1
|
Valdés Cabrera D, El Tal T, Mohamed I, Arciniegas SE, Fevrier S, Ledochowski J, Knight AM. Effects of systemic lupus erythematosus on the brain: a systematic review of structural MRI findings and their relationships with cognitive dysfunction. Lupus Sci Med 2024; 11:e001214. [PMID: 39153821 PMCID: PMC11332008 DOI: 10.1136/lupus-2024-001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Cognitive dysfunction (CD) is highly prevalent in systemic lupus erythematosus (SLE), yet the underlying mechanisms are poorly understood. Neuroimaging utilising advanced MRI metrics may yield mechanistic insights. We conducted a systematic review of neuroimaging studies to investigate the relationship between structural and diffusion MRI metrics and CD in SLE. METHODS We systematically searched several databases between January 2000 and October 2023 according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Retrospective and prospective studies were screened for search criteria keywords (including structural or diffusion MRI, cognitive function and SLE) to identify peer-reviewed articles reporting advanced structural MRI metrics and evaluating CD in human patients with SLE. RESULTS Eighteen studies (8 structural MRI, 9 diffusion MRI and 1 with both modalities) were included; sample sizes ranged from 11 to 120 participants with SLE. Neurocognitive assessments and neuroimaging techniques, parameters and processing differed across articles. The most frequently affected cognitive domains were memory, psychomotor speed and attention; while abnormal structural and/or diffusion MRI metrics were found more consistently in the hippocampus, corpus callosum and frontal cortex of patients with SLE, with and without clinically diagnosed central nervous system involvement. CONCLUSION Advanced structural MRI analysis can identify total and regional brain abnormalities associated with CD in patients with SLE, with potential to enhance clinical assessment. Future collaborative, longitudinal studies of neuroimaging in SLE are needed to better characterise CD, with focus on harmonised neurocognitive assessments, neuroimaging acquisitions and postprocessing analyses and improved clinical characterisation of SLE cohorts.
Collapse
Affiliation(s)
- Diana Valdés Cabrera
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tala El Tal
- Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ibrahim Mohamed
- Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Stephanie Fevrier
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Andrea M Knight
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tustison NJ, Yassa MA, Rizvi B, Cook PA, Holbrook AJ, Sathishkumar MT, Tustison MG, Gee JC, Stone JR, Avants BB. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. Sci Rep 2024; 14:8848. [PMID: 38632390 PMCID: PMC11024129 DOI: 10.1038/s41598-024-59440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization.
Collapse
Affiliation(s)
- Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | | | | | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Sartorius A, Karl S, Zilles-Wegner D. Hippocampal neuroplasticity, major depression and, not to forget: ECT. Mol Psychiatry 2024; 29:1-2. [PMID: 36038727 PMCID: PMC11078706 DOI: 10.1038/s41380-022-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Sebastian Karl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| |
Collapse
|
4
|
Geuens S, Van Dessel J, Govaarts R, Ikelaar NA, Meijer OC, Kan HE, Niks EH, Goemans N, Lemiere J, Doorenweerd N, De Waele L. Comparison of two corticosteroid regimens on brain volumetrics in patients with Duchenne muscular dystrophy. Ann Clin Transl Neurol 2023; 10:2324-2333. [PMID: 37822297 PMCID: PMC10723242 DOI: 10.1002/acn3.51922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a neuromuscular disorder in which many patients also have neurobehavioral problems. Corticosteroids, the primary pharmacological treatment for DMD, have been shown to affect brain morphology in other conditions, but data in DMD are lacking. This study aimed to investigate the impact of two corticosteroid regimens on brain volumetrics in DMD using magnetic resonance imaging (MRI). METHODS In a cross-sectional, two-center study, T1-weighted MRI scans were obtained from three age-matched groups (9-18 years): DMD patients treated daily with deflazacort (DMDd, n = 20, scan site: Leuven), DMD patients treated intermittently with prednisone (DMDi, n = 20, scan site: Leiden), and healthy controls (n = 40, both scan sites). FSL was used to perform voxel-based morphometry analyses and to calculate intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volumes. A MANCOVA was employed to compare global volumetrics between groups, with site as covariate. RESULTS Both patient groups displayed regional differences in gray matter volumes compared to the control group. The DMDd group showed a wider extent of brain regions affected and a greater difference overall. This was substantiated by the global volume quantification: the DMDd group, but not the DMDi group, showed significant differences in gray matter, white matter, and cerebrospinal fluid volumes compared to the control group, after correction for intracranial volume. INTERPRETATION Volumetric differences in the brain are considered part of the DMD phenotype. This study suggests an additional impact of corticosteroid treatment showing a contrast between pronounced alterations seen in patients receiving daily corticosteroid treatment and more subtle differences in those treated intermittently.
Collapse
Affiliation(s)
- Sam Geuens
- Child NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Jeroen Van Dessel
- Department of Neurosciences, Center for Developmental PsychiatryUPC‐KU LeuvenLeuvenBelgium
| | - Rosanne Govaarts
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Nadine A. Ikelaar
- Duchenne Center NetherlandsLeidenNetherlands
- Department of NeurologyLeiden University Medical CenterLeidenNetherlands
| | - Onno C. Meijer
- Department of MedicineLeiden University Medical CenterLeidenNetherlands
| | - Hermien E. Kan
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Erik H. Niks
- Duchenne Center NetherlandsLeidenNetherlands
- Department of NeurologyLeiden University Medical CenterLeidenNetherlands
| | | | - Jurgen Lemiere
- Pediatric Hemato‐OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department Oncology, Pediatric OncologyKU LeuvenLeuvenBelgium
| | - Nathalie Doorenweerd
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
| | - Liesbeth De Waele
- Child NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| |
Collapse
|
5
|
Tustison NJ, Yassa MA, Rizvi B, Cook PA, Holbrook AJ, Sathishkumar MT, Tustison MG, Gee JC, Stone JR, Avants BB. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. RESEARCH SQUARE 2023:rs.3.rs-3459157. [PMID: 37961236 PMCID: PMC10635385 DOI: 10.21203/rs.3.rs-3459157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization.
Collapse
Affiliation(s)
- Nicholas J. Tustison
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
- Department of Neurobiology & Behavior, University of California, Irvine, CA
| | - Michael A. Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA
| | - Philip A. Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - James C. Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - James R. Stone
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| | - Brian B. Avants
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| |
Collapse
|
6
|
Dronse J, Ohndorf A, Richter N, Bischof GN, Fassbender R, Behfar Q, Gramespacher H, Dillen K, Jacobs HIL, Kukolja J, Fink GR, Onur OA. Serum cortisol is negatively related to hippocampal volume, brain structure, and memory performance in healthy aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1154112. [PMID: 37251803 PMCID: PMC10213232 DOI: 10.3389/fnagi.2023.1154112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Elevated cortisol levels have been frequently reported in Alzheimer's disease (AD) and linked to brain atrophy, especially of the hippocampus. Besides, high cortisol levels have been shown to impair memory performance and increase the risk of developing AD in healthy individuals. We investigated the associations between serum cortisol levels, hippocampal volume, gray matter volume and memory performance in healthy aging and AD. Methods In our cross-sectional study, we analyzed the relationships between morning serum cortisol levels, verbal memory performance, hippocampal volume, and whole-brain voxel-wise gray matter volume in an independent sample of 29 healthy seniors (HS) and 29 patients along the spectrum of biomarker-based AD. Results Cortisol levels were significantly elevated in patients with AD as compared to HS, and higher cortisol levels were correlated with worse memory performance in AD. Furthermore, higher cortisol levels were significantly associated with smaller left hippocampal volumes in HS and indirectly negatively correlated to memory function through hippocampal volume. Higher cortisol levels were further related to lower gray matter volume in the hippocampus and temporal and parietal areas in the left hemisphere in both groups. The strength of this association was similar in HS and AD. Conclusion In AD, cortisol levels are elevated and associated with worse memory performance. Furthermore, in healthy seniors, higher cortisol levels show a detrimental relationship with brain regions typically affected by AD. Thus, increased cortisol levels seem to be indirectly linked to worse memory function even in otherwise healthy individuals. Cortisol may therefore not only serve as a biomarker of increased risk for AD, but maybe even more importantly, as an early target for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Ohndorf
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ronja Fassbender
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Behfar
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Palliative Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heidi I. L. Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health Witten/Herdecke University, Witten, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Korthauer LE, Goveas JS, Rapp SR, Espeland MA, Shumaker SA, Garcia KR, Rossom RC, Garcia L, Tindle HA, Salmoirago-Blotcher E, Wassertheil-Smoller S, Zaslavsky O, Cochrane B, Sink KM, Masaki K, Driscoll I. The relationship between depressive symptoms and subtypes of mild cognitive impairment in post-menopausal women: Results from the Women's Health Initiative Memory Study. Int J Geriatr Psychiatry 2022; 37:10.1002/gps.5817. [PMID: 36205005 PMCID: PMC9616073 DOI: 10.1002/gps.5817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Depressive symptoms are associated with age-related cognitive impairment, but the relative risk of specific subtypes of mild cognitive impairment (MCI) conferred by depressive symptoms is unclear. The purpose of this exploratory study was to determine the longitudinal association between baseline depressive symptoms and incident cases of MCI subtypes (amnestic vs. non-amnestic) and probable dementia (PD) (Alzheimer's disease, vascular, mixed) among postmenopausal women. METHODS Depressive symptoms were assessed at study baseline using an 8-item Burnam algorithm in 7043 postmenopausal women who participated in the Women's Health Initiative Memory Study (WHIMS) and the WHIMS-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) extension study. During the median 9.4-year follow-up interval, the presence of MCI and PD was classified by a central adjudication committee. Classification of participants by MCI subtype (amnestic single and multi-domain, non-amnestic single and multi-domain) was done algorithmically based on established criteria using data from annual cognitive testing. RESULTS At baseline, 557 women (7.9%) had clinically significant depressive symptoms based on Burnam algorithm cut-point of 0.06. Depressive symptoms at baseline were associated with an increased risk of incident amnestic MCI (hazard ratio [HR] = 1.91, 95% confidence interval [CI] 1.32-2.78, p < 0.0001), but not non-amnestic MCI (HR = 1.39, 95% CI 0.91-2.14, p = 0.13) after controlling for demographic factors. This relationship between depressive symptoms and amnestic MCI remained consistent after controlling for lifestyle variables, cardiovascular risk factors, antidepressant use, and history of hormone therapy. There were no significant associations between depressive symptoms and incidence of PD. CONCLUSION Depressive symptoms at baseline among postmenopausal older women are associated with higher incidence of amnestic MCI, suggesting that they may be an independent risk factor or part of the early prodrome of dementia.
Collapse
Affiliation(s)
- Laura E Korthauer
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Joseph S Goveas
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark A Espeland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sally A Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katelyn R Garcia
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Lorena Garcia
- Department of Public Health Sciences, University of California-Davis, Davis, California, USA
| | - Hilary A Tindle
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Salmoirago-Blotcher
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York, USA
| | - Oleg Zaslavsky
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, Washington, USA
| | - Barbara Cochrane
- Department of Child, Family, and Population Health Nursing, University of Washington, Seattle, Washington, USA
| | | | - Kamal Masaki
- Department of Geriatric Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
van der Meulen M, Amaya JM, Dekkers OM, Meijer OC. Association between use of systemic and inhaled glucocorticoids and changes in brain volume and white matter microstructure: a cross-sectional study using data from the UK Biobank. BMJ Open 2022; 12:e062446. [PMID: 36041764 PMCID: PMC9438037 DOI: 10.1136/bmjopen-2022-062446] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To test the hypothesis that systemic and inhaled glucocorticoid use is associated with changes in grey matter volume (GMV) and white matter microstructure. DESIGN Cross-sectional study. SETTING UK Biobank, a prospective population-based cohort study of adults recruited in the UK between 2006 and 2010. PARTICIPANTS After exclusion based on neurological, psychiatric or endocrinological history, and use of psychotropic medication, 222 systemic glucocorticoid users, 557 inhaled glucocorticoid users and 24 106 controls with available T1 and diffusion MRI data were included. MAIN OUTCOME MEASURES Primary outcomes were differences in 22 volumetric and 14 diffusion imaging parameters between glucocorticoid users and controls, determined using linear regression analyses adjusted for potential confounders. Secondary outcomes included cognitive functioning (six tests) and emotional symptoms (four questions). RESULTS Both systemic and inhaled glucocorticoid use were associated with reduced white matter integrity (lower fractional anisotropy (FA) and higher mean diffusivity (MD)) compared with controls, with larger effect sizes in systemic users (FA: adjusted mean difference (AMD)=-3.7e-3, 95% CI=-6.4e-3 to 1.0e-3; MD: AMD=7.2e-6, 95% CI=3.2e-6 to 1.1e-5) than inhaled users (FA: AMD=-2.3e-3, 95% CI=-4.0e-3 to -5.7e-4; MD: AMD=2.7e-6, 95% CI=1.7e-7 to 5.2e-6). Systemic use was also associated with larger caudate GMV (AMD=178.7 mm3, 95% CI=82.2 to 275.0), while inhaled users had smaller amygdala GMV (AMD=-23.9 mm3, 95% CI=-41.5 to -6.2) than controls. As for secondary outcomes, systemic users performed worse on the symbol digit substitution task (AMD=-0.17 SD, 95% CI=-0.34 to -0.01), and reported more depressive symptoms (OR=1.76, 95% CI=1.25 to 2.43), disinterest (OR=1.84, 95% CI=1.29 to 2.56), tenseness/restlessness (OR=1.78, 95% CI=1.29 to 2.41), and tiredness/lethargy (OR=1.90, 95% CI=1.45 to 2.50) compared with controls. Inhaled users only reported more tiredness/lethargy (OR=1.35, 95% CI=1.14 to 1.60). CONCLUSIONS Both systemic and inhaled glucocorticoid use are associated with decreased white matter integrity and limited changes in GMV. This association may contribute to the neuropsychiatric side effects of glucocorticoid medication, especially with chronic use.
Collapse
Affiliation(s)
- Merel van der Meulen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jorge Miguel Amaya
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Olaf M Dekkers
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Endocrine Disorders in Autoimmune Rheumatological Diseases: A Focus on Thyroid Autoimmune Diseases and on the Effects of Chronic Glucocorticoid Treatment. ENDOCRINES 2021. [DOI: 10.3390/endocrines2030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Autoimmune rheumatological diseases’ incidence and prevalence have risen over the last decades and they are becoming increasingly important worldwide. Thyroid autoimmune diseases share with them an imbalance in the immune system that lead to a pro-inflammatory environment. Usually this is the result of a multi-factorial process. In fact, it includes not only a possible genetic predisposition, but also environmental causes like microbiota dysbiosis, diet rich in processed foods, exposure to toxicants and infections. However, many aspects are currently under study. This paper aims to examine the factors that participate in the developing of rheumatological and thyroid autoimmune diseases. Moreover, as glucocorticoids still represent a leading treatment for systemic autoimmune rheumatological diseases, our secondary aim is to summarize the main effects of glucocorticoids treatment focusing on iatrogenic Cushing’s syndrome and glucocorticoids’ withdrawal syndrome.
Collapse
|