1
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
2
|
Barbu-Roth M, Anderson DI. Evidence of tactile arm stepping in newborns and its responsiveness to optic flows specifying self-translation. INFANCY 2023; 28:1052-1066. [PMID: 37727959 DOI: 10.1111/infa.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Although the arms participate in many forms of human locomotion, we know very little about when arm movements emerge during locomotor development. Here we investigated whether newborns would make tactile arm stepping movements when we supported them almost horizontally so their hands touched a surface and blocked their leg movements. Building off prior work showing that newborns make more crawling and air stepping leg movements when exposed to optic flows specifying forward and backward self-translation, we also examined whether newborns would make more tactile arm steps when exposed to forward and backward optic flows compared to a random optic flow that did not specify translation. We found that newborns can perform arm stepping and produce a significantly higher number of tactile arm steps in the optic flow condition specifying backward translation than in the random optic flow condition. Both translating optic flow conditions had significantly higher numbers of alternating arm steps than the random optic flow condition. These findings show that tactile arm stepping exists at birth and that optic flows can facilitate their production, similar to leg stepping. We argue that these results further support the idea that a quadrupedal organization underlies early upright stepping.
Collapse
Affiliation(s)
- Marianne Barbu-Roth
- Integrative Neuroscience and Cognition Center, UMR 8002 CNRS - Université Paris Cité, Paris, France
| | - David I Anderson
- Marian Wright Edelman Institute, San Francisco State University, San Francisco, California, USA
| |
Collapse
|
3
|
Aerts P, Goyens J, Berillon G, D'Août K, Druelle F. From quadrupedal to bipedal walking 'on the fly': the mechanics of dynamical mode transition in primates. J Exp Biol 2023; 226:286677. [PMID: 36657384 DOI: 10.1242/jeb.244792] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023]
Abstract
We investigated how baboons transition from quadrupedal to bipedal walking without any significant interruption in their forward movement (i.e. transition 'on the fly'). Building on basic mechanical principles (momentum only changes when external forces/moments act on the body), insights into possible strategies for such a dynamical mode transition are provided and applied first to the recorded planar kinematics of an example walking sequence (including several continuous quadrupedal, transition and subsequent bipedal steps). Body dynamics are calculated from the kinematics. The strategy used in this worked example boils down to: crouch the hind parts and sprint them underneath the rising body centre of mass. Forward accelerations are not in play. Key characteristics of this transition strategy were extracted: progression speed, hip height, step duration (frequency), foot positioning at touchdown with respect to the hip and the body centre of mass (BCoM), and congruity between the moments of the ground reaction force about the BCoM and the rate of change of the total angular moment. Statistical analyses across the full sample (15 transitions of 10 individuals) confirm this strategy is always used and is shared across individuals. Finally, the costs (in J kg-1 m-1) linked to on the fly transitions were estimated. The costs are approximately double those of both the preceding quadrupedal and subsequent bipedal walking. Given the short duration of the transition as such (<1 s), it is argued that the energetic costs to change walking posture on the fly are negligible when considered in the context of the locomotor repertoire.
Collapse
Affiliation(s)
- Peter Aerts
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium.,Department of Movement and Sports Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium
| | - Gilles Berillon
- HNHP (UMR 7194), CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS (UAR 846), 13790 Rousset, France
| | - Kristiaan D'Août
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - François Druelle
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium.,HNHP (UMR 7194), CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS (UAR 846), 13790 Rousset, France
| |
Collapse
|
4
|
Comparison of the movement behaviour of experienced and novice performers during the Cat exercise. PLoS One 2022; 17:e0279104. [PMID: 36548264 PMCID: PMC9779039 DOI: 10.1371/journal.pone.0279104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two previous studies showed kinematic differences between novice and experienced performers during unchoreographed movements executed in standing position. However, no study explores if these kinematic differences holds during unchoreographed movements executed in quadrupedal position. The aim of this study is to compare the movement behaviour of experienced and novice performers during an exercise wherein they are challenged to use dynamic and largely unchoreographed movement patterns executed in quadrupedal position. The exercise studied was the Cat exercise, in which participants were asked to behave like a feline for 10 minutes. An inventory of the chosen movements and the assessment of their average and coefficient of variation of the ground contact temporal parameters, computed by analysing the tri-dimensional whole-body kinematics of 25 performers (n = 13 novices and n = 12 experienced), was compared according to their experience level. No significant difference was found between the groups for the number of chosen movements, and median or coefficient of variation of ground contact temporal parameters, except for a greater foot/ knee swing coefficient of variation in experienced performers. This suggests that biomechanical constraints induced by quadrupedal position "prevent" a different selection of motor strategies by experienced performers, although the latter can be more variable in their movements.
Collapse
|
5
|
Li S, Zhang H, Leng Y, Lei D, Yu Q, Li K, Ding M, Lo WLA. A protocol to analyze the global literature on the clinical benefit of interlimb-coordinated intervention in gait recovery and the associated neurophysiological changes in patients with stroke. Front Neurol 2022; 13:959917. [PMID: 36468047 PMCID: PMC9712444 DOI: 10.3389/fneur.2022.959917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
Background Stroke is among the leading causes of disability of worldwide. Gait dysfunction is common in stroke survivors, and substantial advance is yet to be made in stroke rehabilitation practice to improve the clinical outcome of gait recovery. The role of the upper limb in gait recovery has been emphasized in the literature. Recent studies proposed that four limbs coordinated interventions, coined the term "interlimb-coordinated interventions," could promote gait function by increasing the neural coupling between the arms and legs. A high-quality review is essential to examine the clinical improvement and neurophysiological changes following interlimb-coordinated interventions in patients with stroke. Methods Systematic review and meta-analysis will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature will be retrieved from the databases of OVID, MEDLINE, PubMed, Web of Science, EMBASE, and PsycINFO. Studies published in English over the past 15 years will be included. All of the clinical studies (e.g., randomized, pseudorandomized and non-randomized controlled trials, uncontrolled trials, and case series) that employed interlimb intervention and assessed gait function of patients with stroke will be included. Clinical functions of gait, balance, lower limb functions, and neurophysiologic changes are the outcome measures of interest. Statistical analyses will be performed using the Comprehensive Meta-Analysis version 3. Discussion The findings of this study will provide insight into the clinical benefits and the neurophysiological adaptations of the nervous system induced by interlimb-coordinated intervention in patients with stroke. This would guide clinical decision-making and the future development of targeted neurorehabilitation protocol in stroke rehabilitation to improve gait and motor function in patients with stroke. Increasing neuroplasticity through four-limb intervention might complement therapeutic rehabilitation strategies in this patient group. The findings could also be insightful for other cerebral diseases.
Collapse
Affiliation(s)
- Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Temporal synchronization for in-phase and antiphase movements during bilateral finger- and foot-tapping tasks. Hum Mov Sci 2022; 84:102967. [DOI: 10.1016/j.humov.2022.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
|
7
|
Druelle F, Özçelebi J, Marchal F, Berillon G. Development of bipedal walking in olive baboons, Papio anubis: A kinematic analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:719-734. [PMID: 36787778 DOI: 10.1002/ajpa.24454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/24/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Although extant nonhuman primates are not habitual bipeds, they are able to walk bipedally from an early age. In humans, children improve their walking skills through developmental processes and learning experience. In nonhuman primates, infants do not routinely experience bipedalism and their musculoskeletal system gradually specializes for other locomotor modes. The aim of this study is to explore the development of occasional bipedal walking in olive baboon and to test whether the postural adjustments change with age. MATERIALS AND METHODS We collected kinematics and spatiotemporal parameters of bipedal gait in an ontogenetic sample of 24 baboons. Data were collected at the primatology station of the CNRS (France) and a total of 47 bipedal strides were extracted for the present analysis. RESULTS Adults and adolescents walk bipedally in the same way, and the average kinematic pattern is similar across the age-classes. Infants walk bipedally with longer duty factor, they present larger movement amplitude of the thigh and the amplitude of the knee joint decreases with speed. In contrast, older baboons increase the amplitude of the knee and ankle joints with speed. DISCUSSION In a non-adapted biped, the postural adjustments of bipedal walking vary with age. In infant baboons, the balance requirements are likely to be higher and these are solved by adopting a "blocking strategy". In older baboons, the postural adjustments are focused on the lower limb and the movements increase with speed. These results may echo, in some respects, the developmental sequence of the intersegmental coordination described in the ontogeny of human locomotion.
Collapse
Affiliation(s)
- François Druelle
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,Functional Morphology Laboratory, University of Antwerp, Antwerp, Belgium.,UAR 846, Primatology Station-Celphedia, CNRS, Rousset, France
| | - Jonathan Özçelebi
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,UMR 7268 (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), CNRS-Faculté de Médecine, Marseille, France
| | - François Marchal
- UMR 7268 (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), CNRS-Faculté de Médecine, Marseille, France
| | - Gilles Berillon
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,UAR 846, Primatology Station-Celphedia, CNRS, Rousset, France
| |
Collapse
|
8
|
Barss TS, Parhizi B, Porter J, Mushahwar VK. Neural Substrates of Transcutaneous Spinal Cord Stimulation: Neuromodulation across Multiple Segments of the Spinal Cord. J Clin Med 2022; 11:639. [PMID: 35160091 PMCID: PMC8836636 DOI: 10.3390/jcm11030639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) has the potential to promote improved sensorimotor rehabilitation by modulating the circuitry of the spinal cord non-invasively. Little is currently known about how cervical or lumbar tSCS influences the excitability of spinal and corticospinal networks, or whether the synergistic effects of multi-segmental tSCS occur between remote segments of the spinal cord. The aim of this review is to describe the emergence and development of tSCS as a novel method to modulate the spinal cord, while highlighting the effectiveness of tSCS in improving sensorimotor recovery after spinal cord injury. This review underscores the ability of single-site tSCS to alter excitability across multiple segments of the spinal cord, while multiple sites of tSCS converge to facilitate spinal reflex and corticospinal networks. Finally, the potential and current limitations for engaging cervical and lumbar spinal cord networks through tSCS to enhance the effectiveness of rehabilitation interventions are discussed. Further mechanistic work is needed in order to optimize targeted rehabilitation strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Trevor S. Barss
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (T.S.B.); (B.P.)
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (T.S.B.); (B.P.)
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Porter
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (T.S.B.); (B.P.)
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
9
|
Xiong QL, Wu XY, Liu Y, Zhang CX, Hou WS. Measurement and Analysis of Human Infant Crawling for Rehabilitation: A Narrative Review. Front Neurol 2021; 12:731374. [PMID: 34707557 PMCID: PMC8544808 DOI: 10.3389/fneur.2021.731374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
When a child shows signs of potential motor developmental disorders, early diagnosis of central nervous system (CNS) impairment is beneficial. Known as the first CNS-controlled mobility for most of infants, mobility during crawling usually has been used in clinical assessments to identify motor development disorders. The current clinical scales of motor development during crawling stage are relatively subjective. Objective and quantitative measures of infant crawling afford the possibilities to identify those infants who might benefit from early intervention, as well as the evaluation of intervention progress. Thus, increasing researchers have explored objective measurements of infant crawling in typical and atypical developing infants. However, there is a lack of comprehensive review on infant-crawling measurement and analysis toward bridging the gap between research crawling analysis and potential clinical applications. In this narrative review, we provide a practical overview of the most relevant measurements in human infant crawling, including acquisition techniques, data processing methods, features extraction, and the potential value in objective assessment of motor function in infancy; meanwhile, the possibilities to develop crawling training as early intervention to promote the locomotor function for infants with locomotor delays are also discussed.
Collapse
Affiliation(s)
- Qi L Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China.,Department of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao Y Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Cong X Zhang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Wen S Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Gallagher R, Perez S, DeLuca D, Kurtzer I. Anticipatory weight shift between arms when reaching from a crouched posture. J Neurophysiol 2021; 126:1361-1374. [PMID: 34525322 DOI: 10.1152/jn.00644.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reaching movements performed from a crouched body posture require a shift of body weight from both arms to one arm. This situation has remained unexamined despite the analogous load requirements during step initiation and the many studies of reaching from a seated or standing posture. To determine whether the body weight shift involves anticipatory or exclusively reactive control, we obtained force plate records, hand kinematics, and arm muscle activity from 11 healthy right-handed participants. They performed reaching movements with their left and right arm in two speed contexts, "comfortable" and "as fast as possible," and two postural contexts, a less stable knees-together posture and a more stable knees-apart posture. Weight-shifts involved anticipatory postural actions (APAs) by the reaching and stance arms that were opposing in the vertical axis and aligned in the side-to-side axis similar to APAs by the legs for step initiation. Weight-shift APAs were correlated in time and magnitude, present in both speed contexts, more vigorous with the knees placed together, and similar when reaching with the dominant and nondominant arm. The initial weight-shift was preceded by bursts of muscle activity in the shoulder and elbow extensors (posterior deltoid and triceps lateral) of the reach arm and shoulder flexor (pectoralis major) of the stance arm, which indicates their causal role; leg muscles may have indirectly contributed but were not recorded. The strong functional similarity of weight-shift APAs during crouched reaching to human stepping and cat reaching suggests that they are a core feature of posture-movement coordination.NEW & NOTEWORTHY This work demonstrates that reaching from a crouched posture is preceded by bimanual anticipatory postural adjustments (APAs) that shift the body weight to the stance limb. Weight-shift APAs are more robust in an unstable body posture (knees together) and involve the shoulder and elbow extensors of the reach arm and shoulder flexor of the stance arm. This pattern mirrors the forelimb coordination of cats reaching and humans initiating a step.
Collapse
Affiliation(s)
- Rosemary Gallagher
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, New York
| | - Stephanie Perez
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, New York
| | - Derek DeLuca
- Department of Physical Therapy, New York Institute of Technology, Old Westbury, New York
| | - Isaac Kurtzer
- Department of Biomedical Science, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| |
Collapse
|
11
|
Boulain M, Khsime I, Sourioux M, Thoby-Brisson M, Barrière G, Simmers J, Morin D, Juvin L. Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion. J Physiol 2021; 599:4477-4496. [PMID: 34412148 DOI: 10.1113/jp281861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Stimulation of hindlimb afferent fibres can both stabilize and increase the activity of fore- and hindlimb motoneurons during fictive locomotion. The increase in motoneuron activity is at least partially due to the production of doublets of action potentials in a subpopulation of motoneurons. These results were obtained using an in vitro brainstem/spinal cord preparation of neonatal rat. ABSTRACT Quadrupedal locomotion relies on a dynamic coordination between central pattern generators (CPGs) located in the cervical and lumbar spinal cord, and controlling the fore- and hindlimbs, respectively. It is assumed that this CPG interaction is achieved through separate closed-loop processes involving propriospinal and sensory pathways. However, the functional consequences of a concomitant involvement of these different influences on the degree of coordination between the fore- and hindlimb CPGs is still largely unknown. Using an in vitro brainstem/spinal cord preparation of neonatal rat, we found that rhythmic, bilaterally alternating stimulation of hindlimb sensory input pathways elicited coordinated hindlimb and forelimb CPG activity. During pharmacologically induced fictive locomotion, lumbar dorsal root (DR) stimulation entrained and stabilized an ongoing cervico-lumbar locomotor-like rhythm and increased the amplitude of both lumbar and cervical ventral root bursting. The increase in cervical burst amplitudes was correlated with the occurrence of doublet action potential firing in a subpopulation of motoneurons, enabling the latter to transition between low and high frequency discharge according to the intensity of DR stimulation. Moreover, our data revealed that propriospinal and sensory pathways act synergistically to strengthen cervico-lumbar interactions. Indeed, split-bath experiments showed that fully coordinated cervico-lumbar fictive locomotion was induced by combining pharmacological stimulation of either the lumbar or cervical CPGs with lumbar DR stimulation. This study thus highlights the powerful interactions between sensory and propriospinal pathways which serve to ensure the coupling of the fore- and hindlimb CPGs for effective quadrupedal locomotion.
Collapse
Affiliation(s)
- Marie Boulain
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Mélissa Sourioux
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Grégory Barrière
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, CNRS, Université de Bordeaux, CNRS, EPHE, INCIA, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
12
|
Krasavina DA, Chemeris AV, Orlova OR, Ivanov YI. [Botulinum therapy of spastic forms of cerebral palsy in various locomotor patterns]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:119-123. [PMID: 34283541 DOI: 10.17116/jnevro2021121061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spasticity in patients with cerebral palsy (CP) is the main impediment to normal locomotion. The function of the Central Pattern Generator (CPG), i.e. a group of neural chains in the spinal cord, stands at the core of any rhythmical movement. CPG can generate locomotion patterns without supraspinal control, which can have both positive and negative impact on the ability to move. Performing the motor tasks such as walking, running and swimming, creates the consistent rhythmical movement of legs and arms through interaction between CPGs of upper and lower extremities. This interaction can cause the activation of pathological movement patterns in lower extremities in response to upper limb spasticity. Thus, neural chains in the spinal cord become the generator of pathologically increased excitation which has developed as a result of a focal lesion in the CNS. All the statements described above show the importance of introducing the upper limb injections of bFotulinum toxin A in the protocol in order to develop normal locomotion. The PUL study approved the optimal level of efficacy and favourable safety profile of botulinum toxin A in children with CP and upper limb muscle spasticity.
Collapse
Affiliation(s)
- D A Krasavina
- Saint-Petersburg Institute for Advanced Training of Medical Experts, St. Petersburg, Russia
| | - A V Chemeris
- Kazakhstan Medical University of Continuing Education, Almaty, Kazakhstan
| | - O R Orlova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Y I Ivanov
- Saint-Petersburg Institute for Advanced Training of Medical Experts, St. Petersburg, Russia
| |
Collapse
|
13
|
Parker CJ, Guerin H, Buchanan B, Lewek MD. Targeted verbal cues can immediately alter gait following stroke. Top Stroke Rehabil 2021; 29:382-391. [PMID: 34027831 DOI: 10.1080/10749357.2021.1928840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Physical therapists use verbal cueing extensively during gait rehabilitation. Nevertheless, little is known about the ability of individuals post-stroke to make immediate changes to targeted spatiotemporal gait parameters from verbal commands. Additionally, adequate muscle strength may be necessary to promote positive alterations in gait.Objectives: To determine the influence of targeted verbal cues on spatiotemporal gait parameters for individuals with chronic stroke. Further, we assessed the potential of a relationship between cue-induced gait modifications and paretic lower limb strength.Methods: Using a within-subjects design, twenty-seven adults with chronic stroke walked over a pressure mat with verbal cues to walk at (1) comfortable and (2) fast speeds, with increased (3) arm swing, (4) foot height, (5) step length, (6) push off, and (7) cadence. We also assessed lower extremity strength using a hand-held dynamometer. We measured gait speed, step length, stance time, and cadence for comparisons between conditions and performed correlational analyses to assess the influence of strength on gait alterations.Results: Specific cues elicited increased walking speed, cadence, step lengths and paretic limb stance time. Only greater paretic hip and knee flexion strength was related to the ability to increase cadence when cued to do so (r > 0.41).Conclusion: With targeted verbal cueing, clinicians can improve step length, gait speed, stance time and cadence for individuals with chronic stroke. Lower extremity strength does not appear to be related to the ability to alter gait with verbal cueing in individuals with chronic stroke.
Collapse
Affiliation(s)
- Chelsea J Parker
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Hailey Guerin
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ben Buchanan
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Michael D Lewek
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
14
|
Parhizi B, Barss TS, Mushahwar VK. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans. Front Neurosci 2021; 15:615103. [PMID: 33958979 PMCID: PMC8093452 DOI: 10.3389/fnins.2021.615103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Coupling between cervical and lumbar spinal networks (cervico-lumbar coupling) is vital during human locomotion. Impaired cervico-lumbar coupling after neural injuries or diseases can be reengaged via simultaneous arm and leg cycling training. Sensorimotor circuitry including cervico-lumbar coupling may further be enhanced by non-invasive modulation of spinal circuity using transcutaneous spinal cord stimulation (tSCS). This project aimed to determine the effect of cervical, lumbar, or combined tSCS on spinal reflex (Hoffmann [H-]) and corticospinal (motor evoked potential [MEP]) excitability during a static or cycling cervico-lumbar coupling task. Fourteen neurologically intact study participants were seated in a recumbent leg cycling system. H-reflex and MEP amplitudes were assessed in the left flexor carpi radialis (FCR) muscle during two tasks (Static and Cycling) and four conditions: (1) No tSCS, (2) tSCS applied to the cervical enlargement (Cervical); (3) tSCS applied to the lumbar enlargement (Lumbar); (4) simultaneous cervical and lumbar tSCS (Combined). While cervical tSCS did not alter FCR H-reflex amplitude relative to No tSCS, lumbar tSCS significantly facilitated H-reflex amplitude by 11.1%, and combined cervical and lumbar tSCS significantly enhanced the facilitation to 19.6%. Neither cervical nor lumbar tSCS altered MEP amplitude alone (+4.9 and 1.8% relative to legs static, No tSCS); however, combined tSCS significantly increased MEP amplitude by 19.7% compared to No tSCS. Leg cycling alone significantly suppressed the FCR H-reflex relative to static, No tSCS by 13.6%, while facilitating MEP amplitude by 18.6%. When combined with leg cycling, tSCS was unable to alter excitability for any condition. This indicates that in neurologically intact individuals where interlimb coordination and corticospinal tract are intact, the effect of leg cycling on cervico-lumbar coupling and corticospinal drive was not impacted significantly with the tSCS intensity used. This study demonstrates, for the first time, that tonic activation of spinal cord networks through multiple sites of tSCS provides a facilitation of both spinal reflex and corticospinal pathways. It remains vital to determine if combined tSCS can influence interlimb coupling after neural injury or disease when cervico-lumbar connectivity is impaired.
Collapse
Affiliation(s)
- Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Trevor S Barss
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Vivian K Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Sasada S, Tazoe T, Nakajima T, Omori S, Futatsubashi G, Komiyama T. Arm cycling increases the short-latency reflex from ankle dorsiflexor afferents to knee extensor muscles. J Neurophysiol 2020; 125:110-119. [PMID: 33146064 DOI: 10.1152/jn.00299.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-intensity electrical stimulation of the common peroneal nerve (CPN) evokes a short latency reflex in the heteronymous knee extensor muscles (referred to as the CPN reflex). The CPN reflex is facilitated at a heel strike during walking, contributing to body weight support. However, the origin of the CPN reflex increase during walking remains unclear. We speculate that this increase originates from multiple sources due to a body of evidence suggesting the presence of neural coupling between the arms and legs. Therefore, we investigated the extent to which the CPN reflex is modulated during rhythmic arm cycling. Twenty-eight subjects sat in an armchair and were asked to perform arm cycling at a moderate cadence using a stationary ergometer while performing isometric contraction of the knee extensors, such that the CPN reflex was evoked. The CPN reflex was evoked by stimulating the CPN [0.9-2.0× the motor threshold (MT) in the tibialis anterior muscle] at the level of the neck of the fibula. The CPN-reflex amplitude was measured from the vastus lateralis (VL). The biphasic reflex response in the VL was evoked within 27-45 ms following CPN stimulation. The amplitude of the CPN reflex increased during arm cycling compared with that before cycling. The modulation of the CPN reflex during arm cycling was detected only for CPN stimulation intensity around 1.2× MT. Furthermore, CPN-reflex modulation was not observed during the isometric contraction of the arm or passive arm cycling. Our results suggest the presence of neural coupling between the CPN-reflex pathways and neural systems generating locomotive arm movement.NEW & NOTEWORTHY Whether locomotive arm movements contribute to the control of the reflex pathway from ankle dorsiflexor afferents to knee extensor muscles [common peroneal nerve (CPN)-reflex] is an unresolved issue. The CPN reflex in the stationary leg was facilitated only by arm cycling, and not by passive or isometric motor tasks. Our results suggest that the arm locomotor system modulates the reflex pathway from ankle dorsiflexor afferents to the knee extensor muscles.
Collapse
Affiliation(s)
- Syusaku Sasada
- Department of Food and Nutrition Science, Sagami Women's University, Kanagawa, Japan.,Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Toshiki Tazoe
- Neural Prosthesis Project, Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | - Tomoyoshi Komiyama
- Graduate School of Education, Chiba University, Chiba, Japan.,Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
16
|
Fadeev F, Eremeev A, Bashirov F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kalistratova J, Khalitova A, Garifulin R, Islamov R, Lavrov I. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs. Brain Sci 2020; 10:brainsci10100744. [PMID: 33081405 PMCID: PMC7650717 DOI: 10.3390/brainsci10100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.
Collapse
Affiliation(s)
- Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anton Eremeev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Roman Shevchenko
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Julia Kalistratova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anastasiia Khalitova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Ravil Garifulin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
- Correspondence: (R.I.); (I.L.)
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (R.I.); (I.L.)
| |
Collapse
|
17
|
Sasaki A, Kaneko N, Masugi Y, Milosevic M, Nakazawa K. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. J Neurophysiol 2020; 124:652-667. [DOI: 10.1152/jn.00705.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. Overall, these findings suggest that training of unaffected upper limbs may be useful to enhance facilitation of affected lower limbs in paraplegic individuals.
Collapse
Affiliation(s)
- Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Saitama, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
18
|
Yurdakul OV, Kilicoglu MS, Rezvani A, Kucukakkas O, Eren F, Aydin T. How does cross-education affects muscles of paretic upper extremity in subacute stroke survivors? Neurol Sci 2020; 41:3667-3675. [PMID: 32506358 DOI: 10.1007/s10072-020-04506-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/30/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study aimed to evaluate the benefits of adding electromuscular stimulation (EMS) to the flexors of wrist muscles on the nonparetic limb in conventional stroke training to strengthen homologous agonist and antagonist muscles on the paretic side in patients with subacute stroke. METHODS The EMS group patients (n = 15) received conventional therapy for 30 sessions for 6 weeks (60 min/session) with 30 min of electrical stimulation to their nonparetic forearm using wrist flexors, with 5 min of pre- and post-warm-up. The transcutaneous electrical nerve stimulation (TENS) group patients (n = 15) received the same conventional rehabilitation training with 30 min of conventional antalgic TENS at a barely sensible level to their nonparetic forearm. The Fugl-Meyer motor function assessment for upper extremity (FMA-UE), functional independence measure (FIM), Brunnstrom staging of recovery for hand, maximum and mean wrist flexion force (flexionmax and flexionmean), and wrist extension force (extensionmax and extensionmean) of paretic untrained limb were evaluated before and after the treatment. RESULTS EMS and TENS group patients improved similarly in terms of FMA-UE, FIM, and Brunnstrom staging for hand recovery. However, flexionmax and flexionmean of the paretic limb increased more in the EMS group than in the TENS group. Extensionmax and extensionmean on the paretic side increased in the EMS group but did not differ in the TENS group. CONCLUSION Cross-education via EMS may have a beneficial effect as an adjunct to conventional treatment methods. This study is retrospectively registered and is available at www.clinicaltrials.gov (ID: NCT04113369).
Collapse
Affiliation(s)
- Ozan Volkan Yurdakul
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey.
| | - Mehmet Serkan Kilicoglu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey
| | - Aylin Rezvani
- Department of Physical Medicine and Rehabilitation. Faculty of Medicine, Medipol University, TEM otoyolu. 34214 Bagcilar, Istanbul, Turkey
| | - Okan Kucukakkas
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey
| | - Fatma Eren
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Teoman Aydin
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey
| |
Collapse
|
19
|
Klarner T, Pearcey GEP, Sun Y, Barss TS, Zehr EP. Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback. Exp Brain Res 2020; 238:1335-1349. [PMID: 32333034 DOI: 10.1007/s00221-020-05813-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022]
Abstract
Arm swing movement is coordinated with movement of the legs during walking, where the frequency of coordination depends on walking speed. At typical speeds, arm and leg movements, respectively, are frequency locked in a 1:1 ratio but at slow speeds this changes to a 2:1 ratio. It is unknown if the changes in interlimb ratio that accompany slow walking speeds alters regulation of somatosensory feedback. To probe the neural interactions between the arms and legs, somatosensory linkages in the form of interlimb cutaneous reflexes were examined. It was hypothesized that different interlimb frequencies and walking speeds would result in changes in the modulation of cutaneous reflexes between the arms and legs. To test this hypothesis, participants walked in four combinations of walking speed (typical, slow) and interlimb coordination (1:1, and 2:1), while cutaneous reflexes and background muscle activity were evaluated with stimulation applied to the superficial peroneal nerve at the ankle and superficial radial nerve at the wrist. Results show main effects of interlimb coordination and walking speed on cutaneous reflex modulation, effects are largest in the swing phase, and a directional coupling was observed, where changes in the frequency of arm movements had a greater effect on muscle activity in the legs compared to the reverse. Task-dependent modulation was also revealed from stimulation at local and remote sources. Understanding the underlying neural mechanisms for the organization of rhythmic arm movement, and its coordination with the legs in healthy participants, can give insight into pathological walking, and will facilitate the development of effective strategies for the rehabilitation of walking.
Collapse
Affiliation(s)
- Taryn Klarner
- School of Kinesiology, Lakehead University, Thunder Bay, Canada.,Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada. .,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada. .,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
20
|
Wolpaw JR, Millán JDR, Ramsey NF. Brain-computer interfaces: Definitions and principles. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:15-23. [PMID: 32164849 DOI: 10.1016/b978-0-444-63934-9.00002-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Throughout life, the central nervous system (CNS) interacts with the world and with the body by activating muscles and excreting hormones. In contrast, brain-computer interfaces (BCIs) quantify CNS activity and translate it into new artificial outputs that replace, restore, enhance, supplement, or improve the natural CNS outputs. BCIs thereby modify the interactions between the CNS and the environment. Unlike the natural CNS outputs that come from spinal and brainstem motoneurons, BCI outputs come from brain signals that represent activity in other CNS areas, such as the sensorimotor cortex. If BCIs are to be useful for important communication and control tasks in real life, the CNS must control these brain signals nearly as reliably and accurately as it controls spinal motoneurons. To do this, they might, for example, need to incorporate software that mimics the function of the subcortical and spinal mechanisms that participate in normal movement control. The realization of high reliability and accuracy is perhaps the most difficult and critical challenge now facing BCI research and development. The ongoing adaptive modifications that maintain effective natural CNS outputs take place primarily in the CNS. The adaptive modifications that maintain effective BCI outputs can also take place in the BCI. This means that the BCI operation depends on the effective collaboration of two adaptive controllers, the CNS and the BCI. Realization of this second adaptive controller, the BCI, and management of its interactions with concurrent adaptations in the CNS comprise another complex and critical challenge for BCI development. BCIs can use different kinds of brain signals recorded in different ways from different brain areas. Decisions about which signals recorded in which ways from which brain areas should be selected for which applications are empirical questions that can only be properly answered by experiments. BCIs, like other communication and control technologies, often face artifacts that contaminate or imitate their chosen signals. Noninvasive BCIs (e.g., EEG- or fNIRS-based) need to take special care to avoid interpreting nonbrain signals (e.g., cranial EMG) as brain signals. This typically requires comprehensive topographical and spectral evaluations. In theory, the outputs of BCIs can select a goal or control a process. In the future, the most effective BCIs will probably be those that combine goal selection and process control so as to distribute control between the BCI and the application in a fashion suited to the current action. Through such distribution, BCIs may most effectively imitate natural CNS operation. The primary measure of BCI development is the extent to which BCI systems benefit people with neuromuscular disorders. Thus, BCI clinical evaluation, validation, and dissemination is a key step. It is at the same time a complex and difficult process that depends on multidisciplinary collaboration and management of the demanding requirements of clinical studies. Twenty-five years ago, BCI research was an esoteric endeavor pursued in only a few isolated laboratories. It is now a steadily growing field that engages many hundreds of scientists, engineers, and clinicians throughout the world in an increasingly interconnected community that is addressing the key issues and pursuing the high potential of BCI technology.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Wadsworth Center, Albany, NY, United States
| | - José Del R Millán
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States; Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| | - Nick F Ramsey
- Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Hinnekens E, Berret B, Do MC, Teulier C. Modularity underlying the performance of unusual locomotor tasks inspired by developmental milestones. J Neurophysiol 2019; 123:496-510. [PMID: 31825715 DOI: 10.1152/jn.00662.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Motor behaviors are often hypothesized to be set up from the combination of a small number of modules encoded in the central nervous system. These modules are thought to combine such that a variety of motor tasks can be realized, from reproducible tasks such as walking to more unusual locomotor tasks that typically exhibit more step-by-step variability. We investigated the impact of step-by-step variability on the modular architecture of unusual tasks compared with walking. To this aim, 20 adults had to perform walking and two unusual modes of locomotion inspired by developmental milestones (cruising and crawling). Sixteen surface electromyography (EMG) signals were recorded to extract both spatial and temporal modules. Modules were extracted from both averaged and nonaveraged (i.e., single step) EMG signals to assess the significance of step-to-step variability when participants practiced such unusual locomotor tasks. The number of modules extracted from averaged data was similar across tasks, but a higher number of modules was required to reconstruct nonaveraged EMG data of the unusual tasks. Although certain walking modules were shared with cruising and crawling, task-specific modules were necessary to account for the muscle patterns underlying these unusual locomotion modes. These results highlight a more complex modularity (e.g., more modules) for cruising and crawling compared with walking, which was only apparent when the step-to-step variability of EMG patterns was considered. This suggests that considering nonaveraged data is relevant when muscle modularity is studied, especially in motor tasks with high variability as in motor development.NEW & NOTEWORTHY This study addresses the general question of modularity in locomotor control. We demonstrate for the first time the importance of intraindividual variability in the muscle modularity of unusual locomotor behaviors that exhibit greater step-by-step variability than standard walking. Crawling and cruising, the unusual locomotor modes considered, are based on a more complex modular organization than walking. More spatial and temporal modules, task specific or shared with walking modules, are needed to reconstruct muscle patterns.
Collapse
Affiliation(s)
- Elodie Hinnekens
- Laboratoire Complexité, Innovations, Activités Motrices et Sportives (CIAMS), Université Paris-Sud, Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Bastien Berret
- Laboratoire Complexité, Innovations, Activités Motrices et Sportives (CIAMS), Université Paris-Sud, Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,Institut Universitaire de France, Paris, France
| | - Manh-Cuong Do
- Laboratoire Complexité, Innovations, Activités Motrices et Sportives (CIAMS), Université Paris-Sud, Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Caroline Teulier
- Laboratoire Complexité, Innovations, Activités Motrices et Sportives (CIAMS), Université Paris-Sud, Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| |
Collapse
|
22
|
Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential Elements of Locomotor Control in the Intact and Possibly the Injured Spinal Cord. Front Cell Neurosci 2019; 13:512. [PMID: 31798419 PMCID: PMC6874159 DOI: 10.3389/fncel.2019.00512] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Propriospinal interneurons (INs) communicate information over short and long distances within the spinal cord. They act to coordinate different parts of the body by linking motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their role in coordinating locomotor circuits near and far may be invaluable to the recovery of locomotor function lost due to injury to the spinal cord where the flow of motor commands from the brain and brainstem to spinal motor circuits is disrupted. The formation and activation of circuits established by spared propriospinal INs may promote the re-emergence of locomotion. In light of progress made in animal models of spinal cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in the intact spinal cord and describe recent studies investigating the assembly and/or activation of propriospinal circuits to promote recovery of locomotion following SCI.
Collapse
Affiliation(s)
- Alex M Laliberte
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara Goltash
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas R Lalonde
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tuan Vu Bui
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
23
|
Sun Y, Zehr EP. Training-Induced Neural Plasticity and Strength Are Amplified After Stroke. Exerc Sport Sci Rev 2019; 47:223-229. [PMID: 31283528 PMCID: PMC6887626 DOI: 10.1249/jes.0000000000000199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Following stroke, sensorimotor brain networks and descending regulation are compromised but spinal interlimb neural connections remain morphologically intact. After cross-education strength and locomotion training, amplified neural plasticity and functional responses are observed in chronic stroke compared with neurologically intact participants. We hypothesize that poststroke neuroplasticity is amplified because of the involvement of interlimb neural connections that persist from our quadrupedal ancestry.
Collapse
Affiliation(s)
- Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
24
|
Toossi A, Everaert DG, Perlmutter SI, Mushahwar VK. Functional organization of motor networks in the lumbosacral spinal cord of non-human primates. Sci Rep 2019; 9:13539. [PMID: 31537819 PMCID: PMC6753145 DOI: 10.1038/s41598-019-49328-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/24/2019] [Indexed: 12/17/2022] Open
Abstract
Implantable spinal-cord-neuroprostheses aiming to restore standing and walking after paralysis have been extensively studied in animal models (mainly cats) and have shown promising outcomes. This study aimed to take a critical step along the clinical translation path of these neuroprostheses, and investigated the organization of the neural networks targeted by these implants in a non-human primate. This was accomplished by advancing a microelectrode into various locations of the lumbar enlargement of the spinal cord, targeting the ventral horn of the gray matter. Microstimulation in these locations produced a variety of functional movements in the hindlimb. The resulting functional map of the spinal cord in monkeys was found to have a similar overall organization along the length of the spinal cord to that in cats. This suggests that the human spinal cord may also be organized similarly. The obtained spinal cord maps in monkeys provide important knowledge that will guide the very first testing of these implants in humans.
Collapse
Affiliation(s)
- Amirali Toossi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Dirk G Everaert
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Centre, Seattle, Washington, USA.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada.,Center for Sensorimotor Neural Engineering, Seattle, Washington, USA
| | - Vivian K Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada. .,Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Cleland BT, Gelting T, Arand B, Struhar J, Schindler-Ivens S. Impaired interlimb coordination is related to asymmetries during pedaling after stroke. Clin Neurophysiol 2019; 130:1474-1487. [PMID: 31288158 PMCID: PMC6684846 DOI: 10.1016/j.clinph.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To understand whether lower limb asymmetry in chronic stroke is related to paretic motor impairment or impaired interlimb coordination. METHODS Stroke and control participants performed conventional, unilateral, and bilateral uncoupled pedaling. During uncoupled pedaling, the pedals were mechanically disconnected. Paretic mechanical work was measured during conventional pedaling. Pedaling velocity and muscle activity were compared across conditions and groups. Relative limb phasing was examined during uncoupled pedaling. RESULTS During conventional pedaling, EMG and mechanical work were lower in the paretic than the non-paretic limb (asymmetry). During unilateral pedaling with the paretic limb, muscle activity was larger, but velocity was slower and more variable than during conventional pedaling (evidence of paretic motor impairment). During uncoupled pedaling, muscle activity increased further, but velocity was slower and more variable than in other conditions (evidence of impaired interlimb coordination). Relative limb phasing was impaired in stroke participants. Regression analysis suggested that interlimb coordination may be a stronger predictor of asymmetry than paretic motor impairment. CONCLUSIONS Paretic motor impairment and impaired interlimb coordination may contribute to asymmetry during pedaling after stroke. SIGNIFICANCE Rehabilitation that addresses paretic motor impairment and impaired interlimb coordination may improve symmetry and maximize improvement.
Collapse
Affiliation(s)
- Brice T Cleland
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA.
| | - Tamicah Gelting
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA
| | - Brett Arand
- College of Engineering, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Jan Struhar
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA
| | - Sheila Schindler-Ivens
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
26
|
Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res 2019; 237:2319-2329. [PMID: 31286172 DOI: 10.1007/s00221-019-05598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Abstract
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.
Collapse
|
27
|
Forma V, Anderson DI, Provasi J, Soyez E, Martial M, Huet V, Granjon L, Goffinet F, Barbu-Roth M. What Does Prone Skateboarding in the Newborn Tell Us About the Ontogeny of Human Locomotion? Child Dev 2019; 90:1286-1302. [PMID: 31267516 DOI: 10.1111/cdev.13251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crawling behavior of sixty 2-day-old newborns was studied while they were supported prone on a mini skateboard and on a pediatric mattress without additional support. Analyses of the number and types of limb movements and their characteristics, the coactivation of limb pairs, and the displacement across the surface, revealed that newborns can crawl with locomotor patterns similar to those documented during quadrupedal locomotion in animals and human adults. This was particularly apparent on the skateboard. This discovery suggests that locomotor circuitry underlying quadrupedal locomotion develops during fetal life. Drawing upon other evidence for a quadrupedal organization underlying bipedal gait, we argue that early quadrupedal training may enhance interventions designed to hasten the onset of independent walking.
Collapse
|
28
|
Corticospinal excitability, assessed through stimulus response curves, is phase-, task-, and muscle-dependent during arm cycling. Neurosci Lett 2019; 692:100-106. [DOI: 10.1016/j.neulet.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 11/20/2022]
|
29
|
Arm-crank training improves postural stability and physical functioning in older people. Exp Gerontol 2018; 113:218-227. [DOI: 10.1016/j.exger.2018.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
|
30
|
Wolpaw JR. The negotiated equilibrium model of spinal cord function. J Physiol 2018; 596:3469-3491. [PMID: 29663410 PMCID: PMC6092289 DOI: 10.1113/jp275532] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and ageing, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long-recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth CenterNYS Department of HealthAlbanyNYUSA
- Department of NeurologyStratton VA Medical CenterAlbanyNYUSA
- Department of Biomedical SciencesSchool of Public HealthSUNY AlbanyNYUSA
- Department of Neurology, Neurological InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
31
|
Yang HS, James CR, Atkins LT, Sawyer SF, Sizer PS, Kumar NA, Kim J. Effects of arm weight on gait performance in healthy subjects. Hum Mov Sci 2018; 60:40-47. [PMID: 29775941 DOI: 10.1016/j.humov.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
Previous studies have investigated how additional arm weights affect gait. Although light weights (0.45 kg) seemed to elicit performance improvements in Parkinsonian patients, it was not studied how light weights affect gait parameters in healthy individuals. It is important to understand normal responses in a healthy population so that clinical effects might be better understood. Therefore, the purpose of this study was to investigate the effects of arm weights on arm swing amplitude, gait performance, and muscle activity in healthy people. Twenty-two subjects walked overground at their preferred speed under different weight carriage conditions (C1: no weight; C2: unilateral arm weight; C3: bilateral arm weights; C4: waist weights). Gait speed increased in C2 (p = 0.018) and C4 (p = 0.013) when compared with C1(C1: 1.21 ± 0.08; C2: 1.25 ± 0.11; C3: 1.24 ± 0.11; C4: 1.25 ± 0.11 m/s) with an increase in cadence during C2 (p < 0.001), C3 (p = 0.008), and C4 (p < 0.001) (C1: 105.5 ± 5.2; C2: 108.5 ± 5.6; C3: 107.9 ± 5.6; C4: 108.5 ± 5.3 steps/min) and in tibialis anterior electromyographic activity on the unweighted side in C2 (p = 0.048) (C1: 21.05 ± 4.59; C2: 25.10 ± 6.10; C3: 23.93 ± 4.75; C4: 24.33 ± 6.32 μV). The results indicate that an additional sensory input with the application of the weights may result in an overcompensation with the whole body and facilitate faster walking speed when applied on one arm or around the waist. The locations of the weights and amount of the weights may elicit different responses. Various strategies of adding weights should be further investigated as a potential intervention to improve performance in individuals with various gait impairments. Although there is evidence for benefits of this intervention in Parkinsonian patients, further study is warranted in other patient populations, such as stroke patients, who might benefit from this intervention to improve gait performance.
Collapse
Affiliation(s)
- Hyung Suk Yang
- Division of Kinesiology and Sport Management, University of South Dakota, Vermillion, SD, USA.
| | - C Roger James
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Lee T Atkins
- Department of Physical Therapy, Angelo State University, San Angelo, TX, USA.
| | - Steven F Sawyer
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Phillip S Sizer
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Neeraj A Kumar
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jongyeol Kim
- Department of Neurology, Texas Tech University Health Science Center, TX, USA.
| |
Collapse
|
32
|
Xiong QL, Hou WS, Xiao N, Chen YX, Yao J, Zheng XL, Liu Y, Wu XY. Motor Skill Development Alters Kinematics and Co-Activation Between Flexors and Extensors of Limbs in Human Infant Crawling. IEEE Trans Neural Syst Rehabil Eng 2018; 26:780-787. [DOI: 10.1109/tnsre.2017.2785821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern-generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture, that of Arthur Conan Doyle's detective, Sherlock Holmes. Because the invasive methods used in reduced nonhuman animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern-generating activity that leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration, and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
34
|
Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion. Hum Mov Sci 2017; 57:314-323. [PMID: 28958710 DOI: 10.1016/j.humov.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/22/2022]
Abstract
Current research has yet to determine how passive dynamics and active neural control contribute to upper limb swing during human locomotion. The present study aimed to investigate these contributions by restricting pelvis motion during walking, thereby altering the upward energy transfer from the swinging lower limbs. Ten healthy individuals walked freely on a treadmill (CON) and with an apparatus that reduced pelvis motion (PR) at three walking speeds (0.9, 1.3, and 1.8m/s). Spatiotemporal characteristics of limb movement and muscle activation were recorded and analyzed. When wearing the apparatus, the ranges of the sagittal and transverse rotations of the trunk and shoulders, as well as vertical trunk center of mass movement all decreased. At higher treadmill speeds, the movement amplitudes of the upper and lower limbs increased. This increase was less pronounced in the upper limbs when the apparatus reduced pelvis motion. However, this decrease in arm swing was accompanied with a preservation of upper and lower limb muscle activity amplitudes. The temporal coordination between upper and lower limbs was also conserved irrespective of the PR or CON conditions. Relating shoulder muscle activities to upper limb kinematics suggested these muscles mainly acted eccentrically, providing evidence that passive elements are a significant factor in arm swing control. However, the conserved muscle activity patterns and temporal coupling of limb movements when pelvis motion was reduced are suggestive of an underlying active maintenance of the locomotor pattern via linked upper and lower limb neural networks.
Collapse
|
35
|
Druelle F, Aerts P, Berillon G. The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis). J Hum Evol 2017; 113:155-161. [PMID: 29054165 DOI: 10.1016/j.jhevol.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022]
Abstract
In this paper, we point to the importance of considering infancy in the emergence of new locomotor modes during evolution, and particularly when considering bipedal walking. Indeed, because infant primates commonly exhibit a more diverse posturo-locomotor repertoire than adults, the developmental processes of locomotion represent an important source of variation upon which natural selection may act. We have had the opportunity to follow the development of locomotion in captive individuals of a committed quadrupedal primate, the olive baboon (Papio anubis). We observed six infants at two different stages of their development. In total, we were able to analyze the temporal parameters of 65 bipedal steps, as well as their behavioral components. Our results show that while the basic temporal aspects of the bipedal walking gait (i.e., duty factor, dimensionless frequency, and hind lag) do not change during development, the baboon is able to significantly improve the coordination pattern between hind limbs. This probably influences the bout duration of spontaneous bipedal walking. During the same developmental stage, the interlimb coordination in quadrupedal walking is improved and the proportion of quadrupedal behaviors increases significantly. Therefore, the quadrupedal pattern of primates does not impede the developmental acquisition of bipedal behaviors. This may suggest that the same basic mechanism is responsible for controlling bipedal and quadrupedal locomotion, i.e., that in non-human primates, the neural networks for quadrupedal locomotion are also employed to perform (occasional) bipedal walking. In this context, a secondary locomotor mode (e.g., bipedalism) experienced during infancy as a by-product of locomotor development may lead to evolutionary novelties when under appropriate selective pressures.
Collapse
Affiliation(s)
- François Druelle
- Functional Morphology Laboratory, Biology Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; UMR 7194 CNRS, Département de Préhistoire, Muséum National D'Histoire Naturelle, 1 Rue René Panhard, 75013 Paris, France; UPS 846 CNRS, Primatology Station, RD 56, 13790 Rousset-sur-Arc, France.
| | - Peter Aerts
- Functional Morphology Laboratory, Biology Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, University of Ghent, Watersportlaan 2, 9000 Gent, Belgium
| | - Gilles Berillon
- UMR 7194 CNRS, Département de Préhistoire, Muséum National D'Histoire Naturelle, 1 Rue René Panhard, 75013 Paris, France; UPS 846 CNRS, Primatology Station, RD 56, 13790 Rousset-sur-Arc, France
| |
Collapse
|
36
|
Bondi M, Zeilig G, Bloch A, Fasano A, Plotnik M. Split-arm swinging: the effect of arm swinging manipulation on interlimb coordination during walking. J Neurophysiol 2017; 118:1021-1033. [PMID: 28490642 DOI: 10.1152/jn.00130.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022] Open
Abstract
Human locomotion is defined by bilateral coordination of gait (BCG) and shared features with the fore-hindlimb coordination of quadrupeds. The objective of the present study is to explore the influence of arm swinging (AS) on BCG. Sixteen young, healthy individuals (eight women; eight right motor-dominant, eight left-motor dominant) participated. Participants performed 10 walking trials (2 min). In each of the trials AS was unilaterally manipulated (e.g., arm restriction, weight on the wrist), bilaterally manipulated, or not manipulated. The order of trials was random. Walking trials were performed on a treadmill. Gait kinematics were recorded by a motion capture system. Using feedback-controlled belt speed allowed the participants to walk at a self-determined gait speed. Effects of the manipulations were assessed by AS amplitudes and the phase coordination index (PCI), which quantifies the left-right anti-phased stepping pattern. Most of the AS manipulations caused an increase in PCI values (i.e., reduced lower limb coordination). Unilateral AS manipulation had a reciprocal effect on the AS amplitude of the other arm such that, for example, over-swinging of the right arm led to a decrease in the AS amplitude of the left arm. Side of motor dominance was not found to have a significant impact on PCI and AS amplitude. The present findings suggest that lower limb BCG is markedly influenced by the rhythmic AS during walking. It may thus be important for gait rehabilitation programs targeting BCG to take AS into account.NEW & NOTEWORTHY Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly influenced by the rhythmic AS during walking.
Collapse
Affiliation(s)
- Moshe Bondi
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel.,Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Spinal Cord Injury Fellow, University Health Network-Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel.,Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayala Bloch
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel.,The National Institute for the Rehabilitation of the Brain Injured, Tel Aviv, Israel
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel; .,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017; 117:2224-2241. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
38
|
Spence AJ, Alcock LR, Lockyer EJ, Button DC, Power KE. Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling. Brain Sci 2016; 6:brainsci6040060. [PMID: 27983685 PMCID: PMC5187574 DOI: 10.3390/brainsci6040060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022] Open
Abstract
This is the first study to examine corticospinal excitability (CSE) to antagonistic muscle groups during arm cycling. Transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of the corticospinal tract were used to assess changes in supraspinal and spinal excitability, respectively. TMS induced motor evoked potentials (MEPs) and TMES induced cervicomedullary evoked potentials (CMEPs) were recorded from the biceps and triceps brachii at two positions, mid-elbow flexion and extension, while cycling at 5% and 15% of peak power output. While phase-dependent modulation of MEP and CMEP amplitudes occurred in the biceps brachii, there was no difference between flexion and extension for MEP amplitudes in the triceps brachii and CMEP amplitudes were higher during flexion than extension. Furthermore, MEP amplitudes in both biceps and triceps brachii increased with increased workload. CMEP amplitudes increased with higher workloads in the triceps brachii, but not biceps brachii, though the pattern of change in CMEPs was similar to MEPs. Differences between changes in CSE between the biceps and triceps brachii suggest that these antagonistic muscles may be under different neural control during arm cycling. Putative mechanisms are discussed.
Collapse
Affiliation(s)
- Alyssa-Joy Spence
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Lynsey R Alcock
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Evan J Lockyer
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Duane C Button
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Kevin E Power
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
39
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
40
|
Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, Hundza S, Kaupp C, Klarner T, Klimstra M, Komiyama T, Loadman PM, Mezzarane RA, Nakajima T, Pearcey GEP, Sun Y. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 2016; 234:3059-3081. [PMID: 27421291 PMCID: PMC5071371 DOI: 10.1007/s00221-016-4715-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/27/2016] [Indexed: 11/10/2022]
Abstract
During bipedal locomotor activities, humans use elements of quadrupedal neuronal limb control. Evolutionary constraints can help inform the historical ancestry for preservation of these core control elements support transfer of the huge body of quadrupedal non-human animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after neurotrauma where interlimb coordination is lost or compromised. The present state of the field supports including arm activity in addition to leg activity as a component of gait retraining after neurotrauma.
Collapse
Affiliation(s)
- E P Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Katie Dragert
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Alain Frigon
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Erin V Vasudevan
- Department of Physical Therapy, SUNY Stony Brook University, Stony Brook, NY, USA
| | - Carlos Haridas
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Sandra Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Marc Klimstra
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Sports and Health Science, Chiba University, Chiba, Japan
- The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília-UnB, Brasília, Brazil
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
41
|
Nakajima T, Kamibayashi K, Kitamura T, Komiyama T, Zehr EP, Nakazawa K. Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous Robot-Assisted Passive Stepping. Front Hum Neurosci 2016; 10:368. [PMID: 27499737 PMCID: PMC4956673 DOI: 10.3389/fnhum.2016.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Both active and passive rhythmic limb movements reduce the amplitude of spinal cord Hoffmann (H-) reflexes in muscles of moving and distant limbs. This could have clinical utility in remote modulation of the pathologically hyperactive reflexes found in spasticity after stroke or spinal cord injury. However, such clinical translation is currently hampered by a lack of critical information regarding the minimum or effective duration of passive movement needed for modulating spinal cord excitability. We therefore investigated the H-reflex modulation in the flexor carpi radialis (FCR) muscle during and after various durations (5, 10, 15, and 30 min) of passive stepping in 11 neurologically normal subjects. Passive stepping was performed by a robotic gait trainer system (Lokomat®) while a single pulse of electrical stimulation to the median nerve elicited H-reflexes in the FCR. The amplitude of the FCR H-reflex was significantly suppressed during passive stepping. Although 30 min of passive stepping was sufficient to elicit a persistent H-reflex suppression that lasted up to 15 min, 5 min of passive stepping was not. The duration of H-reflex suppression correlated with that of the stepping. These findings suggest that the accumulation of stepping-related afferent feedback from the leg plays a role in generating short-term interlimb plasticity in the circuitry of the FCR H-reflex.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine Mitaka, Japan
| | | | - Taku Kitamura
- Motor Control Section, Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan; Graduate School of Engineering, Shibaura Institute of TechnologyTokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Sciences, Faculty of Education, Chiba University Chiba, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria Victoria, BC, Canada
| | - Kimitaka Nakazawa
- Graduate school of Arts and Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
42
|
Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke. Neural Plast 2016; 2016:1517968. [PMID: 27403344 PMCID: PMC4926010 DOI: 10.1155/2016/1517968] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 01/13/2023] Open
Abstract
Rhythmic arm and leg (A&L) movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months) participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1) clinical tests; (2) strength during isometric contractions; and (3) treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests) within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.
Collapse
|
43
|
Suzuki S, Nakajima T, Futatsubashi G, Mezzarane RA, Ohtsuka H, Ohki Y, Zehr EP, Komiyama T. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing. Exp Brain Res 2016; 234:2293-304. [PMID: 27030502 DOI: 10.1007/s00221-016-4635-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
Abstract
Electrical stimulation of cutaneous nerves innervating heteronymous limbs (the arms or contralateral leg) modifies the excitability of soleus Hoffmann (H-) reflexes. The differences in the sensitivities of the H-reflex pathway to cutaneous afferents from different limbs and their modulation during the performance of motor tasks (i.e., standing and walking) are not fully understood. In the present study, we investigated changes in soleus H-reflex amplitudes induced by electrical stimulation of peripheral nerves. Selected targets for conditioning stimulation included the superficial peroneal nerve, which innervates the foot dorsum in the contralateral ankle (cSP), and the superficial radial nerve, which innervates the dorsum of the hand in the ipsilateral (iSR) or contralateral wrist (cSR). Stimulation and subsequent reflex assessment took place during the standing and early-stance phase of treadmill walking in ten healthy subjects. Cutaneous stimulation produced long-latency inhibition (conditioning-test interval of ~100 ms) of the H-reflex during the early-stance phase of walking, and the inhibition was stronger following cSP stimulation compared with iSR or cSR stimulation. In contrast, although similar conditioning stimulation significantly facilitated the H-reflex during standing, this effect remained constant irrespective of the different conditioning sites. These findings suggest that cutaneous inputs from the arms and contralateral leg had reversible effects on the H-reflex amplitudes, including inhibitions with different sensitivities during the early-stance phase of walking and facilitation during standing. Furthermore, the differential sensitivities of the H-reflex modulations were expressed only during walking when the locations of the afferent inputs were functionally relevant.
Collapse
Affiliation(s)
- Shinya Suzuki
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan. .,Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Genki Futatsubashi
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.,Faculty of Business and Information Sciences, Jobu University, Isesaki, Gunma, Japan
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil.,Biomedical Engineering Laboratory, EPUSP, PTC, University of São Paulo, São Paulo, Brazil.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| | - Hiroyuki Ohtsuka
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
44
|
Sasada S, Tazoe T, Nakajima T, Futatsubashi G, Ohtsuka H, Suzuki S, Zehr EP, Komiyama T. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. J Neurophysiol 2016; 115:2065-75. [PMID: 26961103 DOI: 10.1152/jn.00638.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs.
Collapse
Affiliation(s)
- Syusaku Sasada
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Food and Nutrition Science, Sagami Women's University, Kanagawa, Japan;
| | - Toshiki Tazoe
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Genki Futatsubashi
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Management and Information Sciences, Jobu University, Gunma, Japan
| | - Hiroyuki Ohtsuka
- School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shinya Suzuki
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada; and
| | - Tomoyoshi Komiyama
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Nichols TR, Bunderson NE, Lyle MA. Neural Regulation of Limb Mechanics: Insights from the Organization of Proprioceptive Circuits. NEUROMECHANICAL MODELING OF POSTURE AND LOCOMOTION 2016. [DOI: 10.1007/978-1-4939-3267-2_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Solopova IA, Selionov VA, Zhvansky DS, Gurfinkel VS, Ivanenko Y. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J Neurophysiol 2015; 115:1018-30. [PMID: 26683072 DOI: 10.1152/jn.00897.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The coordination between arms and legs during human locomotion shares many features with that in quadrupeds, yet there is limited evidence for the central pattern generator for the upper limbs in humans. Here we investigated whether different types of tonic stimulation, previously used for eliciting stepping-like leg movements, may evoke nonvoluntary rhythmic arm movements. Twenty healthy subjects participated in this study. The subject was lying on the side, the trunk was fixed, and all four limbs were suspended in a gravity neutral position, allowing unrestricted low-friction limb movements in the horizontal plane. The results showed that peripheral sensory stimulation (continuous muscle vibration) and central tonic activation (postcontraction state of neuronal networks following a long-lasting isometric voluntary effort, Kohnstamm phenomenon) could evoke nonvoluntary rhythmic arm movements in most subjects. In ∼40% of subjects, tonic stimulation elicited nonvoluntary rhythmic arm movements together with rhythmic movements of suspended legs. The fact that not all participants exhibited nonvoluntary limb oscillations may reflect interindividual differences in responsiveness of spinal pattern generation circuitry to its activation. The occurrence and the characteristics of induced movements highlight the rhythmogenesis capacity of cervical neuronal circuitries, complementing the growing body of work on the quadrupedal nature of human gait.
Collapse
Affiliation(s)
- I A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia;
| | - V A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - D S Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - V S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, Oregon; and
| | - Y Ivanenko
- Laboratory of Neuromotor Physiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
47
|
Forman DA, Philpott DTG, Button DC, Power KE. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling. J Neurophysiol 2015; 114:2285-94. [PMID: 26289462 DOI: 10.1152/jn.00418.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/19/2015] [Indexed: 11/22/2022] Open
Abstract
This is the first study to report the influence of different cadences on the modulation of supraspinal and spinal excitability during arm cycling. Supraspinal and spinal excitability were assessed using transcranial magnetic stimulation of the motor cortex and transmastoid electrical stimulation of the corticospinal tract, respectively. Transcranial magnetic stimulation-induced motor evoked potentials and transmastoid electrical stimulation-induced cervicomedullary evoked potentials (CMEPs) were recorded from the biceps brachii at two separate positions corresponding to elbow flexion and extension (6 and 12 o'clock relative to a clock face, respectively) while arm cycling at 30, 60 and 90 rpm. Motor evoked potential amplitudes increased significantly as cadence increased during both elbow flexion (P < 0.001) and extension (P = 0.027). CMEP amplitudes also increased with cadence during elbow flexion (P < 0.01); however, the opposite occurred during elbow extension (i.e., decreased CMEP amplitude; P = 0.01). The data indicate an overall increase in the excitability of corticospinal neurons which ultimately project to biceps brachii throughout arm cycling as cadence increased. Conversely, changes in spinal excitability as cadence increased were phase dependent (i.e., increased during elbow flexion and decreased during elbow extension). Phase- and cadence-dependent changes in spinal excitability are suggested to be mediated via changes in the balance of excitatory and inhibitory synaptic input to the motor pool, as opposed to changes in the intrinsic properties of spinal motoneurons.
Collapse
Affiliation(s)
- Davis A Forman
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and
| | - Devin T G Philpott
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and
| | - Duane C Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
48
|
Nakajima T, Mezzarane RA, Komiyama T, Paul Zehr E. Reflex control of human locomotion: Existence, features and functions of common interneuronal system induced by multiple sensory inputs in humans. ACTA ACUST UNITED AC 2015. [DOI: 10.7600/jpfsm.4.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine
| | - Rinaldo A. Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília
| | | | - E. Paul Zehr
- Division of Medical Sciences, University of Victoria
- Centre for Biomedical Research, University of Victoria
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD)
- Rehabilitation Neuroscience Laboratory, University of Victoria
| |
Collapse
|
49
|
Klarner T, Barss TS, Sun Y, Kaupp C, Zehr EP. Preservation of common rhythmic locomotor control despite weakened supraspinal regulation after stroke. Front Integr Neurosci 2014; 8:95. [PMID: 25565995 PMCID: PMC4273616 DOI: 10.3389/fnint.2014.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/04/2014] [Indexed: 11/26/2022] Open
Abstract
The basic pattern of arm and leg movement during rhythmic locomotor tasks is supported by common central neural control from spinal and supraspinal centers in neurologically intact participants. The purpose of this study was to test the hypothesis that following a cerebrovascular accident, shared systems from interlimb cutaneous networks facilitating arm and leg coordination persist across locomotor tasks. Twelve stroke participants (>6 months post CVA) performed arm and leg (A&L) cycling using a stationary ergometer and walking on a motorized treadmill. In both tasks cutaneous reflexes were evoked via surface stimulation of the nerves innervating the dorsum of the hand (superficial radial; SR) and foot (superficial peroneal; SP) of the less affected limbs. Electromyographic (EMG) activity from the tibialis anterior, soleus, flexor carpi radialis, and posterior deltoid were recorded bilaterally with surface electrodes. Full-wave rectified and filtered EMG data were separated into eight equal parts or phases and aligned to begin with maximum knee extension for both walking and A&L cycling. At each phase of movement, background EMG data were quantified as the peak normalized response for each participant and cutaneous reflexes were quantified as the average cumulative reflex over 150 ms following stimulation. In general, background EMG was similar between walking and A&L cycling, seen especially in the distal leg muscles. Cutaneous reflexes were evident and modified in the less and more affected limbs during walking and A&L cycling and similar modulation patterns were observed suggesting activity in related control networks between tasks. After a stroke common neural patterning from conserved subcortical regulation is seen supporting the notion of a common core in locomotor tasks involving arm and leg movement. This has translational implications for rehabilitation where A&L cycling could be usefully applied to improve walking function.
Collapse
Affiliation(s)
- Taryn Klarner
- Exercise Science, Physical and Health Education, University of Victoria Victoria, BC, Canada ; Centre for Biomedical Research, University of Victoria Victoria, BC, Canada ; International Collaboration on Repair Discoveries Vancouver, BC, Canada
| | - Trevor S Barss
- Exercise Science, Physical and Health Education, University of Victoria Victoria, BC, Canada ; Centre for Biomedical Research, University of Victoria Victoria, BC, Canada ; International Collaboration on Repair Discoveries Vancouver, BC, Canada
| | - Yao Sun
- Exercise Science, Physical and Health Education, University of Victoria Victoria, BC, Canada ; Centre for Biomedical Research, University of Victoria Victoria, BC, Canada ; International Collaboration on Repair Discoveries Vancouver, BC, Canada
| | - Chelsea Kaupp
- Exercise Science, Physical and Health Education, University of Victoria Victoria, BC, Canada ; Centre for Biomedical Research, University of Victoria Victoria, BC, Canada ; International Collaboration on Repair Discoveries Vancouver, BC, Canada
| | - E Paul Zehr
- Exercise Science, Physical and Health Education, University of Victoria Victoria, BC, Canada ; Centre for Biomedical Research, University of Victoria Victoria, BC, Canada ; International Collaboration on Repair Discoveries Vancouver, BC, Canada ; Division of Medical Sciences, University of Victoria Victoria, BC, Canada
| |
Collapse
|
50
|
Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, Roy RR, Lu DC, Edgerton VR. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J Neurophysiol 2014; 113:834-42. [PMID: 25376784 DOI: 10.1152/jn.00609.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord injury.
Collapse
Affiliation(s)
- Yury Gerasimenko
- Pavlov Institute of Physiology, St. Petersburg, Russia; Integrative Biology and Physiology, University of California, Los Angeles, California; and
| | - Ruslan Gorodnichev
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | - Aleksandr Puhov
- Velikie Luky State Academy of Physical Education and Sport, Velikie Luky, Russia
| | | | | | - Victor Selionov
- Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Roland R Roy
- Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| | - Daniel C Lu
- Departments of Neurosurgery University of California, Los Angeles, California
| | - V Reggie Edgerton
- Departments of Neurosurgery University of California, Los Angeles, California; Integrative Biology and Physiology, University of California, Los Angeles, California; and Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|