1
|
Li L, Liu C, Pan W, Wang W, Jin W, Ren Y, Ma X. Repetitive Transcranial Magnetic Stimulation for Working Memory Deficits in Schizophrenia: A Systematic Review of Randomized Controlled Trials. Neuropsychiatr Dis Treat 2024; 20:649-662. [PMID: 38528855 PMCID: PMC10962363 DOI: 10.2147/ndt.s450303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Working memory (WM) deficits are a significant component of neurocognitive impairment in individuals with schizophrenia (SCZ). Two previous meta-analyses, conducted on randomized controlled trials (RCTs), examined the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in addressing WM deficits in individuals diagnosed with SCZ. However, the conclusions drawn from these analyses were inconsistent. Additionally, the commonly used random effects (RE) models might underestimate statistical errors, attributing a significant portion of perceived heterogeneity between studies to variations in study quality. Therefore, this review utilized both RE and quality effects (QE) models to assess relevant RCTs comparing TMS with sham intervention in terms of clinical outcomes. A comprehensive literature search was conducted using PubMed and Scopus databases, resulting in the inclusion of 13 studies for data synthesis. Overall, regardless of whether the RE or QE model was used, eligible RCTs suggested that the TMS and sham groups exhibited comparable therapeutic effects after treatment. The current state of research regarding the use of rTMS as a treatment for WM deficits in patients with SCZ remains in its preliminary phase. Furthermore, concerning the mechanism of action, the activation of brain regions focused on the dorsolateral prefrontal cortex and alterations in gamma oscillations may hold significant relevance in the therapeutic application of rTMS for addressing WM impairments. Finally, we believe that the application of closed-loop neuromodulation may contribute to the optimization of rTMS for WM impairment in patients with SCZ.
Collapse
Affiliation(s)
- Li Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Chaomeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Weigang Pan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Wen Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Wenqing Jin
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
de la Salle S, Choueiry J, McIntosh J, Bowers H, Ilivitsky V, Knott V. N-methyl-D-aspartate receptor antagonism impairs sensory gating in the auditory cortex in response to speech stimuli. Psychopharmacology (Berl) 2022; 239:2155-2169. [PMID: 35348805 DOI: 10.1007/s00213-022-06090-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Deficits in early auditory sensory processing in schizophrenia have been linked to N-methyl-D-aspartate receptor (NMDAR) hypofunction, but the role of NMDARs in aberrant auditory sensory gating (SG) in this disorder is unclear. This study, conducted in 22 healthy humans, examined the acute effects of a subanesthetic dose of the NMDAR antagonist ketamine on SG as measured electrophysiologically by suppression of the P50 event-related potential (ERP) to the second (S2) relative to the first (S1) of two closely paired (500 ms) identical speech stimuli. Ketamine induced impairment in SG indices at sensor (scalp)-level and at source-level in the auditory cortex (as assessed with eLORETA). Together with preliminary evidence of modest positive associations between impaired gating and dissociative symptoms elicited by ketamine, tentatively support a model of NMDAR hypofunction underlying disturbances in auditory SG in schizophrenia.
Collapse
Affiliation(s)
- Sara de la Salle
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Joelle Choueiry
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Vadim Ilivitsky
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Verner Knott
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Belanger-Coast MG, Zhang M, Bugay V, Gutierrez RA, Gregory SR, Yu W, Brenner R. Dequalinium chloride is an antagonists of α7 nicotinic acetylcholine receptors. Eur J Pharmacol 2022; 925:175000. [PMID: 35525312 DOI: 10.1016/j.ejphar.2022.175000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Dequalinium chloride has been used primarily as antiseptic compounds, but recently has been investigated for its effects on specific targets, including muscarinic acetylcholine receptors. Here we investigated dequalinium chloride as an antagonist to α7 nicotinic acetylcholine receptors. The pharmacological properties of dequalinium were established using cell lines stably co-transfected with the calcium-permeable human α7 nicotinic acetylcholine receptors and its chaperone NACHO, calcium dye fluorescent measurements or a calcium-sensitive protein reporter, and patch clamp recording of ionic currents. Using calcium dye fluorescence plate reader measurements, we find dequalinium chloride is an antagonist of α7 nicotinic acetylcholine receptors with an IC50 of 672 nM in response to activation with 500 μM acetylcholine chloride and positive allosteric modulator PNU-120596. However, using a membrane-tethered GCAMP7s calcium reporter allowed detection of α7-mediated calcium flux in the absence of PNU-120596. Using this approach revealed an IC50 of 157 nM for dequalinium on 300 μM acetylcholine-evoked currents. Using patch clamp recordings with 300 μM acetylcholine chloride and 10 μM PNU-120596, we find lower concentrations are sufficient to block ionic currents, with IC50 of 120 nM for dequalinium chloride and 54 nM for the related UCL 1684 compound. In summary, we find that dequalinium chloride and UCL1684, which are generally used to block SK-type potassium channels, are also highly effective antagonists of α7 nicotinic acetylcholine receptors. This finding, in combination with previous studies of muscarinic acetylcholine receptors, clearly establishes dequalinium compounds within the class of general anti-cholinergic antagonists.
Collapse
Affiliation(s)
- Matthieu G Belanger-Coast
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mei Zhang
- Sophion Bioscience, Inc, 400 Trade Center Drive, Suite, 6900, Woburn, MA, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Raul A Gutierrez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Summer R Gregory
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Weifeng Yu
- Sophion Bioscience, Inc, 400 Trade Center Drive, Suite, 6900, Woburn, MA, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Sex differences in P50 inhibition defects with psychopathology and cognition in patients with first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110380. [PMID: 34111493 DOI: 10.1016/j.pnpbp.2021.110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND A large number of studies have shown that the pathophysiology of schizophrenia may be involved in sensory gating that appears to be P50 inhibition. However, few studies have investigated the relationship between clinical symptoms, cognitive impairment and sensory gating disorders in patients with first-episode schizophrenia. The purpose of this study was to explore the sex differences in the relationship between clinical symptoms, cognitive impairment and P50 inhibition defects in patients with first-episode schizophrenia, which has not been reported. METHODS 130 patients with first-episode schizophrenia (53 males and 77 females) and 189 healthy controls (87 males and 102 females) participated in the study. Positive and Negative Syndrome Scale (PANSS) was used to evaluate the patients' psychopathological symptoms, and the 64-channel electroencephalogram (EEG) system was used to record the P50 inhibition. RESULTS Male patients had higher PANSS negative symptom, general psychopathology, cognitive factor and total scores than female patients (all p < 0.01). The S1 amplitude was smaller in male than female patients (all p < 0.05). Multiple regression analysis showed that in male patients, S1 latency was contributor to negative symptoms, while S1 latency, S2 latency, age, and smoking status were contributors to cognitive factor (all p < 0.05). In female patients, no P50 component was found to be an independent contributor to PANSS scores (all p > 0.05). CONCLUSIONS Our results indicate that there is a sex difference in the relationship between clinical symptoms, cognitive impairment and P50 inhibition defects in Chinese Han patients with first-episode schizophrenia.
Collapse
|
5
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
6
|
JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF-κB-mediated inflammation. Int Immunopharmacol 2021; 96:107726. [PMID: 33975230 DOI: 10.1016/j.intimp.2021.107726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 01/20/2023]
Abstract
Neuroinflammation plays an early and prominent role in the pathology of Alzheimer's disease (AD). Studies have shown that cholinergic lesion is a contributor for the pathophysiology of AD. The α7 nicotinic acetylcholine receptors (nAChRs), a subtype of nAChRs, are abundantly expressed in the brain regions related to cognition and memory, such as hippocampus and frontal cortex. The α7 nAChR is rapidly activated and desensitized by agonists. JWX-A0108 is a type I positive allosteric modulator (PAM) of α7 nAChR, which mainly enhances agonist-evoked peak currents. Here, we used the Morris Water Maze to evaluate the effect of JWX-A0108 on cognition and memory functions in APP/PS1 mice, and the mechanism related to anti-inflammatory effect. The results showed that JWX-A0108 could improve the learning and memory function of APP/PS1 transgenic mice in Morris water maze, decrease the expression of IL-1β, TNF-α, IL-6 in the brain and lower the phosphorylation level of IκBα (Ser32/36) and NF-κB p65 (Ser536), decrease the expression of Iba1, the microglia activation marker. Nissl staining showed that the CA3 and DG regions of hippocampus were damaged in APP/PS1 mice, which was improved by JWX-A0108. All of these effects of JWX-A0108 were reversed by MLA (α7 nAChR specific blocker). Taken together, the results reveal that JWX-A0108 improved the learning and memory function of APP/PS1 mice by enhancing the anti-inflammatory effect of the endogenous choline system through α7 nAChR, inhibited the activation of the NF-κB signaling pathway by inhibiting IκB phosphorylation, and ultimately inhibited inflammatory responses.
Collapse
|
7
|
Xia L, Wang D, Wei G, Wang J, Zhou H, Xu H, Tian Y, Dai Q, Xiu M, Chen D, Wang L, Zhang X. P50 inhibition defects with psychopathology and cognitive impairment in patients with first-episode drug naïve schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110246. [PMID: 33453321 DOI: 10.1016/j.pnpbp.2021.110246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Many studies have announced that P50 inhibition defects represent sensory gating deficits in schizophrenia, but studies seldom have searched the correlation between P50 inhibition defects and the psychopathology or cognitive impairment of patients with first-episode, drug naïve (FEDN) of schizophrenia. In this study, we investigated the auditory sensory gating deficits in a large number of Han patients with FEDN schizophrenia and their correlation with clinical symptoms and cognitive impairment. METHODS A total of 130 patients with FEDN schizophrenia and 189 healthy controls were recruited in this study. Positive and Negative Syndrome Scale (PANSS) and its five-factor model were used to score the psychopathology of the patients, and P50 inhibition was recorded using the 64-channel electroencephalography (EEG) system. RESULTS Patients exhibited significantly longer S1 and S2 latency, lower S1 and S2 amplitudes and lower P50 difference than healthy controls (all p < 0.05). Significant correlations existed between S1 latency and PANSS negative symptoms or cognitive factor, P50 ratio and general psychopathology, P50 ratio and PANSS total score, P50 difference and general psychopathology, and P50 difference and PANSS total score (all p < 0.05). Multiple regression analysis revealed that S1 latency, sex, age, and education were contributors to negative symptom score (all p < 0.05). S1 latency, S2 latency, sex, age, and smoking status were contributors to cognitive factor (all p < 0.05). CONCLUSIONS Our results show that patients with FEDN schizophrenia have P50 inhibition defects, which may be related to their psychopathological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Luyao Xia
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gaoxia Wei
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Tian
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qilong Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Abstract
BACKGROUND Given the wide implications of cognitive impairment for prognosis and outcome in schizophrenia, the research on pharmacological approaches aimed at addressing dysfunctional cognition has been extensive; nevertheless, there are no currently available licensed drugs, and the evidence in this field is still unimpressive. Vortioxetine is a multimodal antidepressant, which has been proposed as a suitable treatment option for cognitive symptoms in depression. METHODS Twenty schizophrenia outpatients (mean age ± SD, 40.7 ±10.6 years) on stable clozapine treatment, assessed by neuropsychological (Wisconsin Card Sorting Test, Verbal Fluency, and Stroop task) and psychodiagnostic instruments (Positive and Negative Syndrome Scale [PANSS] and Calgary Depression Scale for Schizophrenia), received vortioxetine at the single daily dose of 10 mg/d until week 12; the dose was increased at 20 mg/d afterward, and this dosage was maintained unchanged until week 24. A physical examination, electrocardiogram with QTc measurement, and laboratory tests were also performed. RESULTS Vortioxetine supplementation significantly improved Stroop test (P = 0.013) at week 12 and Stroop test (P = 0.031) and Semantic Fluency (P = 0.002) at end point. Moreover, a significantly reduction of PANSS domains "positive" (P = 0.019) at week 12 and of PANSS domains positive (P = 0.019) and total score (P = 0.041) and of depressive symptoms (Calgary Depression Scale for Schizophrenia, P = 0.032) at end point. There was no significant change in clinical, metabolic, and safety parameters, and no subject spontaneously reported adverse effects. CONCLUSIONS Despite the limitations (open design, lack of a control group, small sample size, and short intervention period), our findings suggest for the first time that vortioxetine augmentation of clozapine may be a promising therapeutic strategy for addressing cognitive deficits in patients with schizophrenia.
Collapse
|
9
|
Borroni V, Kamerbeek C, Pediconi MF, Barrantes FJ. Lovastatin Differentially Regulates α7 and α4 Neuronal Nicotinic Acetylcholine Receptor Levels in Rat Hippocampal Neurons. Molecules 2020; 25:molecules25204838. [PMID: 33092257 PMCID: PMC7587943 DOI: 10.3390/molecules25204838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal α7 and α4β2 are the predominant nicotinic acetylcholine receptor (nAChR) subtypes found in the brain, particularly in the hippocampus. The effects of lovastatin, an inhibitor of cholesterol biosynthesis, on these two nAChRs endogenously expressed in rat hippocampal neuronal cells were evaluated in the 0.01-1 µM range. Chronic (14 days) lovastatin treatment augmented cell-surface levels of α7 and α4 nAChRs, as measured by fluorescence microscopy and radioactive ligand binding assays. This was accompanied in both cases by an increase in total protein receptor levels as determined by Western blots. At low lovastatin concentrations (10-100 nM), the increase in α4 nAChR in neurites was higher than in neuronal cell somata; the opposite occurred at higher (0.5-1 µM) lovastatin concentrations. In contrast, neurite α7 nAChRs raised more than somatic α7 nAChRs at all lovastatin concentrations tested. These results indicate that cholesterol levels homeostatically regulate α7 and α4 nAChR levels in a differential manner through mechanisms that depend on statin concentration and receptor localization. The neuroprotective pleomorphic effects of statins may act by reestablishing the homeostatic equilibrium.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina; (V.B.); (C.K.)
| | - Constanza Kamerbeek
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina; (V.B.); (C.K.)
| | - María F. Pediconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina; (V.B.); (C.K.)
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo, Buenos Aires 1600 C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
10
|
One-day tropisetron treatment improves cognitive deficits and P50 inhibition deficits in schizophrenia. Neuropsychopharmacology 2020; 45:1362-1368. [PMID: 32349117 PMCID: PMC7297960 DOI: 10.1038/s41386-020-0685-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
The core features of schizophrenia (SCZ) include cognitive deficits and impaired sensory gating represented by P50 inhibition deficits, which appear to be related to the α7 nicotinic acetylcholine receptor (nAChR). An agonist of nAChR receptor may improve these defects. This study aimed to investigate how administering multiple doses of tropisetron, a partial agonist of nAChR, for 1 day would affect cognitive deficits and P50 inhibition deficits in SCZ patients. We randomized 40 SCZ non-smokers into a double-blind clinical trial with four groups: placebo, 5 mg/d, 10 mg/d, and 20 mg/d of oral tropisetron. Their P50 ratios were all more than 0.5 and they took risperidone at 3-6 mg/day for at least a month before participating in the experiment. We measured the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and P50 inhibition before and one day after treatment. After one day of treatment, the total RBANS scores of the 20 mg and 5 mg tropisetron groups, and the immediate memory of the 10 mg group were significantly higher than placebo group. The P50 ratio was smaller in the 5 mg and 10 mg groups than in the placebo group (both p < 0.05) after treatment. Furthermore, the improvement in RBANS total score was correlated with increased S1 latency (p < 0.05), and the increase in immediate memory score was correlated with decreased S2 amplitude. One day of treatment with tropisetron improved both cognitive and P50 inhibition deficits, suggesting that longer term treatment with α7 nAChR agonists for these deficits in SCZ may be promising.
Collapse
|
11
|
Vaskinn A, Horan WP. Social Cognition and Schizophrenia: Unresolved Issues and New Challenges in a Maturing Field of Research. Schizophr Bull 2020; 46:464-470. [PMID: 32133507 PMCID: PMC7147571 DOI: 10.1093/schbul/sbaa034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social cognition has become a topic of widespread interest in experimental and treatment research in schizophrenia over the past 15 years. This explosion of interest largely reflects the robust evidence that social cognition is among the strongest known correlates of poor community functioning throughout the course of schizophrenia. While progress has been impressive, we consider several fundamental questions about the scope, structure, and optimal measurement of social cognition that remain unanswered and point to the need for continued method development. We also consider more recently emerging questions about individual differences, ecological and cross-cultural validity, and intervention approaches, as well as broader technological changes that impact how we understand and use social cognition at a societal level. Continued efforts to creatively grapple with the complexities and challenges the field now faces hold great promise for helping us understand and more effectively treat a major source of functional disability in schizophrenia.
Collapse
Affiliation(s)
- Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,To whom correspondence should be addressed; tel: + 47 23 02 73 31, fax: + 47 23 02 73 33,
| | - William P Horan
- VeraSci Inc, Durham, NC,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
12
|
Nikiforuk A, Litwa E, Krawczyk M, Popik P, Arias H. Desformylflustrabromine, a positive allosteric modulator of α4β2-containing nicotinic acetylcholine receptors, enhances cognition in rats. Pharmacol Rep 2020; 72:589-599. [PMID: 32207091 PMCID: PMC7329799 DOI: 10.1007/s43440-020-00092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Rationale The α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) may represent useful targets for cognitive improvement. It has been recently proposed that a strategy based on positive allosteric modulation of α4β2-nAChRs reveals several advantages over the direct agonist approach. Nevertheless, the procognitive effects of α4β2-nAChR positive allosteric modulators (PAMs) have not been extensively characterized. Objectives The aim of the present study was to evaluate the procognitive efficacy of desformylflustrabromine (dFBr), a selective α4β2-nAChR PAM. Methods Cognitive effects were investigated in the novel object recognition task (NORT) and the attentional set-shifting task (ASST) in rats. Results The results demonstrate that dFBr attenuated the delay-induced impairment in NORT performance and facilitated cognitive flexibility in the ASST. The beneficial effects of dFBr were inhibited by dihydro-β-erythroidine, a relatively selective α4β2-nAChR antagonist, indicating the involvement of α4β2-nAChRs in cognitive processes. The tested α4β2-PAM was also effective against ketamine- and scopolamine-induced deficits of object recognition memory. Moreover, procognitive effects were also observed after combined treatment with inactive doses of dFBr and TC-2403, a selective α4β2-nAChR agonist. Conclusions These findings indicate that dFBr presents procognitive activity, supporting the strategy based on α4β2-nAChR potentiation as a plausible therapy for cognitive impairment. Electronic supplementary material The online version of this article (10.1007/s43440-020-00092-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Martyna Krawczyk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Hugo Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
13
|
Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. J Med Chem 2020; 63:1564-1575. [DOI: 10.1021/acs.jmedchem.9b01409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models. Curr Top Behav Neurosci 2020; 45:101-121. [PMID: 32468493 DOI: 10.1007/7854_2020_134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence.
Collapse
|
15
|
Barnes TR, Drake R, Paton C, Cooper SJ, Deakin B, Ferrier IN, Gregory CJ, Haddad PM, Howes OD, Jones I, Joyce EM, Lewis S, Lingford-Hughes A, MacCabe JH, Owens DC, Patel MX, Sinclair JM, Stone JM, Talbot PS, Upthegrove R, Wieck A, Yung AR. Evidence-based guidelines for the pharmacological treatment of schizophrenia: Updated recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2020; 34:3-78. [PMID: 31829775 DOI: 10.1177/0269881119889296] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
These updated guidelines from the British Association for Psychopharmacology replace the original version published in 2011. They address the scope and targets of pharmacological treatment for schizophrenia. A consensus meeting was held in 2017, involving experts in schizophrenia and its treatment. They were asked to review key areas and consider the strength of the evidence on the risk-benefit balance of pharmacological interventions and the clinical implications, with an emphasis on meta-analyses, systematic reviews and randomised controlled trials where available, plus updates on current clinical practice. The guidelines cover the pharmacological management and treatment of schizophrenia across the various stages of the illness, including first-episode, relapse prevention, and illness that has proved refractory to standard treatment. It is hoped that the practice recommendations presented will support clinical decision making for practitioners, serve as a source of information for patients and carers, and inform quality improvement.
Collapse
Affiliation(s)
- Thomas Re Barnes
- Emeritus Professor of Clinical Psychiatry, Division of Psychiatry, Imperial College London, and Joint-head of the Prescribing Observatory for Mental Health, Centre for Quality Improvement, Royal College of Psychiatrists, London, UK
| | - Richard Drake
- Clinical Lead for Mental Health in Working Age Adults, Health Innovation Manchester, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Carol Paton
- Joint-head of the Prescribing Observatory for Mental Health, Centre for Quality Improvement, Royal College of Psychiatrists, London, UK
| | - Stephen J Cooper
- Emeritus Professor of Psychiatry, School of Medicine, Queen's University Belfast, Belfast, UK
| | - Bill Deakin
- Professor of Psychiatry, Neuroscience & Psychiatry Unit, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - I Nicol Ferrier
- Emeritus Professor of Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine J Gregory
- Honorary Clinical Research Fellow, University of Manchester and Higher Trainee in Child and Adolescent Psychiatry, Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter M Haddad
- Honorary Professor of Psychiatry, Division of Psychology and Mental Health, University of Manchester, UK and Senior Consultant Psychiatrist, Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Oliver D Howes
- Professor of Molecular Psychiatry, Imperial College London and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ian Jones
- Professor of Psychiatry and Director, National Centre of Mental Health, Cardiff University, Cardiff, UK
| | - Eileen M Joyce
- Professor of Neuropsychiatry, UCL Queen Square Institute of Neurology, London, UK
| | - Shôn Lewis
- Professor of Adult Psychiatry, Faculty of Biology, Medicine and Health, The University of Manchester, UK, and Mental Health Academic Lead, Health Innovation Manchester, Manchester, UK
| | - Anne Lingford-Hughes
- Professor of Addiction Biology and Honorary Consultant Psychiatrist, Imperial College London and Central North West London NHS Foundation Trust, London, UK
| | - James H MacCabe
- Professor of Epidemiology and Therapeutics, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and Honorary Consultant Psychiatrist, National Psychosis Service, South London and Maudsley NHS Foundation Trust, Beckenham, UK
| | - David Cunningham Owens
- Professor of Clinical Psychiatry, University of Edinburgh. Honorary Consultant Psychiatrist, Royal Edinburgh Hospital, Edinburgh, UK
| | - Maxine X Patel
- Honorary Clinical Senior Lecturer, King's College London, Institute of Psychiatry, Psychology and Neuroscience and Consultant Psychiatrist, Oxleas NHS Foundation Trust, London, UK
| | - Julia Ma Sinclair
- Professor of Addiction Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James M Stone
- Clinical Senior Lecturer and Honorary Consultant Psychiatrist, King's College London, Institute of Psychiatry, Psychology and Neuroscience and South London and Maudsley NHS Trust, London, UK
| | - Peter S Talbot
- Senior Lecturer and Honorary Consultant Psychiatrist, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Rachel Upthegrove
- Professor of Psychiatry and Youth Mental Health, University of Birmingham and Consultant Psychiatrist, Birmingham Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Angelika Wieck
- Honorary Consultant in Perinatal Psychiatry, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Alison R Yung
- Professor of Psychiatry, University of Manchester, School of Health Sciences, Manchester, UK and Centre for Youth Mental Health, University of Melbourne, Australia, and Honorary Consultant Psychiatrist, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:499-515. [PMID: 31115660 DOI: 10.1007/s00406-019-01025-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Astrid Röh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
17
|
Davidson M. Cognitive impairment as a diagnostic criterion and treatment target in schizophrenia. World Psychiatry 2019; 18:171-172. [PMID: 31059612 PMCID: PMC6502436 DOI: 10.1002/wps.20651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Dyrvig M, Mikkelsen JD, Lichota J. DNA methylation regulates CHRNA7 transcription and can be modulated by valproate. Neurosci Lett 2019; 704:145-152. [PMID: 30974230 DOI: 10.1016/j.neulet.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023]
Abstract
The CHRNA7 gene encoding the α7 nicotinic acetylcholine receptor (nAChR) has repeatedly been linked with schizophrenia and the P50 sensory gating deficit. The α7 nAChR is considered a promising drug target for treatment of cognitive dysfunction in schizophrenia and improves memory and executive functions in patients and healthy individuals. However, clinical trials with pro-cognitive drugs are challenged by large inter-individual response variations and these have been linked to genotypic variations reducing CHRNA7 expression and α7 nAChR function. Genetic variants as well as environmental conditions may cause epigenetic dysregulation and it has previously been found that DNA methylation of a region surrounding the transcription start site of CHRNA7 is important for tissue specific regulation and gene silencing. In the present study we identify two additional regions involved in epigenetic regulation of the CHRNA7 promoter. In human temporal cortex we find large variations in expression of CHRNA7 and establish evidence for a significant correlation with DNA methylation levels of one region. We then establish evidence that genotypic variations can influence methylation levels of the CHRNA7 promoter. Epigenetic dysregulation can be reversed by pharmacological intervention and in HeLa cells. Valproate, a commonly used mood stabiliser, caused demethylation and increased CHRNA7 expression in HeLA cells. Similar demethylation effect and increased CHRNA7 expression was obtained in SH-SY5Y cells stimulated concomitantly with valproate and nicotine. In summary, both genetic and epigenetic information could be useful to predict treatment outcomes in patients and epigenetic modulation may serve as a mechanism for potentiating the effects of α7 nAChR agonists.
Collapse
Affiliation(s)
- Mads Dyrvig
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jacek Lichota
- Laboratory of Metabolism Modifying Medicine, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
19
|
Getachew B, Csoka AB, Aschner M, Tizabi Y. Nicotine protects against manganese and iron-induced toxicity in SH-SY5Y cells: Implication for Parkinson's disease. Neurochem Int 2019; 124:19-24. [PMID: 30557592 PMCID: PMC6369010 DOI: 10.1016/j.neuint.2018.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022]
Abstract
Manganese (Mn) and iron (Fe) are trace elements that are essential for proper growth and physiological functions as both play critical role in a variety of enzymatic reactions. At high concentrations, however, they can be toxic and cause neurodegenerative disorders, particularly Parkinson-like syndromes. Nicotine, on the other hand, has been shown to have neuroprotective effects against various endogenous or exogenous toxins that selectively damage the dopaminergic cells. These cells include neuroblastoma-derived SH-SY5Y cells which express significant dopaminergic activity. However, practically no information on possible neuroprotective effects of nicotine against toxicity induced by trace elements is available. Therefore, in this study we investigated the effects of nicotine on toxicity induced by manganese or iron in these cells. Exposure of SH-SY5Y cells for 24 h to manganese (20 μM) or iron (20 μM) resulted in approximately 30% and 35% toxicity, respectively. Pretreatment with nicotine (1 μM) completely blocked the toxicities of Mn and Fe. The effects of nicotine, in turn, were blocked by selective nicotinic receptor antagonists. Thus, dihydro-beta erythroidine (DHBE), a selective alpha 4-beta 2 subtype antagonist and methyllycaconitine (MLA), a selective alpha7 antagonist, as well as mecamylamine, a non-selective nicotinic antagonist all dose-dependently blocked the protective effects of nicotine against both Mn and Fe. These findings provide further support for the potential utility of nicotine or nicotinic agonists in Parkinson's disease-like neurodegenerative disorders, including those that might be precipitated by trace elements, such as Fe and Mn. Moreover, both alpha4-beta2 and alpha7 nicotinic receptor subtypes appear to mediate the neuroprotective effects of nicotine against toxicity induced by these two trace metals.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
20
|
Wu W, Wu Y, Cheng G, Zhang C, Wang H, Li Y. A Mouse Model of Hepatic Ischemia-Reperfusion Injury Demonstrates Potentially Reversible Effects on Hippocampal Neurons and Postoperative Cognitive Function. Med Sci Monit 2019; 25:1526-1536. [PMID: 30808858 PMCID: PMC6404631 DOI: 10.12659/msm.912658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate cognitive function, hippocampal neuronal changes, and the expression of inflammatory cytokines in a mouse model of hepatic ischemia-reperfusion injury. Material/Methods Sixty mice were divided into the sham group, which underwent surgery without vascular occlusion; the I/R1 group, with occlusion of the left hepatic artery and portal vein for 20 min, and reperfusion for 30 min; and the I/R2 group, with occlusion of the left hepatic artery and portal vein for 40 min, and reperfusion for 30 min. At postoperative day 4 and 11, ten mice from each group underwent the Morris water maze (MWM) task. Hippocampal tissues were stained for Nissl bodies. Expression of nuclear factor-κB (NF-κB) and choline acetyltransferase (ChAT) were quantified by immunohistochemistry. Serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured by enzyme-linked immunosorbent assay (ELISA). Results Groups I/R1 and I/R2 showed a significantly increased latency in the MWM test between days 5–9, compared with the sham group (P<0.05), with no difference by day 11; the I/R2 group had an initial lower crossing frequency (P<0.05), with no difference by day 18. The I/R2 group showed reduced numbers of Nissl bodies in hippocampal neurons. The I/R1 and I/R2 groups had increased expression of NF-κB, TNF-α, and IL-1β and decreased ChAT. No differences between the groups were found in levels of NF-κB, TNF-α, IL-1β, or ChAT by day 18. Conclusions A mouse model of hepatic ischemia-reperfusion injury showed transient and reversible cognitive dysfunction, changes in hippocampal neurons, and expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Gao Cheng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Chi Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Hongxian Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yuanhai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|