a chronic facial inflammatory pain model (complete Freund's adjuvant model) in rats, by combining behavior, Fos protein immunochemistry and ex vivo intracellular recordings in rACC slices prepared from these animals. Facial mechanical allodynia occurs immediately after CFA injection, peaks at post-injection day 3 and progressively recovers until post-injection days 10-11, whereas anxiety is delayed, being present at post-injection day 10, when sensory hypersensitivity is relieved, but, notably, not at post-injection day 3. Fos expression reveals that neuronal activity follows a bi-phasic time course in bilateral rACC: first enhanced at post-injection day 3, it gets strongly depressed at post-injection day 10. Ex vivo recordings from lamina V pyramidal neurons, the rACC projecting neurons, show that both their intrinsic excitability and excitatory synaptic inputs have undergone long-term depression (LTD) at post-injection day 10. Thus chronic pain processing is associated with dynamic changes in rACC activity: first enhanced and subsequently decreased, at the time of anxiety-like behavior. Chronic pain-induced anxiety might thus result from a rACC deactivation-cACC hyperactivation interplay.
Collapse
|
21
|
Araya EI, Carvalho EC, Andreatini R, Zamponi GW, Chichorro JG. Trigeminal neuropathic pain causes changes in affective processing of pain in rats. Mol Pain 2022; 18:17448069211057750. [PMID: 35042377 PMCID: PMC8777332 DOI: 10.1177/17448069211057750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Trigeminal neuropathic pain has been modeled in rodents through the constriction of the
infraorbital nerve (CCI-ION). Sensory alterations, including spontaneous pain, and thermal
and mechanical hyperalgesia are well characterized, but there is a notable lack of
evidence about the affective pain component in this model. Evaluation of the emotional
component of pain in rats has been proposed as a way to optimize potential translational
value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic vocalizations (USVs) are
considered well-established measures of negative and positive emotional states,
respectively. Thus, this study tested the hypothesis that trigeminal neuropathic pain
would result, in addition to the sensory alterations, in a decrease of 50 kHz USV, which
may be related to altered function of brain areas involved in emotional pain processing.
CCI-ION surgery was performed on 60-day-old male Wistar rats. 15 days after surgery, von
Frey filaments were applied to detect mechanical hyperalgesia, and USV was recorded. At
the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed
investigation of the involvement of the dopaminergic system in USV emission. Finally,
brain tissue was collected to assess the change in tyrosine hydroxylase (TH) expression in
the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in emotional pain
processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed
that CCI-ION rats presented mechanical hyperalgesia and a significant reduction of
environmental-induced 50 kHz USV. Amphetamine caused a marked increase in 50 kHz USV
emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and
c-Fos analysis revealed an increase in neuronal activation. Taken together, these data
indicate that CCI-ION causes a reduction in the emission of environmental-induced
appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes
may be related to a reduction in the mesolimbic dopaminergic activity.
Collapse
Affiliation(s)
- Erika I Araya
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Eduardo C Carvalho
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, 70401University of Calgary, Calgary, AB, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
22
|
Presto P, Ji G, Junell R, Griffin Z, Neugebauer V. Fear Extinction-Based Inter-Individual and Sex Differences in Pain-Related Vocalizations and Anxiety-like Behaviors but Not Nocifensive Reflexes. Brain Sci 2021; 11:brainsci11101339. [PMID: 34679403 PMCID: PMC8533751 DOI: 10.3390/brainsci11101339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inter-individual and sex differences in pain responses are recognized but their mechanisms are not well understood. This study was intended to provide the behavioral framework for analyses of pain mechanisms using fear extinction learning as a predictor of phenotypic and sex differences in sensory (mechanical withdrawal thresholds) and emotional-affective aspects (open field tests for anxiety-like behaviors and audible and ultrasonic components of vocalizations) of acute and chronic pain. In acute arthritis and chronic neuropathic pain models, greater increases in vocalizations were found in females than males and in females with poor fear extinction abilities than females with strong fear extinction, particularly in the neuropathic pain model. Female rats showed higher anxiety-like behavior than males under baseline conditions but no inter-individual or sex differences were seen in the pain models. No inter-individual and sex differences in mechanosensitivity were observed. The data suggest that vocalizations are uniquely suited to detect inter-individual and sex differences in pain models, particularly in chronic neuropathic pain, whereas no such differences were found for mechanosensitivity, and baseline differences in anxiety-like behaviors disappeared in the pain models.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Correspondence: ; Tel.: +1-806-743-3880; Fax: +1-806-732-2744
| |
Collapse
|
23
|
Sugino S, Konno D, Abe J, Imamura-Kawasawa Y, Kido K, Suzuki J, Endo Y, Yamauchi M. Crucial involvement of catecholamine neurotransmission in postoperative nausea and vomiting: Whole-transcriptome profiling in the rat nucleus of the solitary tract. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12759. [PMID: 34114352 DOI: 10.1111/gbb.12759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/21/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The genetic mechanisms of postoperative nausea and vomiting (PONV) and the involvement of the catecholamine system in the brain have not been elucidated. Eating kaolin clay as a type of pica has been examined as an alternative behavior to emesis. Here, we evaluated changes in whole-transcriptome analysis in the nucleus of the solitary tract (NTS) in a rat pica model as a surrogate behavior of PONV to elucidate the molecular genetic mechanisms of the development of PONV and the involvement of the catecholamine system in the NTS. First, kaolin pica behaviors were investigated in 71 female Wistar rats following isoflurane anesthesia, surgical insult or morphine administration. Multiple linear regression analysis showed that 3 mg/kg morphine increased kaolin intake by 2.8 g (P = 0.0002). Next, total RNA and protein were extracted from the dissected NTS, and whole-transcriptome sequencing (RNA-seq) was performed to identify PONV-associated genes and to verify the involvement of the catecholamine system. The gene expression levels of tyrosine hydroxylase and dopamine beta-hydroxylase in the catecholamine biosynthesis pathway decreased significantly in the PONV model. Release of noradrenaline, a catecholamine pathway end product, may have increased at the synaptic terminal of the NTS neuron after pica behavior. Systematic administration of α2 adrenergic receptor agonists after surgery reduced kaolin intake from 3.2 g (control) to 1.0 g (P = 0.0014). These results indicated that catecholamine neurotransmission was involved in the development of PONV in the NTS.
Collapse
Affiliation(s)
- Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Daisuke Konno
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Junko Abe
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kanta Kido
- Department of Anesthesiology, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Jun Suzuki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuhiro Endo
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|