1
|
Waring NA, Chern A, Vilarello BJ, Cheng YS, Zhou C, Lang JH, Olson ES, Nakajima HH. Hampshire Sheep as a Large-Animal Model for Cochlear Implantation. J Assoc Res Otolaryngol 2024; 25:277-284. [PMID: 38622382 PMCID: PMC11150341 DOI: 10.1007/s10162-024-00946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Sheep have been proposed as a large-animal model for studying cochlear implantation. However, prior sheep studies report that the facial nerve (FN) obscures the round window membrane (RWM), requiring FN sacrifice or a retrofacial opening to access the middle-ear cavity posterior to the FN for cochlear implantation. We investigated surgical access to the RWM in Hampshire sheep compared to Suffolk-Dorset sheep and the feasibility of Hampshire sheep for cochlear implantation via a facial recess approach. METHODS Sixteen temporal bones from cadaveric sheep heads (ten Hampshire and six Suffolk-Dorset) were dissected to gain surgical access to the RWM via an extended facial recess approach. RWM visibility was graded using St. Thomas' Hospital (STH) classification. Cochlear implant (CI) electrode array insertion was performed in two Hampshire specimens. Micro-CT scans were obtained for each temporal bone, with confirmation of appropriate electrode array placement and segmentation of the inner ear structures. RESULTS Visibility of the RWM on average was 83% in Hampshire specimens and 59% in Suffolk-Dorset specimens (p = 0.0262). Hampshire RWM visibility was Type I (100% visibility) for three specimens and Type IIa (> 50% visibility) for seven specimens. Suffolk-Dorset RWM visibility was Type IIa for four specimens and Type IIb (< 50% visibility) for two specimens. FN appeared to course more anterolaterally in Suffolk-Dorset specimens. Micro-CT confirmed appropriate CI electrode array placement in the scala tympani without apparent basilar membrane rupture. CONCLUSIONS Hampshire sheep appear to be a suitable large-animal model for CI electrode insertion via an extended facial recess approach without sacrificing the FN. In this small sample, Hampshire specimens had improved RWM visibility compared to Suffolk-Dorset. Thus, Hampshire sheep may be superior to other breeds for ease of cochlear implantation, with FN and facial recess anatomy more similar to humans.
Collapse
Affiliation(s)
- Nicholas A Waring
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Chern
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Brandon J Vilarello
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Yew Song Cheng
- Department of Otolaryngology-Head & Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chaoqun Zhou
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Jeffrey H Lang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth S Olson
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | | |
Collapse
|
2
|
Moatti A, Connard S, De Britto N, Dunn WA, Rastogi S, Rai M, Schnabel LV, Ligler FS, Hutson KA, Fitzpatrick DC, Salt A, Zdanski CJ, Greenbaum A. Surgical procedure of intratympanic injection and inner ear pharmacokinetics simulation in domestic pigs. Front Pharmacol 2024; 15:1348172. [PMID: 38344174 PMCID: PMC10853450 DOI: 10.3389/fphar.2024.1348172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction: One major obstacle in validating drugs for the treatment or prevention of hearing loss is the limited data available on the distribution and concentration of drugs in the human inner ear. Although small animal models offer some insights into inner ear pharmacokinetics, their smaller organ size and different barrier (round window membrane) permeabilities compared to humans can complicate study interpretation. Therefore, developing a reliable large animal model for inner ear drug delivery is crucial. The inner and middle ear anatomy of domestic pigs closely resembles that of humans, making them promising candidates for studying inner ear pharmacokinetics. However, unlike humans, the anatomical orientation and tortuosity of the porcine external ear canal frustrates local drug delivery to the inner ear. Methods: In this study, we developed a surgical technique to access the tympanic membrane of pigs. To assess hearing pre- and post-surgery, auditory brainstem responses to click and pure tones were measured. Additionally, we performed 3D segmentation of the porcine inner ear images and used this data to simulate the diffusion of dexamethasone within the inner ear through fluid simulation software (FluidSim). Results: We have successfully delivered dexamethasone and dexamethasone sodium phosphate to the porcine inner ear via the intratympanic injection. The recorded auditory brainstem measurements revealed no adverse effects on hearing thresholds attributable to the surgery. We have also simulated the diffusion rates for dexamethasone and dexamethasone sodium phosphate into the porcine inner ear and confirmed the accuracy of the simulations using in-vivo data. Discussion: We have developed and characterized a method for conducting pharmacokinetic studies of the inner ear using pigs. This animal model closely mirrors the size of the human cochlea and the thickness of its barriers. The diffusion time and drug concentrations we reported align closely with the limited data available from human studies. Therefore, we have demonstrated the potential of using pigs as a large animal model for studying inner ear pharmacokinetics.
Collapse
Affiliation(s)
- Adele Moatti
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Shannon Connard
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Novietta De Britto
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - William A. Dunn
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Srishti Rastogi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
| | - Mani Rai
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Lauren V. Schnabel
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Frances S. Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Kendall A. Hutson
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alec Salt
- Tuner Scientific, Jacksonville, IL, United States
| | - Carlton J. Zdanski
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Lue PY, Oliver MH, Neeff M, Thorne PR, Suzuki-Kerr H. Sheep as a large animal model for hearing research: comparison to common laboratory animals and humans. Lab Anim Res 2023; 39:31. [PMID: 38012676 PMCID: PMC10680324 DOI: 10.1186/s42826-023-00182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Sensorineural hearing loss (SNHL), caused by pathology in the cochlea, is the most common type of hearing loss in humans. It is generally irreversible with very few effective pharmacological treatments available to prevent the degenerative changes or minimise the impact. Part of this has been attributed to difficulty of translating "proof-of-concept" for novel treatments established in small animal models to human therapies. There is an increasing interest in the use of sheep as a large animal model. In this article, we review the small and large animal models used in pre-clinical hearing research such as mice, rats, chinchilla, guinea pig, rabbit, cat, monkey, dog, pig, and sheep to humans, and compare the physiology, inner ear anatomy, and some of their use as model systems for SNHL, including cochlear implantation surgeries. Sheep have similar cochlear anatomy, auditory threshold, neonatal auditory system development, adult and infant body size, and number of birth as humans. Based on these comparisons, we suggest that sheep are well-suited as a potential translational animal model that bridges the gap between rodent model research to the clinical use in humans. This is especially in areas looking at changes across the life-course or in specific areas of experimental investigation such as cochlear implantation and other surgical procedures, biomedical device development and age-related sensorineural hearing loss research. Combined use of small animals for research that require higher throughput and genetic modification and large animals for medical translation could greatly accelerate the overall translation of basic research in the field of auditory neuroscience from bench to clinic.
Collapse
Affiliation(s)
- Po-Yi Lue
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Mark H Oliver
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Ngapouri Research Farm Laboratory, University of Auckland, Waiotapu, New Zealand
| | - Michel Neeff
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Waring NA, Chern A, Vilarello BJ, Lang JH, Olson ES, Nakajima HH. Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach. J Assoc Res Otolaryngol 2023; 24:487-497. [PMID: 37684421 PMCID: PMC10695901 DOI: 10.1007/s10162-023-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/17/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep. METHODS Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured. RESULTS Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm. CONCLUSION We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.
Collapse
Affiliation(s)
- Nicholas A Waring
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, NY, New York, USA
| | - Alexander Chern
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, NY, New York, USA
| | - Brandon J Vilarello
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, NY, New York, USA
| | - Jeffrey H Lang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth S Olson
- Department of Otolaryngology-Head & Neck Surgery, NewYork-Presbyterian/Columbia University Irving Medical Center, NY, New York, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Hideko Heidi Nakajima
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Yildiz E, Gadenstaetter AJ, Gerlitz M, Landegger LD, Liepins R, Nieratschker M, Glueckert R, Staecker H, Honeder C, Arnoldner C. Investigation of inner ear drug delivery with a cochlear catheter in piglets as a representative model for human cochlear pharmacokinetics. Front Pharmacol 2023; 14:1062379. [PMID: 36969846 PMCID: PMC10034346 DOI: 10.3389/fphar.2023.1062379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Hearing impairment is the most common sensory disorder in humans, and yet hardly any medications are licensed for the treatment of inner ear pathologies. Intricate pharmacokinetic examinations to better understand drug distribution within this complex organ could facilitate the development of novel therapeutics. For such translational research projects, animal models are indispensable, but differences in inner ear dimensions and other anatomical features complicate the transfer of experimental results to the clinic. The gap between rodents and humans may be bridged using larger animal models such as non-human primates. However, their use is challenging and impeded by administrative, regulatory, and financial hurdles. Other large animal models with more human-like inner ear dimensions are scarce. In this study, we analyzed the inner ears of piglets as a potential representative model for the human inner ear and established a surgical approach for intracochlear drug application and subsequent apical sampling. Further, controlled intracochlear delivery of fluorescein isothiocyanate-dextran (FITC-d) was carried out after the insertion of a novel, clinically applicable CE-marked cochlear catheter through the round window membrane. Two, six, and 24 hours after a single injection with this device, the intracochlear FITC-d distribution was determined in sequential perilymph samples. The fluorometrically assessed concentrations two hours after injection were compared to the FITC-d content in control groups, which either had been injected with a simple needle puncture through the round window membrane or the cochlear catheter in combination with a stapes vent hole. Our findings demonstrate not only significantly increased apical FITC-d concentrations when using the cochlear catheter but also higher total concentrations in all perilymph samples. Additionally, the concentration decreased after six and 24 hours and showed a more homogenous distribution compared to shorter observation times.
Collapse
Affiliation(s)
- Erdem Yildiz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Anselm J. Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Matthias Gerlitz
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas D. Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Rudolfs Liepins
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael Nieratschker
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas, KS, United States
| | - Clemens Honeder
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- *Correspondence: Christoph Arnoldner,
| |
Collapse
|
6
|
Claussen AD, Quevedo RV, Kirk JR, Higgins T, Mostaert B, Rahman MT, Oleson J, Hernandez R, Hirose K, Hansen MR. Chronic cochlear implantation with and without electric stimulation in a mouse model induces robust cochlear influx of CX3CR1 +/GFP macrophages. Hear Res 2022; 426:108510. [PMID: 35527124 PMCID: PMC9596618 DOI: 10.1016/j.heares.2022.108510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cochlear implantation is an effective auditory rehabilitation strategy for those with profound hearing loss, including those with residual low frequency hearing through use of hybrid cochlear implantation techniques. Post-mortem studies demonstrate the nearly ubiquitous presence of intracochlear fibrosis and neo-ossification following cochlear implantation. Current evidence suggests post-implantation intracochlear fibrosis is associated with delayed loss of residual acoustic hearing in hybrid cochlear implant (CI) recipients and may also negatively influence outcomes in traditional CI recipients. This study examined the contributions of surgical trauma, foreign body response and electric stimulation to intracochlear fibrosis and the innate immune response to cochlear implantation and the hierarchy of these contributions. METHODS Normal hearing CX3CR1+/GFP mice underwent either round window opening (sham), acute CI insertion or chronic CI insertion with no, low- or high-level electric stimulation. Electric stimulation levels were based on neural response telemetry (NRT), beginning post-operative day 7 for 5 h per day. Subjects (n=3 per timepoint) were sacrificed at 4 h, 1,4,7,8,11,14 and 21 days. An unoperated group (n=3) served as controls. Cochleae were harvested at each time-point and prepared for immunohistochemistry with confocal imaging. The images were analyzed to obtain CX3CR1+ macrophage cell number and density in the lateral wall (LW), scala tympani (ST) and Rosenthal's canal (RC). RESULTS A ST peri-implant cellular infiltrate and fibrosis occurred exclusively in the chronically implanted groups starting on day 7 with a concurrent infiltration of CX3CR1+ macrophages not seen in the other groups. CX3CR1+ macrophage infiltration was seen in the LW and RC in all experimental groups within the first week, being most prominent in the 3 chronically implanted groups during the second and third week. CONCLUSIONS The cochlear immune response was most prominent in the presence of chronic cochlear implantation, regardless of electric stimulation level. Further, the development of intracochlear ST fibrosis was dependent on the presence of the indwelling CI foreign body. An innate immune response was evoked by surgical trauma alone (sham and acute CI groups) to a lesser degree. These data suggest that cochlear inflammation and intrascalar fibrosis after cochlear implantation are largely dependent on the presence of a chronic indwelling foreign body and are not critically dependent on electrical stimulation. Also, these data support a role for surgical trauma in inciting the initial innate immune response.
Collapse
Affiliation(s)
- Alexander D Claussen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States; Department of Otolaryngology Head and Neck Surgery, University of California San Diego, San Diego, CA 92103, United States.
| | - René Vielman Quevedo
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States; Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, United States
| | | | - Timon Higgins
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Brian Mostaert
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Muhammad Taifur Rahman
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Jacob Oleson
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, United States
| | - Reyna Hernandez
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, United States
| | - Keiko Hirose
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Marlan R Hansen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
7
|
Yildiz E, Gerlitz M, Gadenstaetter AJ, Landegger LD, Nieratschker M, Schum D, Schmied M, Haase A, Kanz F, Kramer AM, Glueckert R, Staecker H, Honeder C, Arnoldner C. Single-Incision Cochlear Implantation and Hearing Evaluation in Piglets and Minipigs. Hear Res 2022; 426:108644. [DOI: 10.1016/j.heares.2022.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
8
|
Reiss LA, Kirk J, Claussen AD, Fallon JB. Animal Models of Hearing Loss after Cochlear Implantation and Electrical Stimulation. Hear Res 2022; 426:108624. [DOI: 10.1016/j.heares.2022.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
9
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Henslee AM, Kaufmann CR, Andrick MD, Reineke PT, Tejani VD, Hansen MR. Development and Characterization of an Electrocochleography-Guided Robotics-Assisted Cochlear Implant Array Insertion System. Otolaryngol Head Neck Surg 2022; 167:334-340. [PMID: 34609909 PMCID: PMC9969559 DOI: 10.1177/01945998211049210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Electrocochleography (ECochG) is increasingly being used during cochlear implant (CI) surgery to detect and mitigate insertion-related intracochlear trauma, where a drop in ECochG signal has been shown to correlate with a decline in hearing outcomes. In this study, an ECochG-guided robotics-assisted CI insertion system was developed and characterized that provides controlled and consistent electrode array insertions while monitoring and adapting to real-time ECochG signals. STUDY DESIGN Experimental research. SETTING A research laboratory and animal testing facility. METHODS A proof-of-concept benchtop study evaluated the ability of the system to detect simulated ECochG signal changes and robotically adapt the insertion. Additionally, the ECochG-guided insertion system was evaluated in a pilot in vivo sheep study to characterize the signal-to-noise ratio and amplitude of ECochG recordings during robotics-assisted insertions. The system comprises an electrode array insertion drive unit, an extracochlear recording electrode module, and a control console that interfaces with both components and the surgeon. RESULTS The system exhibited a microvolt signal resolution and a response time <100 milliseconds after signal change detection, indicating that the system can detect changes and respond faster than a human. Additionally, animal results demonstrated that the system was capable of recording ECochG signals with a high signal-to-noise ratio and sufficient amplitude. CONCLUSION An ECochG-guided robotics-assisted CI insertion system can detect real-time drops in ECochG signals during electrode array insertions and immediately alter the insertion motion. The system may provide a surgeon the means to monitor and reduce CI insertion-related trauma beyond manual insertion techniques for improved CI hearing outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Viral D. Tejani
- iotaMotion, Inc, Iowa City, Iowa, USA,Department of Otolaryngology–Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Marlan R. Hansen
- iotaMotion, Inc, Iowa City, Iowa, USA,Department of Otolaryngology–Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Bennion DM, Horne R, Peel A, Reineke P, Henslee A, Kaufmann C, Guymon CA, Hansen MR. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces. Otol Neurotol 2021; 42:1476-1483. [PMID: 34310554 DOI: 10.1097/mao.0000000000003288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Application of photografted zwitterionic coatings to cochlear implant (CI) biomaterials will reduce friction and insertion forces. BACKGROUND Strategies to minimize intracochlear trauma during implantation of an electrode array are critical to optimize outcomes including preservation of residual hearing. To this end, advances in thin-film zwitterionic hydrogel coatings on relevant biomaterials may show promise, in addition to the potential of these materials for decreasing the intracochlear foreign body response. METHODS Using a recently designed one-step process, thin-film coatings derived from zwitterionic sulfobetaine methacrylate (SBMA) were photopolymerized and photografted to the surface of polydimethylsiloxane (PDMS, silastic) samples and also to CI arrays from two manufacturers. Fluorescein staining and scanning electron microscopy with energy-dispersive X-ray spectroscopy verified and characterized the coatings. Tribometry was used to measure the coefficient of friction between uncoated and coated PDMS and synthetic and biological tissues. Force transducer measurements were obtained during insertion of uncoated (n = 9) and coated (n = 9) CI electrode arrays into human cadaveric cochleae. RESULTS SBMA thin-film coating of PDMS resulted in >90% reduction in frictional coefficients with steel, ceramic, and dermal tissue from guinea pigs (p < 0.0001). We employed a novel method for applying covalently bonded, durable, and uniform coating in geographically selective areas at the electrode array portion of the implant. Image analysis confirmed uniform coating of PDMS systems and the CI electrode arrays with SBMA polymer films. During insertion of electrode arrays into human cadaveric cochleae, SBMA coatings reduced maximum force by ∼40% during insertion (p < 0.001), as well as decreasing force variability and the overall work of insertion. CONCLUSION Thin-film SBMA photografted coatings on PDMS and electrode arrays significantly reduce frictional coefficients and insertional forces in cadaveric cochleae. These encouraging findings support that thin-film zwitterionic coating of CI electrode arrays may potentially reduce insertional trauma and thereby promote improved hearing and other long-term outcomes.
Collapse
Affiliation(s)
- Douglas M Bennion
- Department of Otolaryngology-Head and Neck Surgery Department of Chemical and Biochemical Engineering, University of Iowa iotaMotion, Inc, Iowa City, Iowa
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Trinh TT, Cohen C, Boullaud L, Cottier JP, Bakhos D. Sheep as a large animal model for cochlear implantation. Braz J Otorhinolaryngol 2021; 88 Suppl 1:S24-S32. [PMID: 33839060 PMCID: PMC9734264 DOI: 10.1016/j.bjorl.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION In surgical training, large animal models are more suitable as their anatomy is more similar to humans. In otology, there have been relatively few studies about large animal models for surgical training. OBJECTIVE In this study, we aimed to do a neuroradiologic evaluation and surgical insertion of a cochlear implant electrode array on a sheep head model. METHODS Twenty cadaveric sheep heads were studied. A computed tomography scan and neuroradiologic evaluation was performed on each head, obtaining measurements of the inner ear for each sheep. Sheep measurements were compared to those from temporal bone computed tomography scans from 20 female humans. Surgical procedures were first trained with 13 of the sheep temporal bones, after which cochlear implantation was performed on the remaining 7 temporal bones. The position of the inserted electrode array insertion was confirmed by computed tomography scan after the procedure. RESULTS Neuroradiologic evaluation showed that, relative to the 20 female humans, the mean ratio for sheep was 0.60 for volume of cochlea, 0.70 for height of cochlea, 0.73 for length of cochlea; ratios for other metrics were >0.80. For the surgical training, the round window was found in all 20 sheep temporal bones. Computed tomography scans confirmed that electrode insertions were fully complete; the mean value of electrode array insertion was 18.3 mm. CONCLUSION The neuroradiologic and surgical training data suggest that the sheep is a realistic animal model to train cochlear implant surgery and collection of perilymph samples, but less so for surgical training of mastoidectomy due to pneumatization of the mastoid.
Collapse
Affiliation(s)
- Thuy-Tran Trinh
- CHRU de Tours, Service d'ORL et Chirurgie Cervico-Faciale, France.
| | - C Cohen
- CHRU de Tours, Service de Neuroradiologie, France
| | - L Boullaud
- CHRU de Tours, Service d'ORL et Chirurgie Cervico-Faciale, France
| | - J P Cottier
- CHRU de Tours, Service de Neuroradiologie, France; Université François Rabelais de Tours, France; Inserm U1253, Tours, France
| | - David Bakhos
- CHRU de Tours, Service d'ORL et Chirurgie Cervico-Faciale, France; Université François Rabelais de Tours, France; Inserm U1253, Tours, France
| |
Collapse
|
13
|
Characterization of the Sheep Round Window Membrane. J Assoc Res Otolaryngol 2020; 22:1-17. [PMID: 33258054 DOI: 10.1007/s10162-020-00778-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Intratympanic injection is a clinically used approach to locally deliver therapeutic molecules to the inner ear. Drug diffusion, at least in part, is presumed to occur through the round window membrane (RWM), one of the two openings to the inner ear. Previous studies in human temporal bones have identified a three-layered structure of the RWM with a thickness of 70-100 μm. This is considerably thicker than the RWM in rodents, which are mostly used to model RWM permeability and assess drug uptake. The sheep has been suggested as a large animal model for inner ear research given the similarities in structure and frequency range for hearing. Here, we report the structure of the sheep RWM. The RWM is anchored within the round window niche (average vertical diameter of 2.1 ± 0.3 mm and horizontal diameter of 2.3 ± 0.4 mm) and has a curvature that leans towards the scala tympani. The centre of the RWM is the thinnest (55-71 μm), with increasing thickness towards the edges (< 171 μm), where the RWM forms tight attachments to the surrounding bony niche. The layered RWM structure, including an outer epithelial layer, middle connective tissue and inner epithelial layer, was identified with cellular features such as wavy fibre bundles, melanocytes and blood vessels. An attached "meshwork structure" which extends over the cochlear aqueduct was seen, as in humans. The striking anatomical similarities between sheep and human RWM suggest that sheep may be evaluated as a more appropriate system to predict RWM permeability and drug delivery in humans than rodent models.
Collapse
|