1
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
2
|
Dalenogare DP, Souza Monteiro de Araújo D, Landini L, Titiz M, De Siena G, De Logu F, Geppetti P, Nassini R, Trevisan G. Neuropathic-like Nociception and Spinal Cord Neuroinflammation Are Dependent on the TRPA1 Channel in Multiple Sclerosis Models in Mice. Cells 2023; 12:1511. [PMID: 37296632 PMCID: PMC10252670 DOI: 10.3390/cells12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.
Collapse
Affiliation(s)
- Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| | - Daniel Souza Monteiro de Araújo
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Lorenzo Landini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Mustafa Titiz
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gaetano De Siena
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Romina Nassini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
3
|
Motor Behavioral Deficits in the Cuprizone Model: Validity of the Rotarod Test Paradigm. Int J Mol Sci 2022; 23:ijms231911342. [PMID: 36232643 PMCID: PMC9570024 DOI: 10.3390/ijms231911342] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory disorder, which is histopathologically characterized by multifocal inflammatory demyelinating lesions affecting both the central nervous system’s white and grey matter. Especially during the progressive phases of the disease, immunomodulatory treatment strategies lose their effectiveness. To develop novel progressive MS treatment options, pre-clinical animal models are indispensable. Among the various different models, the cuprizone de- and remyelination model is frequently used. While most studies determine tissue damage and repair at the histological and ultrastructural level, functional readouts are less commonly applied. Among the various overt functional deficits, gait and coordination abnormalities are commonly observed in MS patients. Motor behavior is mediated by a complex neural network that originates in the cortex and terminates in the skeletal muscles. Several methods exist to determine gait abnormalities in small rodents, including the rotarod testing paradigm. In this review article, we provide an overview of the validity and characteristics of the rotarod test in cuprizone-intoxicated mice.
Collapse
|