1
|
Yang K, Shan X, Songru Y, Fu M, Zhao P, Guo W, Xu M, Chen H, Lu R, Zhang C. Network pharmacology integrated with experimental validation to elucidate the mechanisms of action of the Guizhi-Gancao Decoction in the treatment of phenylephrine-induced cardiac hypertrophy. PHARMACEUTICAL BIOLOGY 2024; 62:456-471. [PMID: 38773737 PMCID: PMC11123502 DOI: 10.1080/13880209.2024.2354335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/28/2024] [Indexed: 05/24/2024]
Abstract
CONTEXT The mechanisms of Traditional Chinese Medicine (TCM) Guizhi-Gancao Decoction (GGD) remain unknown. OBJECTIVE This study explores the mechanisms of GGD against cardiac hypertrophy. MATERIALS AND METHODS Network pharmacology analysis was carried out to identify the potential targets of GGD. In vivo experiments, C57BL/6J mice were divided into Con, phenylephrine (PE, 10 mg/kg/d), 2-chloroadenosine (CADO, the stable analogue of adenosine, 2 mg/kg/d), GGD (5.4 g/kg/d) and GGD (5.4 g/kg/d) + CGS15943 (a nonselective adenosine receptor antagonist, 4 mg/kg/d). In vitro experiments, primary neonatal rat cardiomyocytes (NRCM) were divided into Con, PE (100 µM), CADO (5 µM), GGD (10-5 g/mL) and GGD (10-5 g/mL) + CGS15943 (5 µM). Ultrasound, H&E and Masson staining, hypertrophic genes expression and cell surface area were conducted to verify the GGD efficacy. Adenosine receptors (ADORs) expression were tested via real-time polymerase chain reaction (PCR), western blotting and immunofluorescence analysis. RESULTS Network pharmacology identified ADORs among those of the core targets of GGD. In vitro experiments demonstrated that GGD attenuated PE-induced increased surface area (with an EC50 of 5.484 × 10-6 g/mL). In vivo data shown that GGD attenuated PE-induced ventricular wall thickening. In vitro and in vivo data indicated that GGD alleviated PE-induced hypertrophic gene expression (e.g., ANP, BNP and MYH7/MYH6), A1AR over-expression and A2aAR down-expression. Moreover, CADO exerts effects similar to GGD, whereas CGS15943 eliminated most effects of GGD. DISCUSSION AND CONCLUSIONS Our findings suggest the mechanism by which GGD inhibits cardiac hypertrophy, highlighting regulation of ADORs as a potential therapeutic strategy for HF.
Collapse
Affiliation(s)
- Kaijing Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Shan
- Public Laboratory Platform, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Songru
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengwei Fu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhao
- Public Laboratory Platform, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- Department of Physiology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen J, Zhao Y, Cheng J, Wang H, Pan S, Liu Y. The Antiviral Potential of Perilla frutescens: Advances and Perspectives. Molecules 2024; 29:3328. [PMID: 39064906 PMCID: PMC11279397 DOI: 10.3390/molecules29143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses pose a significant threat to human health, causing widespread diseases and impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant, is well known for its antiviral properties. This systematic review examines the antiviral potential of Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters. Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and explored related signaling pathways. Moreover, a classified summary of the active components of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla frutescens may involve several pathways, including enhanced immune function, modulation of inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results underscore the potential antiviral application of Perilla frutescens as a natural plant and provide important implications for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Yi Zhao
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Jie Cheng
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Haoran Wang
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Shu Pan
- Computer Science School, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
| | - Yuwei Liu
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| |
Collapse
|
3
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Tao DD, Li Y, Tian XJ, Liao XJ, Yu ZQ, Xiang ZY. Effect of FoxO1 on Cardiomyocyte Apoptosis and Inflammation in Viral Myocarditis via Modultion of the TLR4/NF-κB Signaling Pathway. Int Heart J 2023; 64:732-740. [PMID: 37518354 DOI: 10.1536/ihj.22-627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
To investigate the possible effect of FoxO on coxsackievirus B3 (CVB3) -induced cardiomyocyte inflammation and apoptosis via modulation of the TLR4/NF-κB signaling pathway.Viral myocarditis (VMC) models were establied via CVB3 infection both in vivo and in vitro. Western blotting was adopted to detect FoxO1 and TLR4 expressions in myocardial tissues and cells. Cardiomyocytes of suckling mouse were divided into the control, CVB3, CVB3 + pcDNA, CVB3 + pcDNA-FoxO1, CVB3 + TLR4 siRNA, and CVB3 + pcDNA-FoxO1 + TLR4 siRNA groups. Flow cytometry was employed to evaluate cell apoptosis. The expressions of inflammatory factors including TNF-α, IL-1β, and IL-6 were detected via quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Then, TLR4/NF-κB pathway-related proteins were determined via Western blotting.VMC mice had increased FoxO1 and TLR4 expressions in myocardial tissues. Cardiomyocytes with CVB3 infection also had upregulated protein expressions of p-FoxO1/FoxO1 and TLR4. Compared with those in the control group, the cardiomyocytes in the CVB3 group were increased in LDH and CK-MB levels, cell apoptosis rate and inflammatory factors (TNF-α, IL-1β and IL-6), as well as protein expressions of TLR4 and p-p65/p65. Compared with those in the CVB3 group, the cardiomyocytes in the CVB3 + pcDNA-FoxO1 group were further upregulated whereas those in the CVB3 +TLR4 siRNA group were downregulated in the aforementioned indicators. Furthermore, TLR4 siRNA can reverse the effect of pcDNA-FoxO1 on the aggravation of cardiomyocyte injury induced by CVB3 infection.FoxO1 can upregulate the TLR4/NF-κB signaling pathway to promote cardiomyocyte apoptosis and inflammatory injury in CVB3-induced VMC.
Collapse
Affiliation(s)
- Di-Di Tao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| | - Ya Li
- Dongfeng Stomatological Hospital, Hubei University of Medicine
| | - Xiao-Jiao Tian
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine
| | - Xing-Juan Liao
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| | - Zhong-Qin Yu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| | - Zhao-Yan Xiang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine
| |
Collapse
|
5
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Farazandeh M, Mahmoudabady M, Asghari AA, Niazmand S. Diabetic cardiomyopathy was attenuated by cinnamon treatment through the inhibition of fibro-inflammatory response and ventricular hypertrophy in diabetic rats. J Food Biochem 2022; 46:e14206. [PMID: 35474577 DOI: 10.1111/jfbc.14206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes that emphasizes the urgency of developing new drug therapies. With an illustrious history in traditional medicine to improve diabetes, cinnamon has been shown to possess blood lipids lowering effects and antioxidative and anti-inflammatory properties. However, the extent to which it protects the diabetic heart has yet to be determined. Forty-eight rats were administered in the study and grouped as: control; diabetic; diabetic rats given 100, 200, or 400 mg/kg cinnamon extract, metformin (300 mg/kg), valsartan (30 mg/kg), or met/val (combination of both drugs), via gavage for six weeks. Fasting blood sugar (FBS) and markers of cardiac injury including creatine kinase-muscle/brain (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were evaluated in blood samples. Malondialdehyde (MDA) levels, the total contents of thiol, superoxide dismutase (SOD), and catalase (CAT) activities were measured. Histopathology study and gene expression measurement of angiotensin II type 1 receptor (AT1), atrial natriuretic peptide (ANP), beta-myosin heavy chain (β-MHC), and brain natriuretic peptide (BNP) were done on cardiac tissue. FBS and cardiac enzyme indicators were reduced in all treated groups. A reduction in MDA level and enhancement in thiol content alongside with increase of SOD and CAT activities were observed in extract groups. The decrease of inflammation and fibrosis was obvious in treated groups, notably in the high-dose extract group. Furthermore, all treated diabetic groups showed a lowering trend in AT1, ANP, β-MHC, and BNP gene expression. Cinnamon extract, in addition to its hypoglycemic and antioxidant properties, can prevent diabetic heart damage by alleviating cardiac inflammation and fibrosis. PRACTICAL APPLICATIONS: This study found that cinnamon extract might protect diabetic heart damage by reducing inflammation and fibrosis in cardiac tissue, in addition to lowering blood glucose levels and increasing antioxidant activity. Our data imply that including cinnamon in diabetic participants' diets may help to reduce risk factors of cardiovascular diseases.
Collapse
Affiliation(s)
- Maryam Farazandeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
8
|
Cinnamon and Eucalyptus Oils Suppress the Inflammation Induced by Lipopolysaccharide In Vivo. Molecules 2021; 26:molecules26237410. [PMID: 34885991 PMCID: PMC8659246 DOI: 10.3390/molecules26237410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.
Collapse
|
9
|
Cinnamaldehyde Ameliorates High-Glucose–Induced Oxidative Stress and Cardiomyocyte Injury Through Transient Receptor Potential Ankyrin 1. J Cardiovasc Pharmacol 2019; 74:30-37. [DOI: 10.1097/fjc.0000000000000679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 2019; 516:37-43. [PMID: 31196626 DOI: 10.1016/j.bbrc.2019.06.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Loss of myocytes caused by cell death plays a key role during heart failure (HF). Activated autophagy and increased ferroptosis have been observed in HF and proved to promote its progression. However, the underlying mechanisms remain unclear. Here, results from integrated bioinformatical analysis showed TLR4 and NADPH oxidase 4 (NOX4) were included in up-regulated differentially expressed genes (DEGs), and had an interaction between each other inferred by the DEGs-associated protein-protein interaction (PPI) network. To explore the role of TLR4-NOX4 in autophagy and ferroptosis, knock-down of TLR4 and NOX4 through lentiviral delivery of siRNA to the myocardium were applied respectively in HF rats induced by aortic banding, and the indicators of autophagy and ferroptosis were detected. Results revealed that either TLR4 or NOX4 knock-down significantly improved left ventricular remodeling and reduced myocytes death. Simultaneously, activated autophagy and ferroptosis in rats with HF were remarkably retarded by either TLR4 and NOX4 knock-down, suggesting TLR4-NOX4 as a potential therapeutic target for HF through inhibiting autophagy- and ferroptosis-mediated cell death.
Collapse
|
11
|
Kumar A, Kudachikar VB. Development, characterisation and efficacy evaluation of biochemical fungicidal formulations for postharvest control of anthracnose ( Colletotrichum gloeosporioides Penz) disease in mango. J Microencapsul 2019; 36:83-95. [PMID: 30920322 DOI: 10.1080/02652048.2019.1600593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objectives of the study are to develop and characterise formulations with volatile molecules in an emulsifiable concentrate form, for their antimicrobial properties and to evaluate their efficacies against Colletotrichum gloeosporioides Penz., to control anthracnose in mangoes after harvest. Results showed EC39 and EC40 among formulations were characterised for their excellent emulsification properties, the droplet size of 192.34 ± 0.48 nm and 227.4 ± 0.71 nm and Zeta potential of -52.5 ± 2.76 mv and -48.84 ± 2.62 mv, respectively, with better storage stability at 10 ± 20 °C and RH 80 ± 5%. In vitro assay, 100% inhibition of visual spore germination by 0.15% and 0.2% MIC value for EC39 and EC40, respectively Studies on the efficacy of their fungicide properties also indicated the IC50 value of 0.161% and 0.162% for EC39 and EC40 respectively for mycelial growth inhibition. In vivo testing too, EC39 and EC40 effectively controlled anthracnose incidence in mango in a dosage-dependent manner.
Collapse
Affiliation(s)
- Amarjeet Kumar
- a Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute , Mysore , India.,b CouDepartment of Fruit and Vegetable Technology , CSIR-Central Food Technological Research Institute , Mysore , India
| | - Vithal Balavant Kudachikar
- a Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute , Mysore , India.,b CouDepartment of Fruit and Vegetable Technology , CSIR-Central Food Technological Research Institute , Mysore , India
| |
Collapse
|
12
|
Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE−/− mice. Food Funct 2019; 10:4001-4009. [DOI: 10.1039/c9fo00396g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde is a flavor isolated from the bark of Cinnamomum cassia Presl and exerts anti-inflammation effects in various diseases.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenbing Zhi
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
- Shaanxi Academy of Traditional Chinese Medicine
| | - Jinmeng Zhao
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Wenqi Li
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Lulu Zang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Fang Liu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| | - Xiaofeng Niu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- P.R. China
| |
Collapse
|
13
|
Fu YJ, Yan YQ, Qin HQ, Wu S, Shi SS, Zheng X, Wang PC, Chen XY, Tang XL, Jiang ZY. Effects of different principles of Traditional Chinese Medicine treatment on TLR7/NF-κB signaling pathway in influenza virus infected mice. Chin Med 2018; 13:42. [PMID: 30151032 PMCID: PMC6102858 DOI: 10.1186/s13020-018-0199-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Influenza virus is a single-stranded RNA virus that causes influenza in humans and animals. About 600 million people around the world suffer from influenza every year. Upon recognizing viral RNA molecules, TLR7 (Toll-like receptor) initiates corresponding immune responses. Traditional Chinese Medicines (TCMs), including Yinqiao powder, Xinjiaxiangruyin and Guizhi-and-Mahuang decoction, have been extensively applied in clinical treatment of influenza. Although the therapeutic efficacy of TCMs against influenza virus in vivo was reported previously, its underlying mechanisms are not clearly understood. This study aimed to investigate the immunological mechanisms in the treatment of influenza virus infected mice with three Chinese herbal compounds as well as the effect on TLR7/NF-κB signaling pathway during recovery. Methods Wild type and TLR7 KO C57BL/6 mice were infected with influenza virus FM1 and then treated with three TCMs. The physical parameters of mice (body weight and lung index) and the expression levels of components in TLR7/NF-κB signaling pathway were evaluated. Results After viral infection, Guizhi-and-Mahuang decoction and Yinqiao powder showed better anti-viral effect under normal condition. Compared to the viral control group, expression levels of TLR7, MyD88, IRAK4 and NF-κB were significantly reduced in all treatment groups. Furthermore, the three TCM treatment groups showed poor therapeutic efficacy and no difference in viral load compared to the viral control group in TLR7 KO mice. Conclusion Our study indicated that Guizhi-and-Mahuang decoction and Yinqiao powder might play a crucial role of anti-influenza virus by regulating TLR7/NF-κB signal pathway.
Collapse
Affiliation(s)
- Ying-Jie Fu
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Yu-Qi Yan
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Hong-Qiong Qin
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Sha Wu
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Shan-Shan Shi
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Xiao Zheng
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Peng-Cheng Wang
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| | - Xiao-Yin Chen
- 2College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Xiao-Long Tang
- 3Medical College, Anhui University of Science & Technology, Huainan, 232001 Anhui China
| | - Zhen-You Jiang
- 1Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632 Guangdong China
| |
Collapse
|
14
|
Li XQ, Liu XX, Wang XY, Xie YH, Yang Q, Liu XX, Ding YY, Cao W, Wang SW. Cinnamaldehyde Derivatives Inhibit Coxsackievirus B3-Induced Viral Myocarditis. Biomol Ther (Seoul) 2017; 25:279-287. [PMID: 27737525 PMCID: PMC5424638 DOI: 10.4062/biomolther.2016.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/15/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022] Open
Abstract
The chemical property of cinnamaldehyde is unstable in vivo, although early experiments have shown its obvious therapeutic effects on viral myocarditis (VMC). To overcome this problem, we used cinnamaldehyde as a leading compound to synthesize derivatives. Five derivatives of cinnamaldehyde were synthesized: 4-methylcinnamaldehyde (1), 4-chlorocinnamaldehyde (2), 4-methoxycinnamaldehyde (3), α-bromo-4-methylcinnamaldehyde (4), and α-bromo-4-chlorocinnamaldehyde (5). Neonatal rat cardiomyocytes and HeLa cells infected by coxsackievirus B3 (CVB3) were used to evaluate their antiviral and cytotoxic effects. In vivo BALB/c mice were infected with CVB3 for establishing VMC models. Among the derivatives, compound 4 and 5 inhibited the CVB3 in HeLa cells with the half-maximal inhibitory concentrations values of 11.38 ± 2.22 μM and 2.12 ± 0.37 μM, respectively. The 50% toxic concentrations of compound 4 and 5-treated cells were 39-fold and 87-fold higher than in the cinnamaldehyde group. Compound 4 and 5 effectively reduced the viral titers and cardiac pathological changes in a dose-dependent manner. In addition, compound 4 and 5 significantly inhibited the secretion, mRNA and protein expressions of inflammatory cytokines TNF-α, IL-1β and IL-6 in CVB3-infected cardiomyocytes, indicating that brominated cinnamaldehyde not only improved the anti-vital activities for VMC, but also had potent anti-inflammatory effects in cardiomyocytes induced by CVB3.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Xiao Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xue-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yan-Hua Xie
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Yang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Xin Liu
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Yuan Ding
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Wang Wang
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
15
|
Lee SC, Wang SY, Li CC, Liu CT. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice. J Food Drug Anal 2017; 26:211-220. [PMID: 29389558 PMCID: PMC9332676 DOI: 10.1016/j.jfda.2017.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Cinnamomum osmophloeum Kanehira is a Taiwan native plant that belongs to genus Cinnamomum and is also known as pseudocinnamomum or indigenous cinnamon. Its leaf is traditionally used by local people in cooking and as folk therapy. We previously demonstrated the chemical composition and anti-inflammatory effect of leaf essential oil of Cinnamomum osmophloeum Kanehira of linalool chemotype in streptozotocin-induced diabetic rats and on endotoxin-injected mice. The aim of the present study is to evaluate whether cinnamaldehyde and linalool the active anti-inflammatory compounds in leaf essential oil of Cinnamomum osmophloeum Kanehira. Before the injection of endotoxin, C57BL/6 mice of the experimental groups were administered cinnamaldehyde (0.45 or 0.9 mg/kg body weight) or linalool (2.6 or 5.2 mg/kg body weight), mice of the positive control group were administered the leaf essential oil (13 mg/kg body weight), and mice of the negative group were administered vehicle (corn oil, 4 mL/kg body weight) by gavage every other day for two weeks. All mice received endotoxin (i.p. 10 mg/mL/kg body weight) the next day after the final administration and were killed 12 h after the injection. Normal control mice were pretreated with vehicle followed by the injection with saline. None of the treatment found to affect body weight or food or water intake of mice before the injection of endotoxin. Cinnamaldehyde and linalool were found significantly reversed endotoxin-induced body weight loss and lymphoid organ enlargement compared with vehicle (P < 0.05). Both compounds also significantly lowered endotoxin-induced levels of peripheral nitrate/nitrite, interleukin (IL)-1β, IL-18, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and High-mobility group box 1 protein (HMGB-1), and levels of nitrate/nitrite, IL-1β, TNF-α, and IFN-γ in spleen and mesenteric lymph nodes (MLNs) (P < 0.05). Endotoxin-induced expression of toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), myeloid differentiation protein 2 (MD2), Nod-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), and caspase-1 in spleen and mesenteric lymph nodes (MLNs) were inhibited by all tested doses of cinnamaldehyde and linalool (P < 0.05). Subsequently, the activation of nuclear factor (NF)-κB and the activity of caspase-1 in spleen and MLNs were also suppressed by these two compounds (P < 0.05). In addition, cinnamaldehyde and linalool at the dose equivalent to their corresponding content in the tested dose of the leaf essential oil, which was 0.9 mg/kg and 5.2 mg/kg, respectively, showed similar or slightly less inhibitory activity for most of these inflammatory parameters compared with that of the leaf essential oil. Our data confirmed the potential use of leaf essential oil of Cinnamomum osmophloeum Kanehira as an anti-inflammatory natural product and provide evidence for cinnamaldehyde and linalool as two potent agents for prophylactic use in health problems associated with inflammations that being attributed to over-activated TLR4 and/or NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Shih-Chieh Lee
- Department of BioIndustry Technology, Da-Yeh University, No. 168, University Rd., Dacun, Changhua, Taiwan, Republic of China
| | - Shih-Yun Wang
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Chien-Chun Li
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Cheng-Tzu Liu
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China; Department of Nutrition, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China.
| |
Collapse
|
16
|
Zhao H, Zhang M, Zhou F, Cao W, Bi L, Xie Y, Yang Q, Wang S. Cinnamaldehyde ameliorates LPS-induced cardiac dysfunction via TLR4-NOX4 pathway: The regulation of autophagy and ROS production. J Mol Cell Cardiol 2016; 101:11-24. [PMID: 27838370 DOI: 10.1016/j.yjmcc.2016.10.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde (CA), a major bioactive compound extracted from the essential oil of Cortex Cinnamomi, exhibits anti-inflammatory activity on endotoxemia. Accumulating evidence indicates reactive oxygen species (ROS) and autophagy play a vital role in the cardiac dysfunction during endotoxemia. The aim of this study was to unveil the mechanism of CA on ROS production and autophagy during endotoxemia. Male Sprague-Dawley rats were stimulated by LPS (20mg/kg i.v.) with or without treatment of CA. Cardiac function and histopathological staining were preformed 4h after LPS stimulation. The levels of TNF-α, IL-1β and IL-6 were detected by ELISA. The expression of p-JNK, p-ERK, p-p38, TLR4, NOX4, NOX2, ATG5 and LC3 proteins were determined by Western blot. The results showed that CA inhibited cardiac dysfunction, inflammatory infiltration and the levels of TNF-α, IL-1β and IL-6 in LPS stimulated rats by blocking the TLR4, NOX4, MAPK and autophagy signalings. In order to obtain further confirmation of the mechanism of CA on endotoxemia in vitro, a limited time-course study was firstly performed by Western blot. TLR4, NOX4 and LC3 were significantly increased after 4h LPS stimulation. CA reversed the intracellular ROS production and MAPK signaling activation induced by LPS. Electron microscopy, mRFP-GFP-LC3 transfection and western blot results revealed autophagic flux were attenuated after CA treatment. The siRNA and molecular docking results suggest that CA can suppress both TLR4 and NOX4 during endotoxemia. Our data revealed that CA ameliorated LPS-induced cardiac dysfunction by inhibiting ROS production and autophagy through TLR4-NOX4 pathway.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Meng Zhang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Fuxing Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, The First Affiliated Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Linlin Bi
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Yanhua Xie
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Qian Yang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China.
| | - Siwang Wang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China.
| |
Collapse
|
17
|
Kang LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep 2016; 6:27460. [PMID: 27270216 PMCID: PMC4897702 DOI: 10.1038/srep27460] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
Fructose consumption induces metabolic syndrome to increase cardiovascular disease risk. Cinnamaldehyde and allopurinol possess anti-oxidative and anti-inflammatory activity to relieve heart injury in metabolic syndrome. But the mechanisms of fructose-induced cardiac injury, and cardioprotective effects of cinnamaldehyde and allopurinol are not completely understood. In this study, fructose-fed rats displayed metabolic syndrome with elevated serum ox-LDL, cardiac oxidative stress, inflammation and fibrosis. Scavenger receptor CD36, Toll-like receptor 4 (TLR4), TLR6, IL-1R-associated kinase 4/1 (IRAK4/1), nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, interleukin-1β, transforming growth factor-β (TGF-β), drosophila mothers against DPP homolog (Smad) 2/3 phosphorylation and Smad4 were increased in animal and H9c2 cell models. These pathological processes were further evaluated in ox-LDL or fructose-exposed H9c2 cells pretreated with ROS scavenger and CD36 specific inhibitor, or IRAK1/4 inhibitor, and transfected with CD36, NLRP3, or IRAK4/1 siRNA, demonstrating that NLPR3 inflammasome activation through CD36-mediated TLR4/6-IRAK4/1 signaling may promote cardiac inflammation and fibrosis. Cinnamaldehyde and allopurinol reduced cardiac oxidative stress to suppress NLPR3 inflammasome activation and TGF-β/Smads signaling by inhibiting CD36-mediated TLR4/6-IRAK4/1 signaling under fructose induction. These results suggest that the blockage of CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation by cinnamaldehyde and allopurinol may protect against fructose-induced cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Chun-Hua Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Jian-Hua Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Jia-Hui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Zhao Z, Cai TZ, Lu Y, Liu WJ, Cheng ML, Ji YQ. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression. BIOCHEMISTRY (MOSCOW) 2016; 80:455-62. [PMID: 25869363 DOI: 10.1134/s0006297915040094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, 710002, China.
| | | | | | | | | | | |
Collapse
|
19
|
Zhao H, Yuan J, Yang Q, Xie Y, Cao W, Wang S. Cinnamaldehyde in a Novel Intravenous Submicrometer Emulsion: Pharmacokinetics, Tissue Distribution, Antitumor Efficacy, and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6386-6392. [PMID: 26118760 DOI: 10.1021/acs.jafc.5b01883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of our research is to find a new lipid emulsion to deliver a low water-soluble compound, cinnamaldehyde (CA). Its characteristics, pharmacokinetics, antitumor efficacy, and toxicity were evaluated. The mean particle size, zeta potential, and encapsulation efficiency of the submicromemter emulsion of CA (SME-CA) were 130 ± 5.92 nm, -25.7 ± 6.00 mV, and 99.5 ± 0.25%, respectively. The area under the curve from 0 h to termination time (AUC(0-t)) of SME-CA showed a significantly higher value than that of CA (589 ± 59.2 vs 375 ± 83.5 ng h/L, P < 0.01). Tissue distribution study showed various changes; among them, a 27% higher concentration was found in brain tissue when using SME-CA at 15 min after administration. For the efficacy evaluation, SME-CA exhibited 8- and 11-fold antitumor activity in the depression of HeLa and A549 cell lines with the IC50 decreasing to 0.003 and 0.001 mmol/L, respectively. The LD50 values of CA and SME-CA in mice were 74.8 and 125 mg/kg, suggesting increased safety from the new formulation. The new formulation exhibited lower toxicity, higher antitumor activity, and a more satisfactory pharmacokinetic property, which displayed great potential for future pharmacological application.
Collapse
Affiliation(s)
- Hang Zhao
- ‡The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Jiani Yuan
- ‡The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Qian Yang
- ‡The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Yanhua Xie
- ‡The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Wei Cao
- ‡The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Siwang Wang
- ‡The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| |
Collapse
|
20
|
Safavi M, Shams-Ardakani M, Foroumadi A. Medicinal plants in the treatment of Helicobacter pylori infections. PHARMACEUTICAL BIOLOGY 2015; 53:939-960. [PMID: 25430849 DOI: 10.3109/13880209.2014.952837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Helicobacter pylori is a small, spiral, Gram-negative bacillus that plays a role in the pathogenesis of a number of diseases ranging from asymptomatic gastritis to gastric cancer. Schedule compliance, antibiotic drug resistance, and side-effects of triple or quadruple therapy have led to research for novel candidates from plants. OBJECTIVE The purpose of this paper is to review the most potent medicinal plants of recently published literature with anti-H. pylori activity. For centuries, herbals have been used by traditional healers around the world to treat various gastrointestinal tract disorders such as dyspepsia, gastritis, and peptic ulcer disease. The mechanism of action by which these botanicals exert their therapeutic properties has not been completely and clearly elucidated. Anti-H. pylori properties may be one of the possible mechanisms by which gastroprotective herbs treat gastrointestinal tract disorders. MATERIALS AND METHODS Electronic databases such as PubMed, Google scholar, EBSCO, and local databases were explored for medicinal plants with anti-H. pylori properties between 1984 and 2013 using key words "medicinal plants" and "Helicobacter pylori" or "anti-Helicobacter pylori". RESULTS A total of 43 medicinal plant species belonging to 27 families including Amaryllidaceae, Anacardiaceae, Apiaceae, Apocynaceae, Asclepiadoideae, Asteraceae, Bignoniaceae, Clusiaceae, Chancapiedra, Combretaceae, Cyperaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lythraceae, Menispermaceae, Myristicaceae, Myrtaceae, Oleaceae, Papaveraceae, Plumbaginaceae, Poaceae, Ranunculaceae, Rosaceae, and Theaceae were studied as herbs with potent anti-H. pylori effects. CONCLUSION Traditional folk medicinal use of some of these plants to treat gastric infections is substantiated by the antibacterial activity of their extracts against H. pylori.
Collapse
Affiliation(s)
- Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST) , Tehran , Iran
| | | | | |
Collapse
|
21
|
Zhao H, Xie Y, Yang Q, Cao Y, Tu H, Cao W, Wang S. Pharmacokinetic study of cinnamaldehyde in rats by GC–MS after oral and intravenous administration. J Pharm Biomed Anal 2014; 89:150-7. [DOI: 10.1016/j.jpba.2013.10.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/17/2013] [Accepted: 10/27/2013] [Indexed: 11/25/2022]
|
22
|
Song Y, Ge W, Cai H, Zhang H. Curcumin Protects Mice From Coxsackievirus B3-Induced Myocarditis by Inhibiting the Phosphatidylinositol 3 kinase/Akt/Nuclear Factor-κB Pathway. J Cardiovasc Pharmacol Ther 2013; 18:560-9. [PMID: 24057864 DOI: 10.1177/1074248413503044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral myocarditis is an inflammation of the myocardium, and coxsackievirus B3 (CVB3) is one of the most important etiologic agents. Curcumin is an active ingredient of Curcumin longa, which has been used as a traditional Chinese herb for the treatment of various inflammatory diseases. The aim of this study was to explore the therapeutic effect of curcumin on CVB3-induced myocarditis and the underlying mechanism. Our results showed that treatment with curcumin could significantly attenuate CVB3-induced myocarditis, as demonstrated by improved weight loss, increased survival rate, reduced serological level cardiac enzymes, and improved heart histopathology. Of importance, curcumin administration was revealed to significantly reduce the systemic and local myocardial expression of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL) 6, and IL-1β, in the CVB3-infected mice. Further study showed that curcumin treatment significantly inhibited the CVB3-induced activation of nuclear factor-κB (NF-κB), a key transcription factor in the pathogenesis of inflammation, in a phosphatidylinositol 3 kinase (PI3K)/Akt pathway-dependent manner. These data indicate that curcumin has protective effect against CVB3-induced myocarditis by inhibiting PI3K/Akt/NF-κB signaling pathway and thus reducing the inflammatory response.
Collapse
Affiliation(s)
- Yunxiao Song
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wen Ge
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - HaiBing Cai
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Haichen Zhang
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
23
|
Abstract
In this study, the authors explored the therapeutic effect of glycyrrhizin (GL) on Coxsackievirus B3 (CVB3)-induced myocarditis and its possible mechanisms involved. The results of this study showed that GL exhibited a profound amelioration of CVB3-induced myocarditis, as evidenced by improved weight loss profile, less increased serological levels of cardiac enzymes, less myocardial inflammation and increased survival rate. Further study showed that this effect was not due to the viral clearance but ascribed to weakened proinflammatory responses, as evidenced by significantly reduced expression of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β and interleukin-6. Moreover, the authors demonstrated that GL administration inhibited CVB3-induced nuclear factor-κB activity efficiently by blocking the degradation of nuclear factor -κB inhibitor IκBκ. These data suggest that GL can effectively attenuate the severity of CVB3-induced myocarditis and may present as a new therapeutic approach for the treatment of viral myocarditis.
Collapse
|
24
|
Therapeutic role of toll-like receptor modification in cardiovascular dysfunction. Vascul Pharmacol 2012; 58:231-9. [PMID: 23070056 DOI: 10.1016/j.vph.2012.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/28/2012] [Accepted: 10/05/2012] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLR) are key pattern recognition receptors in the innate immune system. The TLR-mediated immune response against pathogens is usually protective however inappropriate TLR activation may lead to excessive tissue damage. It is well recognised that TLRs respond to a variety of endogenous as well as exogenous ligands. By responding to endogenous ligands that are exposed during cellular damage, TLRs have been implicated in a range of pathological conditions associated with cardiovascular dysfunction. Increasing knowledge on the mechanisms involved in TLR signalling has encouraged the exploration of therapeutic pharmacological modulation of TLR activation in conditions such as atherosclerosis, ischaemic heart disease, heart failure and ischaemic reperfusion injury. The aim of this review is to explore the translational potentials of TLR modification in cardiovascular dysfunction, where these agents have been studied.
Collapse
|
25
|
The comparison of α-bromo-4-chlorocinnamaldehyde and cinnamaldehyde on coxsackie virus B3-induced myocarditis and their mechanisms. Int Immunopharmacol 2012; 14:107-13. [DOI: 10.1016/j.intimp.2012.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/20/2012] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
|