1
|
Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, Yang SM. The Role of Genetic Variants in the Susceptibility of Noise-Induced Hearing Loss. Front Cell Neurosci 2022; 16:946206. [PMID: 35903368 PMCID: PMC9315435 DOI: 10.3389/fncel.2022.946206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Noised-induced hearing loss (NIHL) is an acquired, progressive neurological damage caused by exposure to intense noise in various environments including industrial, military and entertaining settings. The prevalence of NIHL is much higher than other occupational injuries in industrialized countries. Recent studies have revealed that genetic factors, together with environmental conditions, also contribute to NIHL. A group of genes which are linked to the susceptibility of NIHL had been uncovered, involving the progression of oxidative stress, potassium ion cycling, cilia structure, heat shock protein 70 (HSP70), DNA damage repair, apoptosis, and some other genes. In this review, we briefly summarized the studies primary in population and some animal researches concerning the susceptible genes of NIHL, intending to give insights into the further exploration of NIHL prevention and individual treatment.
Collapse
Affiliation(s)
- Xue-min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin-miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei-wei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qing-qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
2
|
Taha MM, Amer NM, Beshir S, Mahdy-Abdallah H. Association of heat shock protein70-2 genotypes with hypertension among textile workers occupationally exposed to noise. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13998-14004. [PMID: 34601670 DOI: 10.1007/s11356-021-16802-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Noise exposure is a primary cause of hearing loss with a broad range of auditory and non-auditory effects. It is one of the occupational health risks in both developed and industrialized countries. Heat shock proteins (HSPs) are induced after severe noise exposure. Those proteins protect the ear from damage following excessive noise exposure. This protection showed high variability between individuals. The aim of the study was to investigate the variation in hearing loss and blood pressure in textile workers and its association with genetic predisposition related to HSP70 genes. Also, the role of smoking was studied. We genotyped HSP-70 (hsp70-1, hsp70-2, and hsp70-hom) genes in 109 textile workers working in a noisy environment. Diastolic and systolic blood pressure was measured for workers. Hearing was assessed using an audiogram. We reported significant variation in HSP70-homo genotypes among smoker workers and nonsmoker ones. Only HSP70-2 genotypes were associated with high significant variations in both systolic and diastolic blood pressure among textile workers. Positive correlation between duration of exposure and both systolic (P < 0.047) and diastolic blood pressure (P < 0.033) was observed among workers. Our study recorded that HSP70-2 genotypes were associated with hypertension among textile workers with absence of that association with either HSP70-1 or HSP70-homo genotypes. We also confirmed the relationship between noise exposure and blood pressure (both systolic and diastolic blood pressure). Furthermore, significant variation was shown in HSP70-hom genotypes among smoker and nonsmoker workers.
Collapse
Affiliation(s)
- Mona Mohamed Taha
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt.
| | - Nagat Mohamed Amer
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt
| | - Safia Beshir
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt
| | - Heba Mahdy-Abdallah
- Department of Environmental and Occupational Medicine, Environmental Research Division, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
3
|
AudioChip: A Deep Phenotyping Approach for Deconstructing and Quantifying Audiological Phenotypes of Self-Reported Speech Perception Difficulties. Ear Hear 2021; 43:1023-1036. [PMID: 34860719 PMCID: PMC9010350 DOI: 10.1097/aud.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES About 15% of U.S. adults report speech perception difficulties despite showing normal audiograms. Recent research suggests that genetic factors might influence the phenotypic spectrum of speech perception difficulties. The primary objective of the present study was to describe a conceptual framework of a deep phenotyping method, referred to as AudioChipping, for deconstructing and quantifying complex audiometric phenotypes. DESIGN In a sample of 70 females 18 to 35 years of age with normal audiograms (from 250 to 8000 Hz), the study measured behavioral hearing thresholds (250 to 16,000 Hz), distortion product otoacoustic emissions (1000 to 16,000 Hz), click-evoked auditory brainstem responses (ABR), complex ABR (cABR), QuickSIN, dichotic digit test score, loudness discomfort level, and noise exposure background. The speech perception difficulties were evaluated using the Speech, Spatial, and Quality of Hearing Scale-12-item version (SSQ). A multiple linear regression model was used to determine the relationship between SSQ scores and audiometric measures. Participants were categorized into three groups (i.e., high, mid, and low) using the SSQ scores before performing the clustering analysis. Audiometric measures were normalized and standardized before performing unsupervised k-means clustering to generate AudioChip. RESULTS The results showed that SSQ and noise exposure background exhibited a significant negative correlation. ABR wave I amplitude, cABR offset latency, cABR response morphology, and loudness discomfort level were significant predictors for SSQ scores. These predictors explained about 18% of the variance in the SSQ score. The k-means clustering was used to split the participants into three major groups; one of these clusters revealed 53% of participants with low SSQ. CONCLUSIONS Our study highlighted the relationship between SSQ and auditory coding precision in the auditory brainstem in normal-hearing young females. AudioChip was useful in delineating and quantifying internal homogeneity and heterogeneity in audiometric measures among individuals with a range of SSQ scores. AudioChip could help identify the genotype-phenotype relationship, document longitudinal changes in auditory phenotypes, and pair individuals in case-control groups for the genetic association analysis.
Collapse
|
4
|
Bhatt IS, Dias R, Torkamani A. Association Analysis of Candidate Gene Polymorphisms and Tinnitus in Young Musicians. Otol Neurotol 2021; 42:e1203-e1212. [PMID: 34282101 PMCID: PMC10860185 DOI: 10.1097/mao.0000000000003279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Subjective tinnitus, a perception of phantom sound, is a common otological condition that affects almost 15% of the general population. It is known that noise-induced hearing loss (NIHL) and tinnitus exhibit a high level of comorbidity in individuals exposed to intense noise and music. However, the influence of genetic variants associated with NIHL on tinnitus remains elusive. We hypothesized that young musicians carrying genetic variants associated with NIHL would exhibit a higher prevalence of tinnitus than their counterparts. METHODS To test this hypothesis, we analyzed the database by Bhatt et al. (2020) (originally developed by Phillips et al., 2015) that investigated the genetic links to NIHL in young college-aged musicians. The present study identified 186 participants (average age = 20.3 yrs, range = 18-25 yrs) with normal tympanometry and otoscopic findings and with no missing data. We included 19 single nucleotide polymorphisms in 13 cochlear genes that were previously associated with NIHL. The candidate genes include: KCNE1, KCNQ1, CDH23, GJB2, GJB4, KCNJ10, CAT, HSP70, PCDH70, MYH14, GRM7, PON2, and ESRRB. RESULTS We find that individuals with at least one minor allele of rs163171 (C > T) in KCNQ1 exhibit significantly higher odds of reporting tinnitus compared to individuals carrying the major allele of rs163171. KCNE1 rs2070358 revealed a suggestive association (p = 0.049) with tinnitus, but the FDR corrected p-value did not achieve statistical significance (p < 0.05). A history of ear infection and sound level tolerance showed a statistically significant association with tinnitus. Music exposure showed a suggestive association trend with tinnitus. Biological sex revealed a statistically significant association with distortion product otoacoustic emissions SNR measures. CONCLUSIONS We concluded that KCNQ1/KCNE1 voltage-gated potassium ion channel plays a critical role in the pathogenesis of NIHL and tinnitus. Further research is required to construct clinical tools for identifying genetically predisposed individuals well before they acquire NIHL and tinnitus.
Collapse
Affiliation(s)
| | - Raquel Dias
- Scripps Research Translational Institute
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California
| | - Ali Torkamani
- Scripps Research Translational Institute
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California
| |
Collapse
|
5
|
Zhang A. Influence of data mining technology in information analysis of human resource management on macroscopic economic management. PLoS One 2021; 16:e0251483. [PMID: 34003830 PMCID: PMC8130961 DOI: 10.1371/journal.pone.0251483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The purposes are to manage human resource data better and explore the association between Human Resource Management (HRM), data mining, and economic management. An Ensemble Classifier-Decision Tree (EC-DT) algorithm is proposed based on the single decision tree algorithm to analyze HRM data. The involved single decision tree algorithms include C4.5, Random Tree, J48, and SimpleCart. Then, an HRM system is established based on the designed algorithm, and the evaluation management and talent recommendation modules are tested. Finally, the designed algorithm is compared and tested. Experimental results suggest that C4.5 provides the highest classification accuracy among the single decision tree algorithms, reaching 76.69%; in contrast, the designed EC-DT algorithm can provide a classification accuracy of 79.97%. The proposed EC-DT algorithm is compared with the Content-based Recommendation Method (CRM) and the Collaborative Filtering Recommendation Method (CFRM), revealing that its Data Mining Recommendation Method (DMRM) can provide the highest accuracy and recall, reaching 35.2% and 41.6%, respectively. Therefore, the data mining-based HRM system can promote and guide enterprises to develop according to quantitative evaluation results. The above results can provide a reference for studying HRM systems based on data mining technology.
Collapse
Affiliation(s)
- Ai Zhang
- Gannan University of Science and Technology, Ganzhou, China
| |
Collapse
|
6
|
Chang NC, Yang HL, Dai CY, Lin WY, Hsieh MH, Chien CY, Ho KY. The association of heat shock protein genetic polymorphisms with age-related hearing impairment in Taiwan. J Otolaryngol Head Neck Surg 2021; 50:31. [PMID: 33926545 PMCID: PMC8086325 DOI: 10.1186/s40463-021-00512-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-related hearing impairment (ARHI) is a major disability among the elderly population. Heat shock proteins (HSPs) were found to be associated with ARHI in animal studies. The aim of this study was to analyze the associations of single nucleotide polymorphisms (SNPs) of HSP genes with ARHI in an elderly population in Taiwan. METHODS Participants ≥65 years of age were recruited for audiometric tests and genetic analyses. The pure tone average (PTA) of the better hearing ear was calculated for ARHI evaluation. The associations of HSPA1L (rs2075800 and rs2227956), HSPA1A (rs1043618) and HSPA1B (rs2763979) with ARHI were analyzed in 146 ARHI-susceptible (cases) and 146 ARHI-resistant (controls) participants. RESULTS The "T" allele of HSPA1B rs2763979 showed a decreased risk of ARHI. The "TT" genotype of rs2763979 also showed a decreased risk of ARHI in the dominant hereditary model. For HSPA1L (rs2075800 and rs2227956) and HSPA1A (rs1043618), the haplotype "CAG" was related to a decreased risk of ARHI. CONCLUSION These findings suggest that HSP70 polymorphisms are associated with susceptibility to ARHI in the elderly population.
Collapse
Affiliation(s)
- Ning-Chia Chang
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.,Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hua-Ling Yang
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yi Lin
- Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Meng-Hsuen Hsieh
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chen-Yu Chien
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| | - Kuen-Yao Ho
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan.
| |
Collapse
|
7
|
Evaluation of cochlear activity in normal-hearing musicians. Hear Res 2020; 395:108027. [PMID: 32659614 DOI: 10.1016/j.heares.2020.108027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The present study compared wave I amplitude of auditory brainstem responses (ABRs), a potential indicator of cochlear synaptopathy, among musicians and non-musicians with normal audiograms. DESIGN Noise exposure background (NEB) was evaluated using an online questionnaire. Two-channel ABRs were recorded from the left ear using click stimuli. One channel utilized an ipsilateral tiptrode, and another channel utilized an ipsilateral mastoid electrode. ABRs were collected at 90, 75, and 60 dBnHL. A mixed model was used to analyze the effect of group, electrodes, and stimulus levels on ABR wave I amplitude. STUDY SAMPLE 75 collegiate students with normal hearing participated in the study and were grouped into a non-music major group (n = 25), a brass major group (n = 25), and a voice major group (n = 25). RESULTS The NEB was negatively associated with the action potential (AP) and ABR wave I amplitude for click intensity levels at 75 dBnHL. The mean amplitude of the ABR wave I was not significantly different between the three groups. CONCLUSION The weak negative association of AP and ABR wave I amplitude with NEB cannot be solely attributed to evidence of cochlear synaptopathy in humans as the possibility of hair cell damage cannot be ruled out. Future research should investigate the effects of reduced cochlear output on the supra-threshold speech processing abilities of student musicians.
Collapse
|