1
|
Singh I, Anand S, Gowda DJ, Kamath A, Singh AK. Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders. Biogerontology 2024; 25:899-922. [PMID: 39177917 PMCID: PMC11486790 DOI: 10.1007/s10522-024-10128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Shashi Anand
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Deepashree J Gowda
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Amitha Kamath
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
2
|
Dodd S, Sominsky L, Siskind D, Bortolasci CC, Carvalho AF, Maes M, Walker AJ, Walder K, Yung AR, Williams LJ, Myles H, Watson T, Berk M. The role of metformin as a treatment for neuropsychiatric illness. Eur Neuropsychopharmacol 2022; 64:32-43. [PMID: 36191545 DOI: 10.1016/j.euroneuro.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Abstract
Advances in psychopharmacology have been significantly slower to evolve than in other disciplines of medicine and therefore investigation into novel therapeutic approaches is required. Additionally, concurrent metabolic conditions are prevalent among people with mental disorders. Metformin is a widely used hypoglycaemic agent that is now being studied for use beyond diabetes management. Evidence is emerging that metformin has multiple effects on diverse neurobiological pathways and consequently may be repurposed for treating mental illness. Metformin may have beneficial neuroimmunological, neuroplastic, neuro-oxidative and neuro-nitrosative effects across a range of psychiatric and neurodegenerative illnesses. Mechanisms include glucose lowering effects and effects on AMP-activated protein kinase (AMPK) signalling, however the best evidence for clinical benefit is through the glucose lowering effects, with other mechanisms less supported by the current evidence base. This narrative review aims to draw together the existing evidence for use of metformin as a psychopharmaceutical and present the role of metformin in the context of physical and psychiatric ill health, including metabolic, endocrinological and cancer domains. It not only has therapeutic potential in medical comorbidity but may have potential in core illness domains.
Collapse
Affiliation(s)
- Seetal Dodd
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, the University of Melbourne, Parkville, VIC, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Luba Sominsky
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health Laboratory, University Hospital Geelong, Barwon Health, VIC, Australia
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, MIRT, Level 2, 228 Logan Rd, Woolloongabba, Brisbane, Qld 4102, Australia University of Queensland School of Clinical Medicine, Brisbane, Australia Queensland Centre for Mental Health Research, Brisbane, Australia; Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adam J Walker
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Alison R Yung
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia; School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Lana J Williams
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Hannah Myles
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Northern Adelaide Mental Health Service, Salisbury, SA, Australia
| | - Tayler Watson
- Mental Health, Drugs and Alcohol Service, Barwon Health, Geelong VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, the University of Melbourne, Parkville, VIC, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Ashraf GM, DasGupta D, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, Alqurashi TMA, Sharaf SE, Al Abdulmonem W, Alyousef MA, Alhumaydhi FA, Shamsi A. Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27144652. [PMID: 35889524 PMCID: PMC9320910 DOI: 10.3390/molecules27144652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/22/2023] Open
Abstract
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP's). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer's disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson's disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of -6.9 kcal/mol forming interactions with binding pocket's critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M-1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs.
Collapse
Affiliation(s)
- Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (G.M.A.); (A.S.)
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh S. Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Z.A.); (B.S.A.)
- Department of Physiology, The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 21589, Saudi Arabia;
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah 24246, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraydah 51452, Saudi Arabia;
| | - Mohammed A. Alyousef
- Division of Neurosurgery, College of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: (G.M.A.); (A.S.)
| |
Collapse
|
4
|
Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch 2021; 473:723-734. [PMID: 33742308 DOI: 10.1007/s00424-021-02529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have linked carbonyl stress to many physiological processes. Increase in the levels of carbonyl compounds, derived from both endogenous and exogenous sources, is believed to accompany normal age-related decline as well as different pathologies. Reactive carbonyl species (RCS) are capable of damaging biomolecules via their involvement in a net of nonspecific reactions. In the advanced stages of RCS metabolism, variety of poorly degraded adducts and crosslinks, collectively named advanced glycoxidation end products (AGEs), arises. They are accumulated in an age-dependent manner in different tissues and organs and can contribute to inflammatory processes. In particular, detrimental effects of the end products are realized via activation of the specific receptor for AGEs (RAGE) and RAGE-dependent inflammatory signaling cascade. Although it is unclear, whether carbonyl stress is causal for age-associated impairments or it results from age- and disease-related cell damages, increased levels of RCS and AGEs are tightly related to inflammaging, and therefore, attenuation of the RAGE signaling is suggested as an effective approach for the treatment of inflammation and age-related disorders. The question raised in this review is whether specific metabolism in the aging brain related to carbonyl/RCS/AGE/RAGE stress.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|