1
|
Wesson T, Ambike S, Patel R, Yates C, Nelson R, Francis A, Burgin S. Feasibility of Using Inertial Measurement Units (IMUs) to Augment Cadaveric Temporal Training. Laryngoscope 2024. [PMID: 39539083 DOI: 10.1002/lary.31878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Insertional speed of cochlear implant electrode arrays (EA) during surgery is correlated with force. Low insertional speed, and therefore force, may allow for preservation of intracochlear structures leading to improved outcomes. Given the importance of low insertional speeds, we investigate the feasibility of using inertial sensors for kinematic analysis during EA insertion to augment otolaryngology-head and neck surgery training. METHODS Practicing otolaryngology surgeons were recruited and inertial measurement units (IMU; Metamotions+, MBIENTLAB Inc, San Jose, CA) consisting of accelerometers were used to measure hand speed during EA (Cochlear™Nucleus®CI522 cochlear implant with Slim Straight electrode, Cochlear Limited, Sydney, Australia) insertion into a cadaveric cochlea. A mixed regression model was utilized to determine differences in speed across trials within a surgeon. RESULTS A total of nine trials were performed by three surgeons. The highest mean ± SD speed obtained was 8.4 ± 1.7 mm/s, and the highest speed was 22.5 mm/s. Mean speed was not significantly different across trials within surgeons (p > 0.05). DISCUSSION IMUs are relatively inexpensive and relatively easy to use sensors that provide information on variables that may be of interest for otolaryngology resident training. The use of IMUs as part of advanced temporal training for cochlear electrode insertion can provide insight into hand speed, thereby allowing residents to train with specific regard to this variable. Future randomized-controlled trials can be carried out to determine whether IMUs are conducive to lower insertional speeds. LEVEL OF EVIDENCE NA Laryngoscope, 2024.
Collapse
Affiliation(s)
- Troy Wesson
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Satyajit Ambike
- Purdue University Department of Health and Kinesiology, West Lafayette, Indiana, USA
| | - Radha Patel
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles Yates
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Department of Otolaryngology Head and Neck Surgery, Indianapolis, Indiana, USA
| | - Rick Nelson
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Department of Otolaryngology Head and Neck Surgery, Indianapolis, Indiana, USA
| | - Alexander Francis
- Purdue University Department of Speech, Language, and Hearing Sciences, West Lafayette, Indiana, USA
| | - Sarah Burgin
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Department of Otolaryngology Head and Neck Surgery, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Wimmer W, de Oliveira JV, Breitsprecher TM, Hans S, Van Rompaey V, Van de Heyning P, Dazert S, Weiss NM. Metronome-guided cochlear implantation for slower and smoother insertions of lateral wall electrodes. Eur Arch Otorhinolaryngol 2024; 281:4603-4609. [PMID: 38630273 PMCID: PMC11393022 DOI: 10.1007/s00405-024-08639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 09/14/2024]
Abstract
INTRODUCTION Achieving a slow and smooth electrode array insertion is paramount for preserving structural and functional integrity during cochlear implantation. This controlled study evaluates the efficacy of a metronome-guided insertion technique in enhancing the smoothness and speed of electrode array insertions. METHODS In a prospective cohort study, patients undergoing cochlear implant surgery between 2022 and 2023 with lateral wall electrode arrays were included. Metronome guidance was delivered through an acoustic signal via headphones during electrode array insertion in cochlear implantation and compared to a control group without metronome-guidance. RESULTS In total, 37 cases were evaluated, including 25 conventional insertions and 12 metronome-guided insertions. The results indicate that metronome-guided insertions were significantly slower (- 0.46 mm/s; p < 0.001) without extending the overall procedure time. This can be attributed to fewer paused sections observed in the metronome-guided technique. Moreover, metronome-guided insertions exhibited superior performance in terms of insertion smoothness and a reduced number of re-gripping events. CONCLUSIONS The findings support the recommendation for the systematic application of metronome guidance in the manual insertion of cochlear implant electrode arrays, emphasizing its potential to optimize surgical outcomes.
Collapse
Affiliation(s)
- W Wimmer
- Department of Otorhinolaryngology, Klinikum Rechts Der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - J Veloso de Oliveira
- Department of Otorhinolaryngology, Klinikum Rechts Der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - T M Breitsprecher
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - S Hans
- MED-EL, Elektromedizinische Geräte, Innsbruck, Austria
| | - V Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - P Van de Heyning
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - S Dazert
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany
| | - Nora M Weiss
- Department of Otorhinolaryngology, Klinikum Rechts Der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital Bochum, Bochum, Germany.
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Fröhlich M, Deutz J, Wangenheim M, Rau TS, Lenarz T, Kral A, Schurzig D. The role of pressure and friction forces in automated insertion of cochlear implants. Front Neurol 2024; 15:1430694. [PMID: 39170077 PMCID: PMC11337231 DOI: 10.3389/fneur.2024.1430694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Objectives Despite the success of cochlear implant (CI) surgery for hearing restoration, reducing CI electrode insertion forces is an ongoing challenge with the goal to further reduce post-implantation hearing loss. While research in this field shows that both friction and quasistatic pressure forces occur during CI insertion, there is a lack of studies distinguishing between these origins. The present study was conducted to analyze the contribution of both force phenomena during automated CI insertion. Methods Five MED-EL FLEX28 CI electrode arrays were inserted into both a regular and uncoiled version of the same average scala tympani (ST). Both ST models had a pressure release hole at the apical end, which was kept open or closed to quantify pressure forces. ST models were filled with different sodium dodecyl sulfate (SDS) lubricants (1, 5, and 10% SDS, water). The viscosity of lubricants was determined using a rheometer. Insertions were conducted with velocities ranging from v= 0.125 mm/s to 2.0 mm/s. Results Viscosity of SDS lubricants at 20°C was 1.28, 1.96, and 2.51 mPas for 1, 5, and 10% SDS, respectively, which lies within the values reported for human perilymph. In the uncoiled ST model, forces remained within the noise floor (maximum: 0.049 × 10-3 N ± 1.5 × 10-3 N), indicating minimal contribution from quasistatic pressure. Conversely, forces using the regular, coiled ST model were at least an order of magnitude larger (minimum: Fmax = 28.95 × 10-3 N, v = 1 mm/s, 10% SDS), confirming that friction forces are the main contributor to total insertion forces. An N-way ANOVA revealed that both lubricant viscosity and insertion speed significantly reduce insertion forces (p < 0.001). Conclusion For the first time, this study demonstrates that at realistic perilymph viscosities, quasistatic pressure forces minimally affect the total insertion force profile during insertion. Mixed friction is the main determinant, and significantly decreases with increaseing insertion speeds. This suggests that in clinical settings with similar ST geometries and surgical preparation, quasistatic pressure plays a subordinate role. Moreover, the findings indicate that managing the hydrodynamics of the cochlear environment, possibly through pre-surgical preparation or the use of specific lubricants, could effectively reduce insertion forces.
Collapse
Affiliation(s)
- Max Fröhlich
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Jaro Deutz
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Institute of Dynamic and Vibration Research, Leibniz University Hannover, Hannover, Germany
| | - Matthias Wangenheim
- Institute of Dynamic and Vibration Research, Leibniz University Hannover, Hannover, Germany
| | - Thomas S. Rau
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Daniel Schurzig
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
4
|
Meuser M, Schwitzer S, Thiele M, Boyle P, Ernst A, Basta D. Intra-Cochlear Electrode Position Impacts the Preservation of Residual Hearing in an Animal Model of Cochlear Implant Surgery. Audiol Neurootol 2024:1-11. [PMID: 38981457 DOI: 10.1159/000540266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Preservation of residual hearing after cochlear implantation remains challenging. There are several approaches to preserve residual hearing, but the configuration of the implant electrode array seems to play a major role. Lateral wall electrode arrays are seemingly more favorable in this context. To date, there are no experimental data available which correlate the spatial electrode position in the scala tympani with the extent of hearing preservation. METHODS Based on micro-computed tomography (µCT) imaging data, this study analyses the exact position of a pure silicone electrode array inserted into the cochlea of four guinea pigs. Array position data were correlated with the extent of hearing loss after implantation, measured using auditory brainstem measurements in the frequency range of the area occupied by the electrode array area as well as apical to the array. RESULTS The use of pure silicone arrays without electrodes resulted in artifact-free, high-resolution µCT images that allowed precise determination of the arrays' positions within the scala tympani. The electrode arrays' locations ranged from peri-modiolar to an anti-modiolar. These revealed a correlation of a lower postoperative hearing loss with a higher spatial proximity to the lateral wall. This correlation was found in the low-frequency range only. A significant correlation between the inter-individual differences in the diameter of the scala tympani and the postoperative hearing loss could not be observed. CONCLUSION This study demonstrates the importance of the intra-cochlear electrode array's position for the preservation of residual hearing. The advantage of such an electrode array's position approximated to the lateral wall suggests, at least for this type of electrode array applied in the guinea pig, it would be advantageous in the preservation of residual hearing for the apical part of the cochlea, beyond the area occupied by the electrode array.
Collapse
Affiliation(s)
- Max Meuser
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Susanne Schwitzer
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute, Center for Musculoskeletal Biomechanics and Regeneration, Charité Medical School, University of Berlin, Berlin, Germany
| | - Patrick Boyle
- Advanced Bionics GmbH, European Research Centre, Hanover, Germany
| | - Arne Ernst
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Mittmann P, Ernst A, Seidl R, Lauer G, Gölz L, Mutze S, Windgassen M, Buschmann C. Implications of intracochlear decomposition gas formation in non-putrefied cadavers. Front Surg 2024; 11:1365535. [PMID: 38948482 PMCID: PMC11211390 DOI: 10.3389/fsurg.2024.1365535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Postmortem computed tomography (pmCT) prior to forensic autopsy has become increasingly important in recent decades, especially in forensic documentation of single injuries, injury patterns, and causes of death. Postmortem decomposition gas formation can also be detected in pmCT scans, which might affect cochlear implant research in postmortem human temporal bones (TBs). Material and methods Fifty non-putrefied hanging fatalities within a 2-year period (January 2017 to December 2019) were included with 100 TBs. Each body underwent whole-body pmCT prior to forensic autopsy. PmCT scans were analyzed with respect to the presence of intracochlear gas despite the lack of putrefaction at autopsy by an experienced fellow neurotologist. Results PmCT revealed gas formation in two individuals despite the lack of head trauma and putrefaction at postmortem examination and autopsy. Both individuals showed enclosed gas in the vestibule and the cochlea on both sides. Discussion Intracochlear gas formation, most likely related to decomposition, may occur despite the lack of putrefaction at postmortem examination and autopsy and can be detected by pmCT. This finding seems to be rather rare in non-traumatic death cases but might affect cochlear pressure research in postmortem human TB.
Collapse
Affiliation(s)
| | - Arne Ernst
- Department of ENT, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Rainer Seidl
- Department of ENT, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Gina Lauer
- Department of ENT, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Leonie Gölz
- Department of Radiology and Neuroradiology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Sven Mutze
- Department of Radiology and Neuroradiology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Marc Windgassen
- Institute of Legal Medicine and Forensic Sciences, Charité University Medicine Berlin, Berlin, Germany
| | - Claas Buschmann
- Institute of Legal Medicine and Forensic Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Hrnčiřík F, Nagy L, Grimes HL, Iftikhar H, Muzaffar J, Bance M. Impact of Insertion Speed, Depth, and Robotic Assistance on Cochlear Implant Insertion Forces and Intracochlear Pressure: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3307. [PMID: 38894099 PMCID: PMC11174543 DOI: 10.3390/s24113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Cochlear implants are crucial for addressing severe-to-profound hearing loss, with the success of the procedure requiring careful electrode placement. This scoping review synthesizes the findings from 125 studies examining the factors influencing insertion forces (IFs) and intracochlear pressure (IP), which are crucial for optimizing implantation techniques and enhancing patient outcomes. The review highlights the impact of variables, including insertion depth, speed, and the use of robotic assistance on IFs and IP. Results indicate that higher insertion speeds generally increase IFs and IP in artificial models, a pattern not consistently observed in cadaveric studies due to variations in methodology and sample size. The study also explores the observed minimal impact of robotic assistance on reducing IFs compared to manual methods. Importantly, this review underscores the need for a standardized approach in cochlear implant research to address inconsistencies and improve clinical practices aimed at preserving hearing during implantation.
Collapse
Affiliation(s)
- Filip Hrnčiřík
- Cambridge Hearing Group, Cambridge CB2 7EF, UK; (F.H.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Leo Nagy
- Clinical School, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Haissan Iftikhar
- Department of Otolaryngology, University Hospitals Birmingham, Birmingham B15 2TT, UK
| | - Jameel Muzaffar
- Cambridge Hearing Group, Cambridge CB2 7EF, UK; (F.H.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Otolaryngology, University Hospitals Birmingham, Birmingham B15 2TT, UK
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge CB2 7EF, UK; (F.H.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
7
|
Aebischer P, Weder S, Vischer M, Mantokoudis G, Caversaccio M, Wimmer W. Uncovering Vulnerable Phases in Cochlear Implant Electrode Array Insertion: Insights from an In Vitro Model. Otol Neurotol 2024; 45:e271-e280. [PMID: 38346807 DOI: 10.1097/mao.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVES The aim of this study is to improve our understanding of the mechanics involved in the insertion of lateral wall cochlear implant electrode arrays. DESIGN A series of 30 insertion experiments were conducted by three experienced surgeons. The experiments were carried out in a previously validated artificial temporal bone model according to established soft surgery guidelines. The use of an in vitro setup enabled us to comprehensively evaluate relevant parameters, such as insertion force, intracochlear pressure, and exact electrode array position in a controlled and repeatable environment. RESULTS Our findings reveal that strong intracochlear pressure transients are more frequently caused during the second half of the insertion, and that regrasping the electrode array is a significant factor in this phenomenon. For choosing an optimal insertion speed, we show that it is crucial to balance slow movement to limit intracochlear stress with short duration to limit tremor-induced pressure spikes, challenging the common assumption that a slower insertion is inherently better. Furthermore, we found that intracochlear stress is affected by the order of execution of postinsertion steps, namely sealing the round window and posterior tympanotomy with autologous tissue and routing of the excess cable into the mastoid cavity. Finally, surgeons' subjective estimates of physical parameters such as speed, smoothness, and resistance did not correlate with objectively assessed measures, highlighting that a thorough understanding of intracochlear mechanics is essential for an atraumatic implantation. CONCLUSION The results presented in this article allow us to formulate evidence-based surgical recommendations that may ultimately help to improve surgical outcome and hearing preservation in cochlear implant patients.
Collapse
Affiliation(s)
| | - Stefan Weder
- Department for Otolaryngology, Head and Neck Surgery, Inselspital University Hospital Bern, Switzerland
| | - Mattheus Vischer
- Department for Otolaryngology, Head and Neck Surgery, Inselspital University Hospital Bern, Switzerland
| | - Georgios Mantokoudis
- Department for Otolaryngology, Head and Neck Surgery, Inselspital University Hospital Bern, Switzerland
| | | | | |
Collapse
|
8
|
Zagabathuni A, Padi KK, Kameswaran M, Subramani K. Development of Automated Tool for Electrode Array Insertion and its Study on Intracochlear Pressure. Laryngoscope 2024; 134:1388-1395. [PMID: 37584398 DOI: 10.1002/lary.30966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Cochlear implantation is the most successful approach for people with profound sensorineural hearing loss. Manual insertion of the electrode array may result in damaging the soft tissue structures and basilar membrane. An automated electrode array insertion device is reported to be less traumatic in cochlear implant surgery. OBJECTIVES The present work develops a simple, reliable, and compact device for automatically inserting the electrode array during cochlear implantation and test the device to observe intracochlear pressure during simulated electrode insertion. METHODS The device actuates the electrode array by a roller mechanism. For testing the automated device, a straight cochlea having the dimension of the scala tympani and a model electrode is developed using a 3D printer. A pressure sensor is utilized to observe the pressure change at different insertional conditions. RESULTS The electrode is inserted into a prototype cochlea at different speeds without any pause, and it is noticed that the pressure is increased with the depth of insertion of the electrode irrespective of the speed of electrode insertion. The rate of pressure change is observed to be increased exponentially with the speed of insertion. CONCLUSION At an insertion speed of 0.15 mm/s, the peak pressure is observed to be 133 Pa, which can be further evaluated in anatomical models for clinical scenarios. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1388-1395, 2024.
Collapse
Affiliation(s)
- Aparna Zagabathuni
- School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut, India
| | - Kishore Kumar Padi
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Kanagaraj Subramani
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
9
|
Yancey KL, Patro A, Smetak M, Perkins EL, Isaacson B, Bennett ML, O'Malley M, Haynes DS, Hunter JB. Evaluating calcium channel blockers and bisphosphonates as otoprotective agents in cochlear implantation hearing preservation candidates. Cochlear Implants Int 2024; 25:131-139. [PMID: 38738388 DOI: 10.1080/14670100.2024.2338003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Evaluate potential effects of calcium channel blockers (CCB) and bisphosphonates (BP) on residual hearing following cochlear implantation. METHODS Medications of 303 adult hearing preservation (HP) candidates (low frequency pure tone average [LFPTA] of 125, 250, and 500 Hz ≤80 dB HL) were reviewed. Postimplantation LFPTA of patients taking CCBs and BPs were compared to controls matched by age and preimplantation LFPTA. RESULTS Twenty-six HP candidates were taking a CCB (N = 14) or bisphosphonate (N = 12) at implantation. Median follow-up was 1.37 years (range 0.22-4.64y). Among subjects with initial HP, 29% (N = 2 of 7) CCB users compared to 50% (N = 2 of 4) controls subsequently lost residual hearing 3-6 months later (OR = 0.40, 95% CI = 0.04-4.32, p = 0.58). None of the four BP patients with initial HP experienced delayed loss compared to 50% (N = 2 of 4) controls with initial HP (OR = 0.00, 95% CI = 0.00-1.95, P = 0.43). Two CCB and one BP patients improved to a LFPTA <80 dB HL following initial unaided thresholds that suggested loss of residual hearing. DISCUSSION There were no significant differences in the odds of delayed loss of residual hearing with CCBs or BPs. CONCLUSION Further investigation into potential otoprotective adjuvants for maintaining residual hearing following initial successful hearing preservation is warranted, with larger cohorts and additional CCB/BP agents.
Collapse
Affiliation(s)
- Kristen L Yancey
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Ankita Patro
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miriam Smetak
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth L Perkins
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandon Isaacson
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc L Bennett
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew O'Malley
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacob B Hunter
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
10
|
Kashani RG, Henslee A, Nelson RF, Hansen MR. Robotic assistance during cochlear implantation: the rationale for consistent, controlled speed of electrode array insertion. Front Neurol 2024; 15:1335994. [PMID: 38318440 PMCID: PMC10839068 DOI: 10.3389/fneur.2024.1335994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Cochlear implants (CI) have revolutionized the treatment of patients with severe to profound sensory hearing loss by providing a method of bypassing normal hearing to directly stimulate the auditory nerve. A further advance in the field has been the introduction of "hearing preservation" surgery, whereby the CI electrode array (EA) is carefully inserted to spare damage to the delicate anatomy and function of the cochlea. Preserving residual function of the inner ear allows patients to receive maximal benefit from the CI and to combine CI electric stimulation with acoustic hearing, offering improved postoperative speech, hearing, and quality of life outcomes. However, under the current paradigm of implant surgery, where EAs are inserted by hand, the cochlea cannot be reliably spared from damage. Robotics-assisted EA insertion is an emerging technology that may overcome fundamental human kinetic limitations that prevent consistency in achieving steady and slow EA insertion. This review begins by describing the relationship between EA insertion speed and generation of intracochlear forces and pressures. The various mechanisms by which these intracochlear forces can damage the cochlea and lead to worsened postoperative outcomes are discussed. The constraints of manual insertion technique are compared to robotics-assisted methods, followed by an overview of the current and future state of robotics-assisted EA insertion.
Collapse
Affiliation(s)
- Rustin G. Kashani
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | | | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
11
|
Ernst BP, Heinrich UR, Fries M, Meuser R, Rader T, Eckrich J, Stauber RH, Strieth S. Cochlear implantation impairs intracochlear microcirculation and counteracts iNOS induction in guinea pigs. Front Cell Neurosci 2023; 17:1189980. [PMID: 37448696 PMCID: PMC10336219 DOI: 10.3389/fncel.2023.1189980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Preservation of residual hearing remains a great challenge during cochlear implantation. Cochlear implant (CI) electrode array insertion induces changes in the microvasculature as well as nitric oxide (NO)-dependent vessel dysfunction which have been identified as possible mediators of residual hearing loss after cochlear implantation. Methods A total of 24 guinea pigs were randomized to receive either a CI (n = 12) or a sham procedure (sham) by performing a cochleostomy without electrode array insertion (n = 12). The hearing threshold was determined using frequency-specific compound action potentials. To gain visual access to the stria vascularis, a microscopic window was created in the osseous cochlear lateral wall. Cochlear blood flow (CBF) and cochlear microvascular permeability (CMP) were evaluated immediately after treatment, as well as after 1 and 2 h, respectively. Finally, cochleae were resected for subsequent immunohistochemical analysis of the iNOS expression. Results The sham control group showed no change in mean CBF after 1 h (104.2 ± 0.7%) and 2 h (100.8 ± 3.6%) compared to baseline. In contrast, cochlear implantation resulted in a significant continuous decrease in CBF after 1 h (78.8 ± 8.1%, p < 0.001) and 2 h (60.6 ± 11.3%, p < 0.001). Additionally, the CI group exhibited a significantly increased CMP (+44.9% compared to baseline, p < 0.0001) and a significant increase in median hearing threshold (20.4 vs. 2.5 dB SPL, p = 0.0009) compared to sham after 2 h. Intriguingly, the CI group showed significantly lower iNOS-expression levels in the organ of Corti (329.5 vs. 54.33 AU, p = 0.0003), stria vascularis (596.7 vs. 48.51 AU, p < 0.0001), interdental cells (564.0 vs. 109.1 AU, p = 0.0003) and limbus fibrocytes (119.4 vs. 18.69 AU, p = 0.0286). Conclusion Mechanical and NO-dependent microvascular dysfunction seem to play a pivotal role in residual hearing loss after CI electrode array insertion. This may be facilitated by the implantation associated decrease in iNOS expression. Therefore, stabilization of cochlear microcirculation could be a therapeutic strategy to preserve residual hearing.
Collapse
Affiliation(s)
| | - Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mathias Fries
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Regina Meuser
- Institute for Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tobias Rader
- Division of Audiology, Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland H. Stauber
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
12
|
Boscoe EF, Banakis Hartl RM, Gubbels SP, Greene NT. Effects of Varying Laser Parameters During Laser Stapedotomy on Intracochlear Pressures. Otolaryngol Head Neck Surg 2023; 168:462-468. [PMID: 35671134 PMCID: PMC10097413 DOI: 10.1177/01945998221104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Sensorineural hearing loss is a known complication of stapes surgery. We previously showed that laser stapedotomy can result in intracochlear pressures that are comparable to high sound pressure levels. Optimizing laser settings to those that correspond with the lowest pressure changes may mitigate risk for postoperative hearing loss. Here we quantify the effects of various laser parameters on intracochlear pressures and test the hypothesis that intracochlear pressure changes are proportional to the laser energy delivered. STUDY DESIGN Basic and translational science. SETTING Cadaveric dissection and basic science laboratory. METHODS Cadaveric human heads underwent mastoidectomies. Intracochlear pressures were measured via fiber-optic pressure probes placed in scala vestibuli and tympani. Pulses of varied stimulus power and duration from a 980-nm diode laser were applied to the stapes footplate. RESULTS Sustained high-intensity pressures were observed in the cochlea during all laser applications. Observed pressure magnitudes increased monotonically with laser energy and rose linearly for lower stimulus durations and powers, but there was increased variability for laser applications of longer duration (200-300 ms) and/or higher power (8 W). CONCLUSIONS Results confirm that significant pressure changes occur during laser stapedotomy, which we hypothesize may cause injury. Overall energy delivered depends predictably on duration and power, but surgeons should use caution at the highest stimulus levels and longest pulse durations due to the increasing variability in intracochlear pressure under these stimulus conditions. While the risk to hearing from increased intracochlear pressures from laser stapedotomy remains unclear, these results affirm the need to optimize laser settings to avoid unintended injury.
Collapse
Affiliation(s)
- Elizabeth F. Boscoe
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
| | - Renee M. Banakis Hartl
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
- Department of Otolaryngology–Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Samuel P. Gubbels
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
| | - Nathaniel T. Greene
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado, Aurora, Colorado
| |
Collapse
|
13
|
Jwair S, Ramekers D, Thomeer HGXM, Versnel H. Acute effects of cochleostomy and electrode-array insertion on compound action potentials in normal-hearing guinea pigs. Front Neurosci 2023; 17:978230. [PMID: 36845413 PMCID: PMC9945226 DOI: 10.3389/fnins.2023.978230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Electrocochleography (ECochG) is increasingly used in cochlear implant (CI) surgery, in order to monitor the effect of insertion of the electrode array aiming to preserve residual hearing. However, obtained results are often difficult to interpret. Here we aim to relate changes in ECochG responses to acute trauma induced by different stages of cochlear implantation by performing ECochG at multiple time points during the procedure in normal-hearing guinea pigs. Materials and methods Eleven normal-hearing guinea pigs received a gold-ball electrode that was fixed in the round-window niche. ECochG recordings were performed during the four steps of cochlear implantation using the gold-ball electrode: (1) Bullostomy to expose the round window, (2) hand-drilling of 0.5-0.6 mm cochleostomy in the basal turn near the round window, (3) insertion of a short flexible electrode array, and (4) withdrawal of electrode array. Acoustical stimuli were tones varying in frequency (0.25-16 kHz) and sound level. The ECochG signal was primarily analyzed in terms of threshold, amplitude, and latency of the compound action potential (CAP). Midmodiolar sections of the implanted cochleas were analyzed in terms of trauma to hair cells, modiolar wall, osseous spiral lamina (OSL) and lateral wall. Results Animals were assigned to cochlear trauma categories: minimal (n = 3), moderate (n = 5), or severe (n = 3). After cochleostomy and array insertion, CAP threshold shifts increased with trauma severity. At each stage a threshold shift at high frequencies (4-16 kHz) was accompanied with a threshold shift at low frequencies (0.25-2 kHz) that was 10-20 dB smaller. Withdrawal of the array led to a further worsening of responses, which probably indicates that insertion and removal trauma affected the responses rather than the mere presence of the array. In two instances, CAP threshold shifts were considerably larger than threshold shifts of cochlear microphonics, which could be explained by neural damage due to OSL fracture. A change in amplitudes at high sound levels was strongly correlated with threshold shifts, which is relevant for clinical ECochG performed at one sound level. Conclusion Basal trauma caused by cochleostomy and/or array insertion should be minimized in order to preserve the low-frequency residual hearing of CI recipients.
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Hans G. X. M. Thomeer
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands,*Correspondence: Huib Versnel,
| |
Collapse
|
14
|
Gantz JA, Gantz BJ, Kaufmann CR, Henslee AM, Dunn CC, Hua X, Hansen MR. A Steadier Hand: The First Human Clinical Trial of a Single-Use Robotic-Assisted Surgical Device for Cochlear Implant Electrode Array Insertion. Otol Neurotol 2023; 44:34-39. [PMID: 36509435 PMCID: PMC9757840 DOI: 10.1097/mao.0000000000003749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the safety and utility of an investigational robotic-assisted cochlear implant insertion system. STUDY DESIGN Prospective, single-arm, open-label study under abbreviated Investigational Device Exemption requirements. SETTING All procedures were performed, and all data were collected, at a single tertiary referral center. PATIENTS Twenty-one postlingually deafened adult subjects that met Food and Drug Administration indication criteria for cochlear implantation. INTERVENTION All patients underwent standard-of-care surgery for unilateral cochlear implantation with the addition of a single-use robotic-assisted insertion device during cochlear electrode insertion. MAIN OUTCOME MEASURES Successful insertion of cochlear implant electrode array, electrode array insertion time, postoperative implant function. RESULTS Successful robotic-assisted insertion of lateral wall cochlear implant electrode arrays was achieved in 20 (95.2%) of 21 patients. One insertion was unable to be achieved by either robotic-assisted or manual insertion methods, and the patient was retrospectively found to have a preexisting cochlear fracture. Mean intracochlear electrode array insertion time was 3 minutes 15 seconds. All implants with successful robotic-assisted electrode array insertion (n = 20) had normal impedance and neural response telemetry measures for up to 6 months after surgery. CONCLUSIONS Here we report the first human trial of a single-use robotic-assisted surgical device for cochlear implant electrode array insertion. This device successfully and safely inserted lateral wall cochlear implant electrode arrays from the three device manufacturers with devices approved but he Food and Drug Administration.
Collapse
Affiliation(s)
- Jay A. Gantz
- Department of Otolaryngology – Head and Neck Surgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
| | - Bruce J. Gantz
- Department of Otolaryngology – Head and Neck Surgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
- Department of Neurosurgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
| | | | | | - Camille C Dunn
- Department of Otolaryngology – Head and Neck Surgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
| | - Xiaoyang Hua
- Department of Otolaryngology – Head and Neck Surgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
| | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
- Department of Neurosurgery, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242-1089, USA
- iotaMotion Inc, 14 ½ South Clinton St. Iowa City, IA 52240, USA
| |
Collapse
|
15
|
Claussen AD, Shibata SB, Kaufmann CR, Henslee A, Hansen MR. Comparative Analysis of Robotics-Assisted and Manual Insertions of Cochlear Implant Electrode Arrays. Otol Neurotol 2022; 43:1155-1161. [PMID: 36201552 PMCID: PMC10962863 DOI: 10.1097/mao.0000000000003707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Robotics-assisted cochlear implant (CI) insertions will result in reduced intracochlear trauma when compared with manual, across multiple users. BACKGROUND Whether intracochlear trauma and translocations are two factors that may contribute to significant variability in CI outcomes remains to be seen. To address this issue, we have developed a robotics-assisted insertion system designed to aid the surgeon in inserting electrode arrays with consistent speeds and reduced variability. This study evaluated the effect of robotics-assisted insertions on the intracochlear trauma as compared with manual insertions in cadaveric cochleae in a simulated operative environment. METHODS Twelve neurotologists performed bilateral electrode insertions into cochleae of full cadaveric heads using both the robotics-assisted system and manual hand insertion. Lateral wall electrodes from three different manufacturers (n = 24) were used and randomized between surgeons. Insertion angle of the electrode and trauma scoring were evaluated using high-resolution three-dimensional x-ray microscopy and compared between robotics-assisted and manual insertions. RESULTS Three-dimensional x-ray microscopy provided excellent resolution to characterize the in situ trauma and insertion angle. Robotics-assisted insertions significantly decreased insertional intracochlear trauma as measured by reduced trauma scores compared with manual insertions (average: 1.3 versus 2.2, device versus manual, respectively; p < 0.05). There was no significant difference between insertion angles observed for manual and robotics-assisted techniques (311 ± 131° versus 307 ± 96°, device versus manual, respectively). CONCLUSIONS Robotics-assisted insertion systems enable standardized electrode insertions across individual surgeons and experience levels. Clinical trials are necessary to investigate whether insertion techniques that reduce insertional variability and the likelihood of intracochlear trauma also improve CI auditory outcomes.
Collapse
Affiliation(s)
| | - Seiji B Shibata
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| | | | | | | |
Collapse
|
16
|
Putzeys T, Borgers C, Fierens G, Walraevens J, Van Wieringen A, Verhaert N. Intracochlear pressure as an objective measure for perceived loudness with bone conduction implants. Hear Res 2022; 422:108550. [PMID: 35689853 DOI: 10.1016/j.heares.2022.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The generally accepted method to assess the functionality of novel bone conduction implants in a preclinical stage is to experimentally measure the vibratory response of the cochlear promontory. Yet, bone conduction of sound is a complex propagation phenomenon, depending on both frequency and amplitude, involving different conduction pathways. OBJECTIVES The aim of this study is to validate the use of intracochlear sound pressure (ICP) as an objective indicator for perceived loudness for bone conduction stimulation. It is investigated whether a correlation exists between intracochlear sound pressure measurements in cadaveric temporal bones and clinically obtained results using the outcome of a loudness balancing experiment. METHODS Ten normal hearing subjects were asked to balance the perceived loudness between air conducted (AC) sound and bone conducted (BC) sound by changing the AC stimulus. Mean balanced thresholds were calculated and used as stimulation levels in a cadaver trial (N = 4) where intracochlear sound pressure was measured during AC and BC stimulation to assess the correlation with the measured clinical data. The intracochlear pressure was measured at the relatively low stimulation amplitude of 80 dBHL using a lock-in amplification technique. RESULTS Applying AC and BC stimulation at equal perceived loudness on cadaveric heads yield a similar differential intracochlear pressure, with differences between AC and BC falling within the range of variability of normal hearing test subjects. CONCLUSION Comparing the perceived loudness at 80 dB HL for both AC and BC validates intracochlear pressure as an objective indicator of the cochlear drive. The measurement setup is more time-intensive than measuring the vibratory response of the cochlear promontory, yet it provides direct information on the level of the cochlear scalae.
Collapse
Affiliation(s)
- Tristan Putzeys
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Heverlee, Belgium.
| | - Charlotte Borgers
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium
| | - Guy Fierens
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Heverlee, Belgium; Cochlear Technology Centre, Mechelen, Belgium
| | | | - Astrid Van Wieringen
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium
| | - Nicolas Verhaert
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Otorhinolaryngology, Head and Neck Surgery, Leuven, Belgium
| |
Collapse
|
17
|
Ertas YN, Ozpolat D, Karasu SN, Ashammakhi N. Recent Advances in Cochlear Implant Electrode Array Design Parameters. MICROMACHINES 2022; 13:1081. [PMID: 35888898 PMCID: PMC9323156 DOI: 10.3390/mi13071081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
Cochlear implants are neural implant devices that aim to restore hearing in patients with severe sensorineural hearing impairment. Here, the main goal is to successfully place the electrode array in the cochlea to stimulate the auditory nerves through bypassing damaged hair cells. Several electrode and electrode array parameters affect the success of this technique, but, undoubtedly, the most important one is related to electrodes, which are used for nerve stimulation. In this paper, we provide a comprehensive resource on the electrodes currently being used in cochlear implant devices. Electrode materials, shape, and the effect of spacing between electrodes on the stimulation, stiffness, and flexibility of electrode-carrying arrays are discussed. The use of sensors and the electrical, mechanical, and electrochemical properties of electrode arrays are examined. A large library of preferred electrodes is reviewed, and recent progress in electrode design parameters is analyzed. Finally, the limitations and challenges of the current technology are discussed along with a proposal of future directions in the field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; (D.O.); (S.N.K.)
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Derya Ozpolat
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; (D.O.); (S.N.K.)
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Saime Nur Karasu
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; (D.O.); (S.N.K.)
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Hartl RMB, Greene NT. Measurement and Mitigation of Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion. Otol Neurotol 2022; 43:174-182. [PMID: 34753876 PMCID: PMC10260290 DOI: 10.1097/mao.0000000000003401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS High intracochlear pressure transients associated with cochlear implant placement are reduced with smaller, non-styleted arrays, and longer insertion durations. BACKGROUND With increasing focus on hearing preservation during cochlear implant surgery, atraumatic technique is of the utmost importance. Previous studies revealed that high intensity pressure transients can be generated during the insertion of implant electrodes. Resulting acoustic trauma may be one contributing factor to postoperative loss of residual hearing. METHODS Thirty ears in cadaveric specimens were surgically prepared with placement of intracochlear pressure sensors. Sequential implant insertions were made over 10, 30, or 60 seconds using seven randomly ordered electrode styles. Pressures were also measured during common post-insertion electrode manipulations and removal. Measurements were compared between electrode styles and characteristics using analysis of variance (ANOVA) and Pearson correlation. RESULTS Implant insertion and post-insertion manipulations produced high-intensity pressure transients with all electrodes tested, with some measurements exceeding 170 dB peak SPL. Average peak pressures were significantly lower for straight, non-stylet electrodes (p << 0.001). The likelihood of generating transients was lowest with the slowest insertions (p << 0.001). CONCLUSIONS Cochlear implant insertion can generate transients in intralabyrinthine pressure levels equivalent to high intensity, impulsive acoustic stimuli known to cause hearing loss. Although transients were observed in all conditions, exposure may be mitigated by using non-styleted electrodes and slow insertion speeds. Additional surgical manipulations can also produce similar high-pressure events. Results from this investigation suggest that use of non-styleted electrodes, slow but steady insertion speeds, and avoidance of post-insertional manipulations are important to reduce cochlear trauma.
Collapse
Affiliation(s)
- Renee M. Banakis Hartl
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
19
|
Mattingly JK, Hartl RMB, Jenkins HA, Tollin DJ, Cass SP, Greene NT. A Comparison of Intracochlear Pressures During Ipsilateral and Contralateral Stimulation With a Bone Conduction Implant. Ear Hear 2021; 41:312-322. [PMID: 31389846 PMCID: PMC8043255 DOI: 10.1097/aud.0000000000000758] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare contralateral to ipsilateral stimulation with percutaneous and transcutaneous bone conduction implants. BACKGROUND Bone conduction implants (BCIs) effectively treat conductive and mixed hearing losses. In some cases, such as in single-sided deafness, the BCI is implanted contralateral to the remaining healthy ear in an attempt to restore some of the benefits provided by binaural hearing. While the benefit of contralateral stimulation has been shown in at least some patients, it is not clear what cues or mechanisms contribute to this function. Previous studies have investigated the motion of the ossicular chain, skull, and round window in response to bone vibration. Here, we extend those reports by reporting simultaneous measurements of cochlear promontory velocity and intracochlear pressures during bone conduction stimulation with two common BCI attachments, and directly compare ipsilateral to contralateral stimulation. METHODS Fresh-frozen whole human heads were prepared bilaterally with mastoidectomies. Intracochlear pressure (PIC) in the scala vestibuli (PSV) and tympani (PST) was measured with fiber optic pressure probes concurrently with cochlear promontory velocity (VProm) via laser Doppler vibrometry during stimulation provided with a closed-field loudspeaker or a BCI. Stimuli were pure tones between 120 and 10,240 Hz, and response magnitudes and phases for PIC and VProm were measured for air and bone conducted sound presentation. RESULTS Contralateral stimulation produced lower response magnitudes and longer delays than ipsilateral in all measures, particularly for high-frequency stimulation. Contralateral response magnitudes were lower than ipsilateral response magnitudes by up to 10 to 15 dB above ~2 kHz for a skin-penetrating abutment, which increased to 25 to 30 dB and extended to lower frequencies when applied with a transcutaneous (skin drive) attachment. CONCLUSIONS Transcranial attenuation and delay suggest that ipsilateral stimulation will be dominant for frequencies over ~1 kHz, and that complex phase interactions will occur during bilateral or bimodal stimulation. These effects indicate a mechanism by which bilateral users could gain some bilateral advantage.
Collapse
Affiliation(s)
- Jameson K. Mattingly
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | | | - Herman A. Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | - Daniel J. Tollin
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO
| | - Stephen P. Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
20
|
Bennion DM, Horne R, Peel A, Reineke P, Henslee A, Kaufmann C, Guymon CA, Hansen MR. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces. Otol Neurotol 2021; 42:1476-1483. [PMID: 34310554 DOI: 10.1097/mao.0000000000003288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Application of photografted zwitterionic coatings to cochlear implant (CI) biomaterials will reduce friction and insertion forces. BACKGROUND Strategies to minimize intracochlear trauma during implantation of an electrode array are critical to optimize outcomes including preservation of residual hearing. To this end, advances in thin-film zwitterionic hydrogel coatings on relevant biomaterials may show promise, in addition to the potential of these materials for decreasing the intracochlear foreign body response. METHODS Using a recently designed one-step process, thin-film coatings derived from zwitterionic sulfobetaine methacrylate (SBMA) were photopolymerized and photografted to the surface of polydimethylsiloxane (PDMS, silastic) samples and also to CI arrays from two manufacturers. Fluorescein staining and scanning electron microscopy with energy-dispersive X-ray spectroscopy verified and characterized the coatings. Tribometry was used to measure the coefficient of friction between uncoated and coated PDMS and synthetic and biological tissues. Force transducer measurements were obtained during insertion of uncoated (n = 9) and coated (n = 9) CI electrode arrays into human cadaveric cochleae. RESULTS SBMA thin-film coating of PDMS resulted in >90% reduction in frictional coefficients with steel, ceramic, and dermal tissue from guinea pigs (p < 0.0001). We employed a novel method for applying covalently bonded, durable, and uniform coating in geographically selective areas at the electrode array portion of the implant. Image analysis confirmed uniform coating of PDMS systems and the CI electrode arrays with SBMA polymer films. During insertion of electrode arrays into human cadaveric cochleae, SBMA coatings reduced maximum force by ∼40% during insertion (p < 0.001), as well as decreasing force variability and the overall work of insertion. CONCLUSION Thin-film SBMA photografted coatings on PDMS and electrode arrays significantly reduce frictional coefficients and insertional forces in cadaveric cochleae. These encouraging findings support that thin-film zwitterionic coating of CI electrode arrays may potentially reduce insertional trauma and thereby promote improved hearing and other long-term outcomes.
Collapse
Affiliation(s)
- Douglas M Bennion
- Department of Otolaryngology-Head and Neck Surgery Department of Chemical and Biochemical Engineering, University of Iowa iotaMotion, Inc, Iowa City, Iowa
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Riemann C, Sudhoff H, Todt I. Influence of Intracochlear Air on Experimental Pressure Measurements. Audiol Neurootol 2021; 27:34-39. [PMID: 34130281 DOI: 10.1159/000516142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Intracochlear pressure changes have been assumed to play a central role in hearing preservation during cochlear implantation. The pressure in different settings has been evaluated (temporal bones vs. cochlea models) and was found to have advantages and disadvantages. Experimentally, problems have been discussed to influence the results substantially. OBJECTIVE The aim of the present study was to evaluate the effect of intracochlear air on the measurements in a cochlea model by using a fiber optic pressure sensor. MATERIALS AND METHODS The experiments were performed in an uncurled 3D printed full cochlea model. A microfiber-optic pressure sensor was inserted, and intracochlear pressures were evaluated under 3 conditions: (1) cochlea model filled to 100% with fluid, (2) cochlea model filled with air, and (3) cochlea model filled to approximately 50% with fluid. Since the cochlea model is transparent, a direct visualization of air under the microscope was possible when performing the insertions. RESULTS In the first condition, the mean intracochlear pressure at the end of the insertion was 0.044 psi (SD 0.012, 95% CI). In the second setting, the results were similar. In the last scenario, with 50% filling, the mean intracochlear pressure was statistically significantly different with a mean value of 0.074 psi (SD 0.013, 95% CI) (p < 0.0044, ANOVA). Besides this, in the last condition with 50% fluid, a plateau was formed when the fiber optic reached the air portion. CONCLUSION The results obtained in a 3D printed full cochlea model show the importance of a direct evaluation of air inside the experimental setting. The exclusion of intracochlear air should be an important factor for the choice of the model for intracochlear pressure measurement (temporal bone vs. cochlea model).
Collapse
Affiliation(s)
- Conrad Riemann
- Department of Otolaryngology, Head and Neck Surgery, Bielefeld University, Campus Mitte, Klinikum Bielefeld, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Bielefeld University, Campus Mitte, Klinikum Bielefeld, Bielefeld, Germany
| | - Ingo Todt
- Department of Otolaryngology, Head and Neck Surgery, Bielefeld University, Campus Mitte, Klinikum Bielefeld, Bielefeld, Germany
| |
Collapse
|
22
|
Wang R, Zhang D, Luo J, Chao X, Xu J, Liu X, Fan Z, Wang H, Xu L. Influence of Cochlear Implantation on Vestibular Function in Children With an Enlarged Vestibular Aqueduct. Front Neurol 2021; 12:663123. [PMID: 33967946 PMCID: PMC8099028 DOI: 10.3389/fneur.2021.663123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Cochlear implantation (CI) is becoming increasingly used in the rehabilitation of hearing-impaired patients. Children with an enlarged vestibular aqueduct (EVA) need CI for severe or profound hearing loss, with excellent outcomes in hearing rehabilitation. However, vestibular function influenced by CI in children with EVA has not been clarified. We compared the characteristics of vestibular function in implanted children with EVA and those with a normal cochlea. Methods: In this retrospective case-control study, 16 children with large vestibular aqueduct syndrome (LVAS) and 16 children with a normal cochlea were recruited as the Study and Control Group, respectively. All children (mean age, 10.3 ± 4.4 years) had bilateral profound sensorineural hearing loss (SNHL) and normal pre-operative vestibular functions and underwent unilateral CI. Otolith and canal functions were assessed before CI and 12 months thereafter. Cervical vestibular-evoked myogenic potential (cVEMP), ocular vestibular-evoked myogenic potential (oVEMP), and video head impulse test (vHIT) were evaluated. Results: Full insertion of the electrode array was achieved in all the cases. Preoperatively, no significant differences in parameters in cVEMP between the Study and Control Group were revealed (p > 0.05). In pre-operative oVEMP, shorter N1 latencies (p = 0.012), shorter P1 latencies (p = 0.01), and higher amplitudes (p = 0.001) were found in the Study than in the Control Group. The Study Group had shorter P1 latency in cVEMP (p = 0.033), and had lower amplitude in oVEMP after implantation (p = 0.03). Statistically significant differences were not found in VOR gains of all three semicircular canals before and after surgery (p > 0.05). VEMP results revealed that the Control Group had significantly lower deterioration rates after CI (p < 0.05). The surgical approach and electrode array had no statistically significant influence on the VEMP results (p > 0.05). Conclusion: oVEMP parameters differed between children with EVA and children with a normal cochlea before surgery. Systematic evaluations before and after CI showed that otolith function was affected, but all three semicircular canals functions were essentially undamaged after implantation. In contrast to subjects with a normal cochlea, children with EVA are more likely to preserve their saccular and utricular functions after CI surgery. Possible mechanisms include less pressure-related damage, a reduced effect in terms of the air-bone gap (ABG), or more sensitivity to acoustic stimulation.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianfen Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuhua Chao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiliang Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianfeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Ucta C, Mittmann P, Ernst A, Seidl R, Lauer G. Minimizing Intracochlear Pressure: Influence of the Insertion Sheath. Audiol Neurootol 2021; 26:281-286. [PMID: 33647910 DOI: 10.1159/000512466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Atraumatic cochlear implantation (CI) and insertion of the electrode in particular are major goals of recent CI surgery. Perimodiolar electrode arrays need a stylet or exosheath for insertion. The sheath can influence the intracochlear pressure changes during insertion of the electrode. The aim of this study was to modify the insertion sheath to optimize intracochlear pressure changes. METHODS In an artifical cochlear model, 7 different modified insertion sheaths were used. The intracochlear pressure was measured with a micro-optical sensor in the apical part of the model cochlea. RESULTS Significant lower intracochlear pressure changes were observed when the apical part of the insertion sheath was either shortened or tapered. Modification of the stopper does influence the intracochlear pressure significantly. CONCLUSION Modification of the insertion sheath leads to lower intracochlear pressure gain. The differences and impact on intracochlear pressure changes found in this study underline the importance of even subtle modifications of the electrode insertion technique.
Collapse
Affiliation(s)
- Ceyhun Ucta
- Department of Otolaryngology at ukb, Charité Med School Berlin, Hospital of the University of Berlin, Berlin, Germany
| | - Philipp Mittmann
- Department of Otolaryngology at ukb, Charité Med School Berlin, Hospital of the University of Berlin, Berlin, Germany
| | - Arneborg Ernst
- Department of Otolaryngology at ukb, Charité Med School Berlin, Hospital of the University of Berlin, Berlin, Germany
| | - Rainer Seidl
- Department of Otolaryngology at ukb, Charité Med School Berlin, Hospital of the University of Berlin, Berlin, Germany
| | - Gina Lauer
- Department of Otolaryngology at ukb, Charité Med School Berlin, Hospital of the University of Berlin, Berlin, Germany,
| |
Collapse
|
24
|
Snels C, Roland JT, Treaba C, Jethanamest D, Huinck W, Friedmann DR, Dhooge I, Mylanus E. Force and pressure measurements in temporal bones. Am J Otolaryngol 2021; 42:102859. [PMID: 33440250 DOI: 10.1016/j.amjoto.2020.102859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Some cochlear implant (CI) patients lose their residual hearing during surgery. Two factors that might play a role in residual hearing loss are the change in intracochlear hydraulic pressure and force on the cochlear wall during electrode insertion. The aim of this study is to investigate whether a difference in peak hydraulic pressure and peak force on the cochlear wall exists during a CI electrode insertion with different insertion techniques. MATERIALS AND METHODS Twenty fresh frozen temporal bones were used. Hydraulic pressure and force on the cochlear wall were recorded during straight electrode insertions with 1) slow versus fast insertion speed, 2) manual versus automatic insertion method and 3) round window approach (RWA) versus extended RWA (ERWA). RESULTS When inserting with a slow compared to a fast insertion speed, the peak hydraulic pressure is 239% (95% CI: 130-399%) higher with a RWA and 58% (95% CI: 6-137%) higher with an ERWA. However, the peak force on the cochlear wall is a factor 29% less (95% CI: 13-43%) with a slow insertion speed. No effect was found of opening and insertion method. CONCLUSIONS As contradictory findings were found for hydraulic pressure and force on the cochlear wall on insertion speed, it remains unclear which insertion speed (slow versus fast) is less traumatic to inner ear structure.
Collapse
|
25
|
Riemann C, Sudhoff H, Todt I. Effect of Underwater Insertion on Intracochlear Pressure. Front Surg 2020; 7:546779. [PMID: 33425980 PMCID: PMC7793869 DOI: 10.3389/fsurg.2020.546779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Background: The importance of intracochlear pressure during cochlear electrode insertion for the preservation of residual hearing has been widely discussed. Various aspects of pre-insertional, intra-insertional, and post-insertional relevant conditions affect intracochlear pressure. The fluid situation at the round window during electrode insertion has been shown to be an influential factor. Aims/Objectives: The aim of the study was to compare various insertion techniques in terms of the fluid situation at the round window. Material and Methods: We performed insertion of cochlear implant electrodes in a curled artificial cochlear model. We placed and fixed the pressure sensor at the tip of the cochlea. In parallel to the insertions, we evaluated the maximum amplitude of intracochlear pressure under four different fluid conditions at the round window: (1) hyaluronic acid; (2) moisturized electrode, dry middle ear; (3) middle ear filled with fluid (underwater); and (4) moisturized electrode, wet middle ear, indirectly inserted. Results: We observed that the insertional intracochlear pressure is dependent on the fluid situation in front of the round window. The lowest amplitude changes were observed for the moisturized electrode indirectly inserted in a wet middle ear (0.13 mmHg ± 0.07), and the highest values were observed for insertion through hyaluronic acid in front of the round window (0.64 mmHg ± 0.31). Conclusions: The fluid state in front of the round window influences the intracochlear pressure value during cochlear implant electrode insertion in our model. Indirect insertion of a moisturized electrode through a wet middle ear experimentally generated the lowest pressure values. Hyaluronic acid in front of the round window leads to high intracochlear pressure in our non-validated artificial model.
Collapse
Affiliation(s)
- Conrad Riemann
- Department of Otolaryngology, Head and Neck Surgery, Bielefeld University, Campus Mitte, Klinikum Bielefeld, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Bielefeld University, Campus Mitte, Klinikum Bielefeld, Bielefeld, Germany
| | - Ingo Todt
- Department of Otolaryngology, Head and Neck Surgery, Bielefeld University, Campus Mitte, Klinikum Bielefeld, Bielefeld, Germany
| |
Collapse
|
26
|
Raufer S, Gamm UA, Grossöhmichen M, Lenarz T, Maier H. Middle Ear Actuator Performance Determined From Intracochlear Pressure Measurements in a Single Cochlear Scala. Otol Neurotol 2020; 42:e86-e93. [PMID: 33044336 DOI: 10.1097/mao.0000000000002836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Intracochlear pressure measurements in one cochlear scala are sufficient as reference to determine the output of an active middle ear implant (AMEI) in terms of "equivalent sound pressure level" (eqSPL). BACKGROUND The performance of AMEIs is commonly calculated from stapes velocities or intracochlear pressure differences (PDiff). However, there are scenarios where measuring stapes velocities or PDiff may not be feasible, for example when access to the stapes or one of the scalae is impractical. METHODS We reanalyzed data from a previous study of our group that investigated the performance of an AMEI coupled to the incus in 10 human temporal bones. We calculated eqSPL based on stapes velocities according to the ASTM standard F2504-05 and based on intracochlear pressures in scala vestibuli, scala tympani, and PDiff. RESULTS The AMEI produced eqSPL of ∼100 to 120 dB at 1 Vrms. No significant differences were found between using intracochlear pressures in scala vestibuli, scala tympani, or PDiff as a reference. The actuator performance calculated from stapes displacements predicted slightly higher eqSPLs at frequencies above 1000 Hz, but these differences were not statistically significant. CONCLUSION Our findings show that pressure measurements in one scala can be sufficient to evaluate the performance of an AMEI coupled to the incus. The method may be extended to other stimulation modalities of the middle ear or cochlea when access to the stapes or one of the scalae is not possible.
Collapse
Affiliation(s)
- Stefan Raufer
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| | - Ute A Gamm
- Cochlear Deutschland GmbH & Co. KG, Hannover, Germany
| | - Martin Grossöhmichen
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| | - Thomas Lenarz
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| | - Hannes Maier
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| |
Collapse
|
27
|
Kaufmann-Yehezkely M, Perez R, Sohmer H. Implications from cochlear implant insertion for cochlear mechanics. Cochlear Implants Int 2020; 21:292-294. [PMID: 32408805 DOI: 10.1080/14670100.2020.1757225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is usually thought that the displacements of the two inner ear windows induced by sound stimuli lead to pressure differences across the basilar membrane and to a passive mechanical traveling wave progressing along the membrane. However, opening a hole in the sealed inner ear wall in experimental animals is surprisingly not accompanied by auditory threshold elevations. It has also been shown that even in patients undergoing cochlear implantation, elevation of threshold to low-frequency acoustic stimulation is often not seen accompanying the making of a hole in the wall of the cochlea for insertion of the implant. Such threshold elevations would be expected to result from opening the cochlea, reducing cochlear impedance, altering hydrodynamics. These considerations can be taken as additional evidence that it may not be the passive basilar membrane traveling wave which elicits hearing at low sound intensities, but rather factors connected with cochlear fluid pressures and fluid mechanics.
Collapse
Affiliation(s)
- Michal Kaufmann-Yehezkely
- Department of Otorhinolaryngology/Head & Neck Surgery, Hadassah Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel
| | - Ronen Perez
- Department of Otolaryngology and Head and Neck Surgery, Otology Unit & Cochlear Implant Center, Shaare Zedek Medical Center, POB 3235, Jerusalem 91031, Israel
| | - Haim Sohmer
- Department of Medical Neurobiology (Physiology), Institute for Medical Research - Israel-Canada, Hebrew University-Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| |
Collapse
|
28
|
Abstract
HYPOTHESIS Surgical manipulations during laser stapedotomy can produce intracochlear pressure changes comparable to pressures created by high-intensity acoustic stimuli. BACKGROUND New-onset sensorineural hearing loss is a known risk of stapes surgery and may result from pressure changes from laser use or other surgical manipulations. Here, we test the hypothesis that high sound pressure levels are generated in the cochlea during laser stapedotomy. METHODS Human cadaveric heads underwent mastoidectomy. Fiber-optic sensors were placed in scala tympani and vestibuli to measure intracochlear pressures during key steps in stapedotomy surgery, including cutting stapedius tendon, lasering of stapedial crurae, crural downfracture, and lasering of the footplate. RESULTS Key steps in laser stapedotomy produced high-intensity pressures in the cochlea. Pressure transients were comparable to intracochlear pressures measured in response to high intensity impulsive acoustic stimuli. CONCLUSION Our results demonstrate that surgical manipulations during laser stapedotomy can create significant pressure changes within the cochlea, suggesting laser application should be minimized and alternatives to mechanical downfracture should be investigated. Results from this investigation suggest that intracochlear pressure transients from stapedotomy may be of sufficient magnitude to cause damage to the sensory epithelium and affirm the importance of limiting surgical traumatic exposures.
Collapse
Affiliation(s)
- Emily S Misch
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | |
Collapse
|
29
|
Gonzalez JR, Cass ND, Banakis Hartl RM, Peacock J, Cass SP, Greene NT. Characterizing Insertion Pressure Profiles During Cochlear Implantation: Simultaneous Fluoroscopy and Intracochlear Pressure Measurements. Otol Neurotol 2020; 41:e46-e54. [PMID: 31613835 PMCID: PMC10821719 DOI: 10.1097/mao.0000000000002437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Combined electrical-acoustical stimulation (EAS) has gained popularity as patients with residual hearing are increasingly undergoing cochlear implantation. Preservation of residual hearing correlates with hearing outcomes, but loss of hearing occurs in a subset of these patients. Several mechanisms have been proposed as causing this hearing loss; we have previously described high amplitude pressure transients, equivalent to high-level noise exposures, in the inner ear during electrode insertion. The source of these transients has not been identified. METHODS Cadaveric human heads were prepared with an extended facial recess. Fiber-optic pressure sensors were inserted into the scala vestibuli and scala tympani to measure intracochlear pressures. Two cochlear implant (CI) electrode styles (straight and perimodiolar) were inserted during time-synced intracochlear pressures and video fluoroscopy measurements. RESULTS CI electrode insertions produced pressure transients in the cochlea up to 160 to 170 dB pSPL equivalent for both styles, consistent with previous results. However, the position of the electrode within the cochlea when transients were generated differed (particularly contact with the medial or lateral walls). CONCLUSIONS These results begin to elucidate the insertion pressure profiles of CI electrodes, which can be used to improve CI electrode designs and facilitate "silent-insertions" to improve chances of hearing preservation.
Collapse
Affiliation(s)
- Joseph R. Gonzalez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | - Nathan D. Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | | | - John Peacock
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO
| | - Stephen P. Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
30
|
Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study. Otol Neurotol 2019; 39:e585-e592. [PMID: 29912830 DOI: 10.1097/mao.0000000000001869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Simulated otitis media with effusion reduces intracochlear pressures comparable to umbo velocity. BACKGROUND Otitis media with effusion is a common cause of temporary hearing loss, particularly in children, producing deficits of 30 to 40 dB. Previous studies measured the effects of simulated effusion on ossicular mechanics; however, no studies have measured cochlear stimulation directly. Here, we compare pressures in the scala vestibuli and tympani to umbo velocity, before and after induction of simulated effusion in cadaveric human specimens. METHODS Eight cadaveric, hemi-cephalic human heads were prepared with complete mastoidectomies. Intracochlear pressures were measured with fiber optic pressure probes, and umbo velocity measured via laser Doppler vibrometry (LDV). Stimuli were pure tones (0.1-14 kHz) presented in the ear canal via a custom speculum sealed with a glass cover slip. Effusion was simulated by filling the mastoid cavity and middle ear space with water. RESULTS Acoustic stimulation with middle ear effusion resulted in decreased umbo velocity up to ∼26 dB, whereas differential pressure (PDiff) at the base of the cochlea decreased by only ∼16 dB. CONCLUSION Simulating effusion leads to a frequency-dependent reduction in intracochlear sound pressure levels consistent with audiological presentation and prior reports. Results reveal that intracochlear pressure measurements (PSV and PST) decrease less than expected, and less than the decrease in PDiff. The observed decrease in umbo velocity is greater than in the differential intracochlear pressures, suggesting that umbo velocity overestimates the induced conductive hearing loss. These results suggest that an alternate sound conduction pathway transmits sound to the inner ear during effusion.
Collapse
|
31
|
Lateral Semicircular Canal Pressures During Cochlear Implant Electrode Insertion: a Possible Mechanism for Postoperative Vestibular Loss. Otol Neurotol 2019; 39:755-764. [PMID: 29889786 DOI: 10.1097/mao.0000000000001807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Insertion of cochlear implant electrodes generates transient pressure spikes within the vestibular labyrinth equivalent to high-intensity acoustic stimuli. BACKGROUND Though cochlear implant (CI) surgery is regarded as having low risk of impacting the vestibular system, several studies have documented changes in vestibular function after implantation. The mechanism of these changes is not understood. We have previously established that large, potentially damaging pressure transients can be generated in the cochlea during electrode insertion, but whether pressure transients occur within the vestibular labyrinth has yet to be determined. Here, we quantify the exposure of the vestibular system to potentially damaging pressure transients during CI surgery. METHODS Five human cadaveric heads were prepared with an extended facial recess and implanted sequentially with eight different CI electrode styles via a round window approach. Fiber-optic sensors measured intralabyrinthine pressures in scala vestibuli, scala tympani, and the lateral semicircular canal during insertions. RESULTS Electrode insertion produced a range of high-intensity pressure spikes simultaneously in the cochlea and lateral semicircular canal with all electrodes tested. Pressure transients recorded were found to be significantly higher in the vestibular labyrinth than the cochlea and occurred at peak levels known to cause acoustic trauma. CONCLUSION Insertion of CI electrodes can produce transients in intralabyrinthine fluid pressure levels equivalent to high-intensity, impulsive acoustic stimuli. Results from this investigation affirm the importance of atraumatic surgical techniques and suggest that in addition to the cochlea, the vestibular system is potentially exposed to damaging fluid pressure waves during cochlear implantation.
Collapse
|
32
|
Lauer G, Uçta J, Decker L, Ernst A, Mittmann P. Intracochlear Pressure Changes After Cochlea Implant Electrode Pullback-Reduction of Intracochlear Trauma. Laryngoscope Investig Otolaryngol 2019; 4:441-445. [PMID: 31453355 PMCID: PMC6703119 DOI: 10.1002/lio2.295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/05/2022] Open
Abstract
Objective Different aspects should be considered to achieve an atraumatic insertion of cochlear implant electrode arrays as an important surgical goal. Intracochlear pressure changes are known to influence the preservation of residual hearing. By using the intraoperative “pullback technique,” an electrode position closer to the modiolus can be achieved than without the pullback. The aim of the present study was therefore to investigate to what extent the pullback technique can influence intracochlear pressure changes. Methods Insertions of cochlear implant electrodes were performed in an artificial cochlear model with two different perimodiolar arrays. Intracochlear pressure changes were recorded with a micro‐optical pressure sensor positioned in the apical part of the cochlear. After complete insertion of the electrode array, a so‐called pullback of the electrode was performed. Results Statistically significant pressure differences were measured if the electrode array was wet (ie, moisturized) during the pullback. Relative pressure changes in electrodes with smaller total volume are lower than pressure changes in larger electrodes. Conclusion The preservation of residual hearing and, thus, the resulting postoperative audiological outcome has a major impact on the quality of life of the patients and has become of utmost importance. Intracochlear pressure changes during the pullback manoeuver are small in absolute terms, but can even be still reduced statistically significantly by a moistening the electrode before insertion. Using the pullback technique in cases with residual hearing does not affect the probability of preservation of residual hearing but could lead to a better audiological outcome. Level of Evidence NA
Collapse
Affiliation(s)
- Gina Lauer
- Department of Otolaryngology at UKB, Hospital of the University of Berlin Charité Medical School Berlin Germany
| | - Julica Uçta
- Department of Otolaryngology at UKB, Hospital of the University of Berlin Charité Medical School Berlin Germany
| | - Lars Decker
- Department of Otolaryngology at UKB, Hospital of the University of Berlin Charité Medical School Berlin Germany
| | - Arneborg Ernst
- Department of Otolaryngology at UKB, Hospital of the University of Berlin Charité Medical School Berlin Germany
| | - Philipp Mittmann
- Department of Otolaryngology at UKB, Hospital of the University of Berlin Charité Medical School Berlin Germany
| |
Collapse
|
33
|
Banakis Hartl RM, Kaufmann C, Hansen MR, Tollin DJ. Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion: Effect of Micro-mechanical Control on Limiting Pressure Trauma. Otol Neurotol 2019; 40:736-744. [PMID: 31192901 PMCID: PMC6578873 DOI: 10.1097/mao.0000000000002164] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Use of micro-mechanical control during cochlear implant (CI) electrode insertion will result in reduced number and magnitude of pressure transients when compared with standard insertion by hand. INTRODUCTION With increasing focus on hearing preservation during CI surgery, atraumatic electrode insertion is of the utmost importance. It has been established that large intracochlear pressure spikes can be generated during the insertion of implant electrodes. Here, we examine the effect of using a micro-mechanical insertion control tool on pressure trauma exposures during implantation. METHODS Human cadaveric heads were surgically prepared with an extended facial recess. Electrodes from three manufacturers were placed both by using a micro-mechanical control tool and by hand. Insertions were performed at three different rates: 0.2 mm/s, 1.2 mm/s, and 2 mm/s (n = 20 each). Fiber-optic sensors measured pressures in scala vestibuli and tympani. RESULTS Electrode insertion produced pressure transients up to 174 dB SPL. ANOVA revealed that pressures were significantly lower when using the micro-mechanical control device compared with insertion by hand (p << 0.001). No difference was noted across electrode type or speed. Chi-square analysis showed a significantly lower proportion of insertions contained pressure spikes when the control system was used (p << 0.001). CONCLUSION Results confirm previous data that suggest CI electrode insertion can cause pressure transients with intensities similar to those elicited by high-level sounds. Results suggest that the use of a micro-mechanical insertion control system may mitigate trauma from pressure events, both by reducing the amplitude and the number of pressure spikes resulting from CI electrode insertion.
Collapse
Affiliation(s)
- Renee M Banakis Hartl
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Christopher Kaufmann
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Marlan R Hansen
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Daniel J Tollin
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
34
|
Skarzynski H, Lorens A, Dziendziel B, Rajchel J, Matusiak M, Skarzynski P. Electro-Natural Stimulation in Partial Deafness Treatment of Adult Cochlear Implant Users: Long-Term Hearing Preservation Results. ORL J Otorhinolaryngol Relat Spec 2019; 81:63-72. [DOI: 10.1159/000497060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
35
|
Morse RP, Mitchell-Innes A, Prokopiou AN, Irving RM, Begg PA. Inappropriate Use of the "Rosowski Criteria" and "Modified Rosowski Criteria" for Assessing the Normal Function of Human Temporal Bones. Audiol Neurootol 2019; 24:20-24. [PMID: 30870837 DOI: 10.1159/000495131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/31/2018] [Indexed: 02/02/2023] Open
Abstract
Important research by Rosowski et al. [Twenty-Seventh Meeting of the Association for Research in Otolaryngology, 2004, p. 275] has led to a standard practice by the American Society for Testing Materials [West Conshohocken: ASTM International; 2014] to assess normal function of temporal bones used in the development of novel middle ear actuators and sensors. Rosowki et al. [Audiol Neurotol. 2007; 12(4): 265-76] have since suggested that the original criteria are too restrictive and have proposed modified criteria. We show that both the original and modified criteria are inappropriate for assessing individual temporal bones. Moreover, we suggest that both the original and modified Rosowski criteria should be applied with caution when assessing whether mean data from a study are within physiological norms because the multiple comparisons resulting from verification at each frequency will lead to very liberal rejection. The standard practice, however, has led to the collection of more extensive and consistent data. We suggest that it is now opportune to use these data to further modify the Rosowski criteria.
Collapse
Affiliation(s)
| | | | | | - Richard M Irving
- ENT Department, University Hospital Birmingham, Birmingham, United Kingdom.,Institute of Translational Medicine, Birmingham, United Kingdom
| | - Philip A Begg
- Institute of Translational Medicine, Birmingham, United Kingdom
| |
Collapse
|
36
|
Bilateral Cochlear Implants Using Two Electrode Lengths in Infants With Profound Deafness. Otol Neurotol 2019; 40:e267-e276. [PMID: 30741906 DOI: 10.1097/mao.0000000000002124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The goal of this investigation was to determine if a short electrode in one ear and standard electrode in the contralateral ear could be an option for infants with congenital profound deafness to theoretically preserve the structures of the inner ear. Similarities in performance between ears and compared with a control group of infants implanted with bilateral standard electrodes was evaluated. STUDY DESIGN Repeated-measure, single-subject experiment. SETTING University of Iowa-Department of Otolaryngology. PARTICIPANTS Nine infants with congenital profound bilateral sensorineural hearing loss. INTERVENTION(S) Short and standard implants. MAIN OUTCOME MEASURE(S) Early speech perception test (ESP), children's vowel, phonetically balanced-kindergarten (PB-K) word test, and preschool language scales-3 (PLS-3). RESULTS ESP scores showed performance reaching a ceiling effect for the individual short and standard ears and bilaterally. The children's vowel and PB-K word results indicated significant (both p < 0.001) differences between the two ears. Bilateral comparisons to age-matched children with standard bilateral electrodes showed no significant differences (p = 0.321) in performance. Global language performance for six children demonstrated standard scores around 1 standard deviation (SD) of the mean. Two children showed scores below the mean, but can be attributed to inconsistent device usage. Averaged total language scores between groups showed no difference in performance (p = 0.293). CONCLUSIONS The combined use of a short electrode and standard electrode might provide an option for implantation with the goal of preserving the cochlear anatomy. However, further studies are needed to understand why some children have or do not have symmetric performance.
Collapse
|
37
|
Abstract
OBJECTIVES Active middle ear implants (AMEI) have been used to treat hearing loss in patients for whom conventional hearing aids are unsuccessful for varied biologic or personal reasons. Several studies have discussed feedback as a potential complication of AMEI usage, though the feedback pathway is not well understood. While reverse propagation of an acoustic signal through the ossicular chain and tympanic membrane constitutes an air-conducted source of feedback, the implanted nature of the device microphone near the mastoid cortex suggests that bone conduction pathways may potentially be another significant factor. This study examines the relative contributions of potential sources of feedback during stimulation with an AMEI. DESIGN Four fresh-frozen, hemi-sectioned, human cadaver specimens were prepared with a mastoid antrostomy and atticotomy to visualize the posterior incus body. A Carina active middle ear implant actuator (Cochlear Ltd., Boulder, CO) was coupled to the incus by two means: (1) a stereotactic arm mounted independently of the specimen and (2) a fixation bracket anchored directly to the mastoid cortical bone. The actuator was driven with pure-tone frequencies in 1/4 octave steps from 500 to 6000 Hz. Acoustic sound intensity in the ear canal was measured with a probe tube microphone (Bruel & Kjær, Nærum, Denmark). Bone-conducted vibration was quantified with a single-axis laser Doppler vibrometer (Polytec Inc., Irvine, CA) from both a piece of reflective tape placed on the skin overlying the mastoid and a bone-anchored titanium screw and pedestal (Cochlear Ltd., Centennial, CO) implanted in the cortical mastoid bone. RESULTS Microphone measurements revealed ear-canal pressures of 60-89 dB SPL, peaking in the frequency range below 2 kHz. Peak LDV measurements were greatest on the mastoid bone (0.32-0.79 mm/s with mounting bracket and 0.21-0.36 mm/s with the stereotactic suspension); peak measurements on the skin ranged from 0.05 to 0.15 mm/s with the bracket and 0.03 to 0.13 mm/s with stereotactic suspension. CONCLUSION AMEI produce both air- and bone-conducted signals of adequate strength to be detected by the implanted device microphone, potentially resulting in reamplification. Understanding the relative contribution of these sources may play an important role in the development of targeted mitigation algorithms, as well as surgical techniques emphasizing acoustic isolation.
Collapse
|
38
|
Peacock J, Al Hussaini M, Greene NT, Tollin DJ. Intracochlear pressure in response to high intensity, low frequency sounds in chinchilla. Hear Res 2018; 367:213-222. [DOI: 10.1016/j.heares.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
|
39
|
Gottlieb PK, Vaisbuch Y, Puria S. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3418. [PMID: 29960477 PMCID: PMC5991968 DOI: 10.1121/1.5039845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 05/23/2023]
Abstract
The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.
Collapse
Affiliation(s)
- Peter K Gottlieb
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California 94305, USA
| | - Sunil Puria
- Department of Otolaryngology, Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
40
|
Abstract
Drug delivery to the inner ear is an ideal method to treat a wide variety of otologic conditions. A broad range of potential applications is just beginning to be explored. New approaches combine principles of inner ear pharmacokinetics with emerging technologies of drug delivery including novel delivery systems, drug-device combinations, and new categories of drugs. Strategies include cell-specific targeting, manipulation of gene expression, local activation following systemic delivery, and use of stem cells, viral vectors, and gene editing systems. Translation of these therapies to the clinic remains challenging given the potential risks of intracochlear and intralabyrinthine trauma, our limited understanding of the etiologies of particular inner ear disorders, and paucity of accurate diagnostic tools at the cellular level. This review provides an overview of future methods, delivery systems, disease targets, and clinical considerations required for translation to clinical medicine.
Collapse
|
41
|
Drill-induced Cochlear Injury During Otologic Surgery: Intracochlear Pressure Evidence of Acoustic Trauma. Otol Neurotol 2018; 38:938-947. [PMID: 28598950 DOI: 10.1097/mao.0000000000001474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Drilling on the incus produces intracochlear pressure changes comparable to pressures created by high-intensity acoustic stimuli. BACKGROUND New-onset sensorineural hearing loss (SNHL) following mastoid surgery can occur secondary to inadvertent drilling on the ossicular chain. To investigate this, we test the hypothesis that high sound pressure levels are generated when a high-speed drill contacts the incus. METHODS Human cadaveric heads underwent mastoidectomy, and fiber-optic sensors were placed in scala tympani and vestibuli to measure intracochlear pressures (PIC). Stapes velocities (Vstap) were measured using single-axis laser Doppler vibrometry. PIC and Vstap were measured while drilling on the incus. Four-millimeter diamond and cutting burrs were used at drill speeds of 20k, 50k, and 80k Hz. RESULTS No differences in peak equivalent ear canal noise exposures (134-165 dB SPL) were seen between drill speeds or burr types. Root-mean-square PIC amplitude calculated in third-octave bandwidths around 0.5, 1, 2, 4, and 8 kHz revealed equivalent ear canal (EAC) pressures up to 110 to 112 dB SPL. A statistically significant trend toward increasing noise exposure with decreasing drill speed was seen. No significant differences were noted between burr types. Calculations of equivalent EAC pressure from Vstap were significantly higher at 101 to 116 dB SPL. CONCLUSION Our results suggest that incidental drilling on the ossicular chain can generate PIC comparable to high-intensity acoustic stimulation. Drill speed, but not burr type, significantly affected the magnitude of PIC. Inadvertent drilling on the ossicular chain produces intense cochlear stimulation that could cause SNHL.
Collapse
|
42
|
Maxwell AK, Banakis Hartl RM, Greene NT, Benichoux V, Mattingly JK, Cass SP, Tollin DJ. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation. Otol Neurotol 2017; 38:1043-1051. [PMID: 28570420 PMCID: PMC6561339 DOI: 10.1097/mao.0000000000001456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. BACKGROUND High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. METHODS Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. RESULTS Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. CONCLUSION High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.
Collapse
Affiliation(s)
| | | | - Nathaniel T. Greene
- 2. Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Victor Benichoux
- 2. Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | - Daniel J. Tollin
- 1. Department of Otolaryngology
- 2. Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|