1
|
Berg KA, DeFreese AJ, Sisler-Dinwiddie AL, Labadie RF, Tawfik KO, Gifford RH. Clinical Applications for Spread of Excitation Functions Obtained Via Electrically Evoked Compound Action Potentials (eCAP). Otol Neurotol 2024; 45:790-797. [PMID: 38923968 DOI: 10.1097/mao.0000000000004242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To assess the clinical utility of spread of excitation (SOE) functions obtained via electrically evoked compound action potentials (eCAP) to 1) identify electrode array tip fold-over, 2) predict electrode placement factors confirmed via postoperative computed tomography (CT) imaging, and 3) predict postoperative speech recognition through the first year post-activation in a large clinical sample. STUDY DESIGN Retrospective case review. SETTING Cochlear implant (CI) program at a tertiary medical center. PATIENTS Two hundred seventy-two ears (238 patients) with Cochlear Ltd. CIs (mean age = 46 yr, range = 9 mo-93 yr, 50% female) implanted between August 2014 and December 2022 were included. MAIN OUTCOME MEASURES eCAP SOE widths (mm) (probe electrodes 5, 11, and 17), incidence of electrode tip fold-over, CT imaging data (electrode-to-modiolus distance, angular insertion depth, scalar location), and speech recognition outcomes (consonant-nucleus-consonant [CNC], AzBio quiet, and +5 dB SNR) through the first year after CI activation. RESULTS 1) eCAP SOE demonstrated a sensitivity of 85.7% for identifying tip fold-over instances that were confirmed by CT imaging. In the current dataset, the tip fold-over incidence rate was 3.1% (7 patients), with all instances involving a precurved electrode array. 2) There was a significant positive relationship between eCAP SOE and mean electrode-to-modiolus distance for precurved arrays, and a significant positive relationship between eCAP SOE and angular insertion depth for straight arrays. No relationships between eCAP SOE and scalar location or cochlea diameter were found in this sample. 3) There were no significant relationships between eCAP SOE and speech recognition outcomes for any measure or time point, except for a weak negative correlation between average eCAP SOE widths and CNC word scores at 6 months post-activation for precurved arrays. CONCLUSIONS In the absence of intraoperative CT or fluoroscopic imaging, eCAP SOE is a reasonable alternative method for identifying electrode array tip fold-over and should be routinely measured intraoperatively, especially for precurved electrode arrays with a sheath.
Collapse
Affiliation(s)
- Katelyn A Berg
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrea J DeFreese
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Du H, Li J, Chen Z, Gao Y, Yang X, Yuan S, Wang Q, Guo W, Chen W, Dai P, Yang S. Changes in hearing function and intracochlear morphology after electrode array insertion in minipigs. Acta Otolaryngol 2024; 144:159-167. [PMID: 38742731 DOI: 10.1080/00016489.2024.2341122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown. OBJECTIVES To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion. MATERIAL AND METHODS Twelve minipigs were selected for electrode array insertion (EAI) and the Control. Hearing tests were performed preoperatively and on 0, 7, 14, and 28 day(s) postoperatively, and cochlear histopathology was performed after the hearing tests on 7, 14, and 28 days after surgery. RESULTS Electrode array insertion had a significant effect for the frequency range tested (1 kHz-20kHz). Exudation was evident one week after electrode array insertion; at four weeks postoperatively, a fibrous sheath formed around the electrode. At each time point, the endolymphatic hydrops was found; no significant changes in the morphology and packing density of the spiral ganglion neurons were observed. CONCLUSIONS AND SIGNIFICANCE The effect of electrode array insertion on hearing and intracochlear fibrosis was significant. The process of fibrosis and endolymphatic hydrops seemed to not correlate with the degree of hearing loss, nor did it affect spiral ganglion neuron integrity in the 4-week postoperative period.
Collapse
Affiliation(s)
- Haiqiao Du
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Jianan Li
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Zhifeng Chen
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Yun Gao
- Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Yang
- Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shuolong Yuan
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qian Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiwei Guo
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei Chen
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Pu Dai
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shiming Yang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
3
|
Oh H, Kim Y, Lee SJ, Carandang M, Song JJ, Choi BY. Two Discrete Types of Tip Fold-Over in Cochlear Implantation Using Slim Modiolar Electrodes: Influence of Cochlear Duct Length on Tip Fold-Over. Otol Neurotol 2023; 44:1011-1014. [PMID: 37733985 DOI: 10.1097/mao.0000000000004022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
OBJECTIVE Precise electrode positioning is crucial for achieving optimal audiological outcomes in cochlear implantation. The slim modiolar electrode (SME), a thin, flexible, and precurved electrode, exhibits favorable modiolar proximity. However, tip fold-over can affect optimal electrode placement. Herein, we share our experiences with tip fold-over in SMEs and present an analysis of conditions that may predispose to tip fold-over. STUDY DESIGN Retrospective medical record review. PATIENTS In total, 475 patients (671 ears) underwent cochlear implantation using SMEs (Nucleus CI532 or CI632 from Cochlear) performed by a single surgeon at a tertiary center between June 14, 2018, and December 1, 2022. INTERVENTIONS Intraoperative x-ray scans (cochlear view), operative records, and cochlear duct length (CDL) were reviewed. MAIN OUTCOME MEASURES Tip fold-over patterns on plain x-ray images (proximal versus distal). RESULTS Electrode tip fold-over was observed in 18 (2.7%) of the 671 ears with SMEs. This fold-over occurred more frequently in cases with long CDL (>36 mm). Among the 14 cases with available initial x-rays before correction of the tip fold-over, half were classified as proximal and the other half as distal. A predilection for proximal tip fold-over was found in those with a CDL of 36 mm or longer, and longer CDLs were observed for proximal cases than for distal cases. Our pilot data suggest that identifying the type of tip fold-over can aid in correcting it more efficiently. CONCLUSIONS Tip fold-over of SME does not occur uniformly and is more common in ears with long CDL. This tendency is particularly pronounced for the proximal type of tip fold-over. Therefore, preoperative measurement of the CDL and meticulous examination of intraoperative imaging are essential for customized correction.
Collapse
Affiliation(s)
- Heonjeong Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung Jae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Marge Carandang
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Otorhinolaryngology-Head and Neck Surgery, Tondo Medical Center, Metro Manila, Philippines
| | | | | |
Collapse
|
4
|
Ishiyama P, Ishiyama G, Lopez IA, Ishiyama A. Archival Human Temporal Bone: Anatomical and Histopathological Studies of Cochlear Implantation. J Pers Med 2023; 13:352. [PMID: 36836587 PMCID: PMC9959196 DOI: 10.3390/jpm13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Since being FDA approved in 1984, cochlear implantation has been used successfully to restore hearing in those with severe to profound hearing loss with broader applications including single-sided deafness, the use of hybrid electroacoustic stimulation, and implantation at all extremes of age. Cochlear implants have undergone multiple changes in the design aimed at improving the processing technology, while simultaneously minimizing the surgical trauma and foreign body reaction. The following review examines the human temporal bone studies regarding the anatomy of the human cochlea and how the anatomy relates to cochlear implant design, the factors related to complications after implantation, and the predictors of new tissue formation and osteoneogenesis. Histopathological studies are reviewed which aim to understand the potential implications of the effects of new tissue formation and inflammation following implantation.
Collapse
Affiliation(s)
- Paul Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ivan A. Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
6
|
Leblans M, Zarowski A, Molisz A, van Dinther J, Dedeyne J, Lerut B, Kuhweide R, Offeciers E. Cochlear implant electrode array tip-foldover detection by electrode voltage telemetry. Cochlear Implants Int 2022:1-12. [DOI: 10.1080/14670100.2022.2148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Marc Leblans
- European Institute for ORL, GZA Sint-Augustinus, Antwerp, Belgium
| | - Andrzej Zarowski
- European Institute for ORL, GZA Sint-Augustinus, Antwerp, Belgium
| | - Andrzej Molisz
- Department of Family Medicine, Medical University of Gdansk, Gdańsk, Poland
| | | | - Janne Dedeyne
- ENT Department, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium
| | - Bob Lerut
- ENT Department, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium
| | - Rudolf Kuhweide
- ENT Department, AZ Sint-Jan Brugge-Oostende, Brugge, Belgium
| | - Erwin Offeciers
- European Institute for ORL, GZA Sint-Augustinus, Antwerp, Belgium
| |
Collapse
|
7
|
Starovoyt A, Quirk BC, Putzeys T, Kerckhofs G, Nuyts J, Wouters J, McLaughlin RA, Verhaert N. An optically-guided cochlear implant sheath for real-time monitoring of electrode insertion into the human cochlea. Sci Rep 2022; 12:19234. [PMID: 36357503 PMCID: PMC9649659 DOI: 10.1038/s41598-022-23653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
In cochlear implant surgery, insertion of perimodiolar electrode arrays into the scala tympani can be complicated by trauma or even accidental translocation of the electrode array within the cochlea. In patients with partial hearing loss, cochlear trauma can not only negatively affect implant performance, but also reduce residual hearing function. These events have been related to suboptimal positioning of the cochlear implant electrode array with respect to critical cochlear walls of the scala tympani (modiolar wall, osseous spiral lamina and basilar membrane). Currently, the position of the electrode array in relation to these walls cannot be assessed during the insertion and the surgeon depends on tactile feedback, which is unreliable and often comes too late. This study presents an image-guided cochlear implant device with an integrated, fiber-optic imaging probe that provides real-time feedback using optical coherence tomography during insertion into the human cochlea. This novel device enables the surgeon to accurately detect and identify the cochlear walls ahead and to adjust the insertion trajectory, avoiding collision and trauma. The functionality of this prototype has been demonstrated in a series of insertion experiments, conducted by experienced cochlear implant surgeons on fresh-frozen human cadaveric cochleae.
Collapse
Affiliation(s)
- Anastasiya Starovoyt
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Bryden C. Quirk
- grid.1010.00000 0004 1936 7304Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Tristan Putzeys
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3000 Leuven, Belgium
| | - Greet Kerckhofs
- grid.7942.80000 0001 2294 713XBiomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-La-Neuve, Belgium ,grid.5596.f0000 0001 0668 7884Department of Materials Science and Engineering, KU Leuven, 3000 Leuven, Belgium ,grid.7942.80000 0001 2294 713XInstitute of Experimental and Clinical Research, UCLouvain, 1200 Woluwé-Saint-Lambert, Belgium ,grid.5596.f0000 0001 0668 7884Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Johan Nuyts
- grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, 3000 Leuven, Belgium ,Nuclear Medicine and Molecular Imaging, Medical Imaging Research Center, 3000 Leuven, Belgium
| | - Jan Wouters
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Robert A. McLaughlin
- grid.1010.00000 0004 1936 7304Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.1012.20000 0004 1936 7910School of Engineering, University of Western Australia, Perth, WA 6009 Australia
| | - Nicolas Verhaert
- grid.5596.f0000 0001 0668 7884Department of Neurosciences, ExpORL, KU Leuven, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Intracochlear New Fibro-Ossification and Neuronal Degeneration Following Cochlear Implant Electrode Translocation: Long-Term Histopathological Findings in Humans. Otol Neurotol 2022; 43:e153-e164. [PMID: 35015749 DOI: 10.1097/mao.0000000000003402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We aim to assess the histopathology of human temporal bones (TBs) with evidence of cochlear implantation (CI) electrode scalar translocation. STUDY DESIGN Otopathology study. SETTING Otopathology laboratory. PATIENTS TBs from patients who had a history of CI and histopathological evidence of interscalar translocation. Specimens with electrode placed entirely within the ST served as controls. INTERVENTION Histopathological assessment of human TBs. MAIN OUTCOME MEASURES TBs from each patient were harvested postmortem and histologically analyzed for intracochlear changes in the context of CI electrode translocation and compared to controls. Intracochlear new fibro-ossification, and spiral ganglion neuron (SGN) counts were assessed. Postoperative word recognition scores (WRS) were also compared. RESULTS Nineteen human TBs with electrode translocation and eight controls were identified. The most common site of translocation was the ascending limb of the basal turn (n = 14 TBs). The average angle of insertion at the point of translocation was 159° ± 79°. Eighteen translocated cases presented moderate fibroosseous changes in the basal region of the cochlea, extending to the translocation point and/or throughout the electrode track in 42%. Lower SGN counts were more pronounced in translocated cases compared to controls, with a significant difference for segment II (p = 0.019). Although final postoperative hearing outcomes were similar between groups, translocated cases had slower rate of improvement in WRS (p = 0.021). CONCLUSIONS Cochlear implant electrode translocation was associated with greater fibroosseous formation and lower SGN population. Our findings suggest that scalar translocations may slow the rate of improvement in WRS overtime as compared to atraumatic electrode insertions.Level of evidence: IV.
Collapse
|
9
|
Transimpedance Matrix Measurements Reliably Detect Electrode Tip Fold-over in Cochlear Implantation. Otol Neurotol 2021; 42:e1494-e1502. [PMID: 34766947 DOI: 10.1097/mao.0000000000003334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE During cochlear implantation, electrophysiological tests are performed to document safe technical functioning of implant and electrodes. In rare cases, the apical part of the electrode folds over during insertion. The data from transimpedance matrix (TIM) measurements enable the generation of a heat map or TIM profile measuring the spatial distribution of voltage. The aim of this study was to determine the accuracy of heat-map TIM profiles and compare them with spread of excitation (SOE) measurements and intraoperative imaging for prediction of electrode malposition. STUDY DESIGN Non-randomized study. SETTING Tertiary referral center. PATIENTS AND INTERVENTIONS One hundred patients who underwent cochlear implantation with completed TIM measurements, SOE data and perioperative imaging met the inclusion criteria and were enrolled. MAIN OUTCOME MEASURE The electrophysiological data on the electrode array positioning was compared with temporal bone imaging. RESULTS In seven cases, TIM measurements showed irregular results. In two cases, irregular TIM profiles were registered, but SOE data and 3D x-ray of the temporal bone didn't display deviated electrode positioning. A 3D x-ray of the skull displayed electrode tip fold-over in four cases and electrode buckling in one case. Sensitivity of TIM measurements and SOE data was 100%, specificity of TIM measurements was 97.89%, and specificity of SOE data was 98.93%. CONCLUSION Out of 100 patients using TIM measurements for detection of electrode malpositioning, no false negative cases were detected. TIM measurements successfully detect electrode malposition in an intraoperative setting. Different heat map patterns may be observed depending on location and type of malposition.
Collapse
|
10
|
The Distribution and Prevalence of Macrophages in the Cochlea Following Cochlear Implantation in the Human: An Immunohistochemical Study Using Anti-Iba1 Antibody. Otol Neurotol 2021; 41:e304-e316. [PMID: 31821256 DOI: 10.1097/mao.0000000000002495] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Cochlear implantation may cause an increase in the number of macrophages in the human cochlea similar to previous findings in the vestibular endorgans. BACKGROUND Macrophages play a key role in both an inflammatory response and homeostatic maintenance. Recently, an increase in the prevalence of macrophages was demonstrated in the human vestibular endorgans after implantation. However, the prevalence of macrophages in the cochlea after implantation is unclear. The aim of this study was to compare the distribution and prevalence of macrophages in implanted human cochleae and the contralateral unimplanted ears. METHODS The prevalence of macrophages in the cochlea in 10 human subjects who had undergone unilateral cochlear implantation was studied by light microscopy using anti-Iba1 immunostaining. The densities of macrophages in the osseous spiral lamina (OSL) and Rosenthal's canal (RC) in implanted cochleae were compared with the contralateral unimplanted ears. The distribution of macrophage morphology (amoeboid, transitional, and ramified) was also compared. RESULTS There were activated and phagocytosing macrophages within the fibrotic sheath surrounding the electrode track and within fibrous tissue with lymphocytic infiltration in implanted ears. The densities of macrophages in OSL and RC in implanted ears were significantly greater than in unimplanted ears in some areas. There was also a difference in the prevalence of macrophage phenotype between the OSL and RC. CONCLUSION An increase in the density of macrophages in the cochlea after cochlear implantation was demonstrated. Both phagocytosis and anti-inflammatory activity of macrophages were suggested by the distribution and prevalence of macrophages in the implanted cochlea.
Collapse
|
11
|
Electrophysiological detection of electrode fold-over in perimodiolar cochlear implant electrode arrays: a multi-center study case series. Eur Arch Otorhinolaryngol 2019; 277:31-35. [PMID: 31552525 DOI: 10.1007/s00405-019-05653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE It is important for the surgeon to determine the position of the CI electrode array during and after its placement within the cochlea. Most preferably, this should be within the scala tympani to obtain the best audiological outcome. Thus, misplacement into the scala vestibuli or tip fold-over should be prevented. Since there are different ways to ensure proper positioning of the electrode array within the scala tympani (e.g., intraoperative radiography, electrophysiological recordings), our study was aimed at detecting intraoperative electrophysiologic characteristics to better understand the mechanisms of those electrode tip fold-overs. MATERIAL AND METHODS In a multi-centric, retrospective case-control series, patients with a postoperatively by radiography detected tip fold-over in perimodiolar electrodes were included. The point of fold-over (i.e., the electrode position) was determined and the intraoperative Auto-NRT recordings were analysed and evaluated. RESULTS Four patients were found to have an electrode tip fold-over (out of 85 implantees). Significant changes of the Auto-NRT recordings were not detected. All tip fold-overs occurred in the most apical part of the electrodes. DISCUSSION Cochlear implantation for hearing impaired patients plays a decisive role in modern auditory rehabilitation. Perimodiolar electrode arrays may fold over during the insertion and, hence, could have a negative impact on audiological outcome. Characteristic electrophysiologic changes to possibly predict this were not found in our series.
Collapse
|
12
|
Trakimas DR, Ishai R, Kozin ED, Nadol JB, Remenschneider AK. Human Otopathology of Cochlear Implant Drill-out Procedures. Otolaryngol Head Neck Surg 2019; 161:658-665. [PMID: 31060442 DOI: 10.1177/0194599819847636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Human otopathology following drill-out procedures for cochlear implantation (CI) in cases with labyrinthitis ossificans (LO) has not been previously described. This study uses the high sensitivity of histopathology to (1) evaluate surgical drill-out technique with associated intracochlear findings and (2) quantify spiral ganglion neuron populations in a series of patients with LO who underwent CI. STUDY DESIGN Retrospective otopathology study. SETTING Otopathology laboratory. SUBJECTS AND METHODS Temporal bone (TB) specimens from cases with evidence of preoperative intracochlear fibroossification that required a drill-out procedure for CI electrode array insertion were included. All cases were histopathologically evaluated and 3-dimensional reconstructions of the cochleae were performed to interpret drilling paths and electrode trajectories. RESULTS Five TB specimens were identified, of which 4 underwent drill-out of the basal turn of the cochlea and 1 underwent a radical cochlear drill-out. In multiple TBs, drilling was imprecise with resultant damage to essential structures. Two TBs showed injury to the modiolus, which was associated with substantially decreased or even absent neuronal populations within these areas. In addition, 2 cases with inadequate drill-out or extensive LO of the basal turn resulted in extracochlear placement of electrode arrays into the vestibule due to persistent obstruction within the basal turn. CONCLUSION Otopathology highlights the challenges of drill-out procedures in cases of LO. Imprecise drilling paths, due to distortion of normal cochlear anatomy, risk injury to the modiolus and adjacent neurons as well as extracochlear placement of electrode arrays, both of which may contribute to poorer hearing outcomes.
Collapse
Affiliation(s)
- Danielle R Trakimas
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Otolaryngology, UMass Memorial Medical Center, Worcester, Massachusetts, USA
| | - Reuven Ishai
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Elliott D Kozin
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph B Nadol
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron K Remenschneider
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA.,University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Otolaryngology, UMass Memorial Medical Center, Worcester, Massachusetts, USA
| |
Collapse
|
13
|
Ajduk J, Matovinović F, Ries M, Košec A. A Case Report of Delayed Onset Spontaneous Hematoma, Pain, and Temporal Bone Neo-Ossification 16 Years After Cochlear Implantation. EAR, NOSE & THROAT JOURNAL 2019; 99:27-29. [PMID: 30803268 DOI: 10.1177/0145561319826057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jakov Ajduk
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Filip Matovinović
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Mihael Ries
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andro Košec
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| |
Collapse
|
14
|
Dhanasingh A, Jolly C. Review on cochlear implant electrode array tip fold-over and scalar deviation. J Otol 2019; 14:94-100. [PMID: 31467506 PMCID: PMC6712287 DOI: 10.1016/j.joto.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Determine the occurrence rate of cochlear implant (CI) electrode tip fold-over and electrode scalar deviation as reported in patient cases with different commercial electrode types. Data-sources PubMed search for identifying peer-reviewed articles published till 2018 on CI electrode tip fold-over and scalar deviation. Key-words for searching were “Cochlear electrode tip fold-over”, “Cochlear electrode scalar position” and “Cochlear electrode scalar location”. Articles-selection Only if electrode related issues were investigated in patient cases. 38 articles met the inclusion-criteria. Results 13 articles on electrode tip fold-over issue covering 3177 implanted ears, out of which 50 ears were identified with electrode tip fold-over with an occurrence rate of 1.57%. Out of 50 ears, 43 were implanted with pre-curved electrodes and the remaining 7 with lateral-wall electrodes. One article reported on both tip fold-over and scalar deviation. 26 articles reported on the electrode scalar deviation covering an overall number of 2046 ears out of which, 458 were identified with electrode scalar deviation at a rate of 22.38%. After removing the studies that did not report on the number of electrodes per electrode type, it was 1324 ears implanted with pre-curved electrode and 507 ears with lateral-wall electrode. Out of 1324 pre-curved electrode implanted ears, 424 were reported with scalar deviation making an occurrence rate of 32%. Out of 507 lateral-wall electrode implanted ears, 43 were associated with scalar deviation at an occurrence rate of 6.7%. Conclusion This literature review revealing the fact of higher rate of electrode insertion trauma associated with pre-curved electrode type irrespective of CI brand is one step closer to obsolete it from the clinical practice in the interest of patient's cochlear health.
Collapse
Affiliation(s)
| | - Claude Jolly
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| |
Collapse
|