1
|
Wesson T, Ambike S, Patel R, Yates C, Nelson R, Francis A, Burgin S. Feasibility of Using Inertial Measurement Units (IMUs) to Augment Cadaveric Temporal Training. Laryngoscope 2024. [PMID: 39539083 DOI: 10.1002/lary.31878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Insertional speed of cochlear implant electrode arrays (EA) during surgery is correlated with force. Low insertional speed, and therefore force, may allow for preservation of intracochlear structures leading to improved outcomes. Given the importance of low insertional speeds, we investigate the feasibility of using inertial sensors for kinematic analysis during EA insertion to augment otolaryngology-head and neck surgery training. METHODS Practicing otolaryngology surgeons were recruited and inertial measurement units (IMU; Metamotions+, MBIENTLAB Inc, San Jose, CA) consisting of accelerometers were used to measure hand speed during EA (Cochlear™Nucleus®CI522 cochlear implant with Slim Straight electrode, Cochlear Limited, Sydney, Australia) insertion into a cadaveric cochlea. A mixed regression model was utilized to determine differences in speed across trials within a surgeon. RESULTS A total of nine trials were performed by three surgeons. The highest mean ± SD speed obtained was 8.4 ± 1.7 mm/s, and the highest speed was 22.5 mm/s. Mean speed was not significantly different across trials within surgeons (p > 0.05). DISCUSSION IMUs are relatively inexpensive and relatively easy to use sensors that provide information on variables that may be of interest for otolaryngology resident training. The use of IMUs as part of advanced temporal training for cochlear electrode insertion can provide insight into hand speed, thereby allowing residents to train with specific regard to this variable. Future randomized-controlled trials can be carried out to determine whether IMUs are conducive to lower insertional speeds. LEVEL OF EVIDENCE NA Laryngoscope, 2024.
Collapse
Affiliation(s)
- Troy Wesson
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Satyajit Ambike
- Purdue University Department of Health and Kinesiology, West Lafayette, Indiana, USA
| | - Radha Patel
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles Yates
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Department of Otolaryngology Head and Neck Surgery, Indianapolis, Indiana, USA
| | - Rick Nelson
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Department of Otolaryngology Head and Neck Surgery, Indianapolis, Indiana, USA
| | - Alexander Francis
- Purdue University Department of Speech, Language, and Hearing Sciences, West Lafayette, Indiana, USA
| | - Sarah Burgin
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Department of Otolaryngology Head and Neck Surgery, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Cramer J, Böttcher-Rebmann G, Lenarz T, Rau TS. A method for accurate and reproducible specimen alignment for insertion tests of cochlear implant electrode arrays. Int J Comput Assist Radiol Surg 2024; 19:1883-1893. [PMID: 37204650 DOI: 10.1007/s11548-023-02930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE The trajectory along which the cochlear implant electrode array is inserted influences the insertion forces and the probability for intracochlear trauma. Controlling the trajectory is especially relevant for reproducible conditions in electrode insertion tests. Using ex vivo cochlear specimens, manual alignment of the invisibly embedded cochlea is imprecise and hardly reproducible. The aim of this study was to develop a method for creating a 3D printable pose setting adapter to align a specimen along a desired trajectory toward an insertion axis. METHODS Planning points of the desired trajectory into the cochlea were set using CBCT images. A new custom-made algorithm processed these points for automated calculation of a pose setting adapter. Its shape ensures coaxial positioning of the planned trajectory to both the force sensor measuring direction and the insertion axis. The performance of the approach was evaluated by dissecting and aligning 15 porcine cochlear specimens of which four were subsequently used for automated electrode insertions. RESULTS The pose setting adapter could easily be integrated into an insertion force test setup. Its calculation and 3D printing was possible in all 15 cases. Compared to planning data, a mean positioning accuracy of 0.21 ± 0.10 mm at the level of the round window and a mean angular accuracy of 0.43° ± 0.21° were measured. After alignment, four specimens were used for electrode insertions, demonstrating the practical applicability of our method. CONCLUSION In this work, we present a new method, which enables automated calculation and creation of a ready-to-print pose setting adapter for alignment of cochlear specimens in insertion test setups. The approach is characterized by a high level of accuracy and reproducibility in controlling the insertion trajectory. Therefore, it enables a higher degree of standardization in force measurement when performing ex vivo insertion tests and thereby improves reliability in electrode testing.
Collapse
Affiliation(s)
- Jakob Cramer
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Georg Böttcher-Rebmann
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Thomas S Rau
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Fröhlich M, Deutz J, Wangenheim M, Rau TS, Lenarz T, Kral A, Schurzig D. The role of pressure and friction forces in automated insertion of cochlear implants. Front Neurol 2024; 15:1430694. [PMID: 39170077 PMCID: PMC11337231 DOI: 10.3389/fneur.2024.1430694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Objectives Despite the success of cochlear implant (CI) surgery for hearing restoration, reducing CI electrode insertion forces is an ongoing challenge with the goal to further reduce post-implantation hearing loss. While research in this field shows that both friction and quasistatic pressure forces occur during CI insertion, there is a lack of studies distinguishing between these origins. The present study was conducted to analyze the contribution of both force phenomena during automated CI insertion. Methods Five MED-EL FLEX28 CI electrode arrays were inserted into both a regular and uncoiled version of the same average scala tympani (ST). Both ST models had a pressure release hole at the apical end, which was kept open or closed to quantify pressure forces. ST models were filled with different sodium dodecyl sulfate (SDS) lubricants (1, 5, and 10% SDS, water). The viscosity of lubricants was determined using a rheometer. Insertions were conducted with velocities ranging from v= 0.125 mm/s to 2.0 mm/s. Results Viscosity of SDS lubricants at 20°C was 1.28, 1.96, and 2.51 mPas for 1, 5, and 10% SDS, respectively, which lies within the values reported for human perilymph. In the uncoiled ST model, forces remained within the noise floor (maximum: 0.049 × 10-3 N ± 1.5 × 10-3 N), indicating minimal contribution from quasistatic pressure. Conversely, forces using the regular, coiled ST model were at least an order of magnitude larger (minimum: Fmax = 28.95 × 10-3 N, v = 1 mm/s, 10% SDS), confirming that friction forces are the main contributor to total insertion forces. An N-way ANOVA revealed that both lubricant viscosity and insertion speed significantly reduce insertion forces (p < 0.001). Conclusion For the first time, this study demonstrates that at realistic perilymph viscosities, quasistatic pressure forces minimally affect the total insertion force profile during insertion. Mixed friction is the main determinant, and significantly decreases with increaseing insertion speeds. This suggests that in clinical settings with similar ST geometries and surgical preparation, quasistatic pressure plays a subordinate role. Moreover, the findings indicate that managing the hydrodynamics of the cochlear environment, possibly through pre-surgical preparation or the use of specific lubricants, could effectively reduce insertion forces.
Collapse
Affiliation(s)
- Max Fröhlich
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Jaro Deutz
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Institute of Dynamic and Vibration Research, Leibniz University Hannover, Hannover, Germany
| | - Matthias Wangenheim
- Institute of Dynamic and Vibration Research, Leibniz University Hannover, Hannover, Germany
| | - Thomas S. Rau
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Daniel Schurzig
- MED-EL Research Center, MED-EL Medical Electronics GmbH, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
4
|
Hrnčiřík F, Nagy L, Grimes HL, Iftikhar H, Muzaffar J, Bance M. Impact of Insertion Speed, Depth, and Robotic Assistance on Cochlear Implant Insertion Forces and Intracochlear Pressure: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3307. [PMID: 38894099 PMCID: PMC11174543 DOI: 10.3390/s24113307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Cochlear implants are crucial for addressing severe-to-profound hearing loss, with the success of the procedure requiring careful electrode placement. This scoping review synthesizes the findings from 125 studies examining the factors influencing insertion forces (IFs) and intracochlear pressure (IP), which are crucial for optimizing implantation techniques and enhancing patient outcomes. The review highlights the impact of variables, including insertion depth, speed, and the use of robotic assistance on IFs and IP. Results indicate that higher insertion speeds generally increase IFs and IP in artificial models, a pattern not consistently observed in cadaveric studies due to variations in methodology and sample size. The study also explores the observed minimal impact of robotic assistance on reducing IFs compared to manual methods. Importantly, this review underscores the need for a standardized approach in cochlear implant research to address inconsistencies and improve clinical practices aimed at preserving hearing during implantation.
Collapse
Affiliation(s)
- Filip Hrnčiřík
- Cambridge Hearing Group, Cambridge CB2 7EF, UK; (F.H.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Leo Nagy
- Clinical School, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Haissan Iftikhar
- Department of Otolaryngology, University Hospitals Birmingham, Birmingham B15 2TT, UK
| | - Jameel Muzaffar
- Cambridge Hearing Group, Cambridge CB2 7EF, UK; (F.H.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Otolaryngology, University Hospitals Birmingham, Birmingham B15 2TT, UK
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge CB2 7EF, UK; (F.H.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
5
|
Rau TS, Böttcher-Rebmann G, Schell V, Cramer J, Artukarslan E, Baier C, Lenarz T, Salcher R. First clinical implementation of insertion force measurement in cochlear implantation surgery. Front Neurol 2024; 15:1400455. [PMID: 38711559 PMCID: PMC11070539 DOI: 10.3389/fneur.2024.1400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose The significance of atraumatic electrode array (EA) insertion in cochlear implant (CI) surgery is widely acknowledged, with consensus that forces due to EA insertion are directly correlated with insertion trauma. Unfortunately, the manual perception of these forces through haptic feedback is inherently limited, and techniques for in vivo force measurements to monitor the insertion are not yet available. Addressing this gap, we developed of a force-sensitive insertion tool capable of capturing real-time insertion forces during standard CI surgery. Methods This paper describes the tool and its pioneering application in a clinical setting and reports initial findings from an ongoing clinical study. Data and experiences from five patients have been evaluated so far, including force profiles of four patients. Results The initial intraoperative experiences are promising, with successful integration into the conventional workflow. Feasibility of in vivo insertion force measurement and practicability of the tool's intraoperative use could be demonstrated. The recorded in vivo insertion forces show the expected rise with increasing insertion depth. Forces at the end of insertion range from 17.2 mN to 43.6 mN, while maximal peak forces were observed in the range from 44.8 mN to 102.4 mN. Conclusion We hypothesize that this novel method holds the potential to assist surgeons in monitoring the insertion forces and, thus, minimizing insertion trauma and ensuring better preservation of residual hearing. Future data recording with this tool can form the basis of ongoing research into the causes of insertion trauma, paving the way for new and improved prevention strategies.
Collapse
Affiliation(s)
- Thomas S. Rau
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Georg Böttcher-Rebmann
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Viktor Schell
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Jakob Cramer
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Eralp Artukarslan
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Claas Baier
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| | - Rolf Salcher
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Fröhlich M, Schurzig D, Rau TS, Lenarz T. On the interdependence of insertion forces, insertion speed, and lubrication: Aspects to consider when testing cochlear implant electrodes. PLoS One 2024; 19:e0295121. [PMID: 38266033 PMCID: PMC10807833 DOI: 10.1371/journal.pone.0295121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES During the insertion of cochlear implant (CI) electrode arrays, forces occur which may cause trauma and poorer hearing outcomes. Unfortunately, research groups investigating factors influencing insertion forces come to contradicting results, especially regarding insertion speed. This study was conducted to investigate the origin of these contradicting results and to determine how different testing conditions influence experimental findings. METHODS Repeated, automated insertions with three different FLEX28 CI electrode arrays (MED-EL, Innsbruck, Austria) were performed into a newly developed, anatomically correct and 3D-printed mean scala tympani phantom. The testing protocol for each electrode included variations in insertion speed (v = 0.1-2.0 mm/s) and lubrication (90%, 50%, and 10% liquid soap), resulting in 51 insertions per electrode array and a total of 153 insertions. RESULTS The test setup and protocol allowed for repeatable insertions with only minimal change in the morphology of the insertion force profiles per testing condition. Strong but varying dependencies of the maximal insertion forces and work were found regarding both lubrication and speed: work-speed dependency is constant for the 10% lubricant, negative for the 50% lubricant and positive for the 90% lubricant. CONCLUSION Our results can explain part of the contradicting results found within previous studies by translating interrelations known from lubricated rubber friction to the field of CI electrode array insertion. We show that the main driver behind measured bulk forces are most likely the generated friction forces, which are strongly dependent on insertion speed and lubrication. The employed test setup allows for conducting repeatable and comparable insertion studies, which can be recapitulated by other centers due to the detailed explanation of the test setup as well as the developed and freely available insertion phantom. This study hence represents another important step toward standardizing CI array insertion testing.
Collapse
Affiliation(s)
- Max Fröhlich
- MED-EL Medical Electronics GmbH, MED-EL Research Center, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Daniel Schurzig
- MED-EL Medical Electronics GmbH, MED-EL Research Center, Hannover, Germany
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas S. Rau
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence EXC 2177/1 “Hearing4all”, Hannover, Germany
| |
Collapse
|
7
|
Kashani RG, Henslee A, Nelson RF, Hansen MR. Robotic assistance during cochlear implantation: the rationale for consistent, controlled speed of electrode array insertion. Front Neurol 2024; 15:1335994. [PMID: 38318440 PMCID: PMC10839068 DOI: 10.3389/fneur.2024.1335994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Cochlear implants (CI) have revolutionized the treatment of patients with severe to profound sensory hearing loss by providing a method of bypassing normal hearing to directly stimulate the auditory nerve. A further advance in the field has been the introduction of "hearing preservation" surgery, whereby the CI electrode array (EA) is carefully inserted to spare damage to the delicate anatomy and function of the cochlea. Preserving residual function of the inner ear allows patients to receive maximal benefit from the CI and to combine CI electric stimulation with acoustic hearing, offering improved postoperative speech, hearing, and quality of life outcomes. However, under the current paradigm of implant surgery, where EAs are inserted by hand, the cochlea cannot be reliably spared from damage. Robotics-assisted EA insertion is an emerging technology that may overcome fundamental human kinetic limitations that prevent consistency in achieving steady and slow EA insertion. This review begins by describing the relationship between EA insertion speed and generation of intracochlear forces and pressures. The various mechanisms by which these intracochlear forces can damage the cochlea and lead to worsened postoperative outcomes are discussed. The constraints of manual insertion technique are compared to robotics-assisted methods, followed by an overview of the current and future state of robotics-assisted EA insertion.
Collapse
Affiliation(s)
- Rustin G. Kashani
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | | | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
8
|
Böttcher-Rebmann G, Schell V, Zuniga MG, Salcher R, Lenarz T, Rau TS. Preclinical evaluation of a tool for insertion force measurements in cochlear implant surgery. Int J Comput Assist Radiol Surg 2023; 18:2117-2124. [PMID: 37310560 PMCID: PMC10589184 DOI: 10.1007/s11548-023-02975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE Trauma that may be inflicted to the inner ear (cochlea) during the insertion of an electrode array (EA) in cochlear implant (CI) surgery can significantly decrease the hearing outcome of patients with residual hearing. Interaction forces between the EA and the cochlea are a promising indicator for the likelihood of intracochlear trauma. However, insertion forces have only been measured in laboratory setups. We recently developed a tool to measure the insertion force during CI surgery. Here, we present the first ex vivo evaluation of our tool with a focus on usability in the standard surgical workflow. METHODS Two CI surgeons inserted commercially available EAs into three temporal bone specimens. The insertion force and the orientation of the tool were recorded together with camera footage. The surgeons answered a questionnaire after each insertion to evaluate the surgical workflow with respect to CI surgery. RESULTS The EA insertion using our tool was rated successful in all 18 trials. The surgical workflow was evaluated to be equivalent to standard CI surgery. Minor handling challenges can be overcome through surgeon training. The peak insertion forces were 62.4 mN ± 26.7 mN on average. Peak forces significantly correlated to the final electrode insertion depth, supporting the assumption that the measured forces mainly correspond to intracochlear events and not extracochlear friction. Gravity-induced forces of up to 28.8 mN were removed from the signal, illustrating the importance of the compensation of such forces in manual surgery. CONCLUSION The results show that the tool is ready for intraoperative use. In vivo insertion force data will improve the interpretability of experimental results in laboratory settings. The implementation of live insertion force feedback to surgeons could further improve residual hearing preservation.
Collapse
Affiliation(s)
- Georg Böttcher-Rebmann
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Viktor Schell
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Geraldine Zuniga
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rolf Salcher
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas S Rau
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
9
|
Smetak MR, Riojas KE, Whittenbarger N, Noble JH, Labadie RF. Dynamic Behavior and Insertional Forces of a Precurved Electrode Using the Pull-Back Technique in a Fresh Microdissected Cochlea. Otol Neurotol 2023; 44:324-330. [PMID: 36728107 PMCID: PMC10038836 DOI: 10.1097/mao.0000000000003812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HYPOTHESIS This study evaluated the utility of the pull-back technique in improving perimodiolar positioning of a precurved cochlear implant (CI) electrode array (EA) with simultaneous insertion force profile measurement and direct observation of dynamic EA behavior. BACKGROUND Precurved EAs with perimodiolar positioning have improved outcomes compared with straight EAs because of lowered charge requirements for stimulation and decreased spread of excitation. The safety and efficacy of the pull-back technique in further improving perimodiolar positioning and its associated force profile have not been adequately demonstrated. METHODS The bone overlying the scala vestibuli was removed in 15 fresh cadaveric temporal bones, leaving the scala tympani unviolated. Robotic insertions of EAs were performed with simultaneous force measurement and video recording. Force profiles were obtained during standard insertion, overinsertion, and pull-back. Postinsertion CT scans were obtained during each of the three conditions, enabling automatic segmentation and calculation of angular insertion depth, mean perimodiolar distance ( Mavg ), and cochlear duct length. RESULTS Overinsertion did not result in significantly higher peak forces than standard insertion (mean [SD], 0.18 [0.06] and 0.14 [0.08] N; p = 0.18). Six temporal bones (40%) demonstrated visibly improved perimodiolar positioning after the protocol, whereas none worsened. Mavg significantly improved after the pull-back technique compared with standard insertion (mean [SD], 0.34 [0.07] and 0.41 [0.10] mm; p < 0.01). CONCLUSIONS The pull-back technique was not associated with significantly higher insertional forces compared with standard insertion. This technique was associated with significant improvement in perimodiolar positioning, both visually and quantitatively, independent of cochlear size.
Collapse
Affiliation(s)
- Miriam R. Smetak
- Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | | | - Noah Whittenbarger
- Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jack H. Noble
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Robert F. Labadie
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
10
|
Ren LJ, Yu Y, Zhang YH, Liu XD, Sun ZJ, Yao WJ, Zhang TY, Wang C, Li CL. Three-dimensional finite element analysis on cochlear implantation electrode insertion. Biomech Model Mechanobiol 2022; 22:467-478. [PMID: 36513945 DOI: 10.1007/s10237-022-01657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
Studying the insertion process of cochlear implant (CI) electrode array (EA) is important to ensure successful, sufficient, and safe implantation. A three-dimensional finite element (FE) model was developed to simulate the insertion process. The cochlear structures were reconstructed from an average statistical shape model (SSM) of human cochlea. The electrode is simplified as a long and tapered beam of homogeneous elastic materials, contacting and interacting with the stiff cochlear structures. A quasi-static insertion simulation was conducted, the insertion force and the contact pressure between the electrode and the cochlear wall, were calculated to evaluate the smoothness of insertion and the risk of potential cochlear trauma. Based on this model, different EA designs were analyzed, including the Young's modulus, the straight or bended shape, the normal or a more tapped section size. The influence of the insertion angle was also discussed. Our simulations indicate that reducing the EA Young's modulus, tapering and pre-bending are effective ways to ensure safe and successful EA implantation. This model is beneficial for optimizing EA designs and is potentially useful for designing patient-specific CI surgery.
Collapse
Affiliation(s)
- Liu-Jie Ren
- Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Yi Yu
- School of Medical Instrumentation, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yu-Heng Zhang
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China
| | - Xin-Dong Liu
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China
| | - Zeng-Jun Sun
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China
| | - Wen-Juan Yao
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200444, China
| | - Tian-Yu Zhang
- Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Cheng Wang
- Shanghai Engineering Research Center of Cochlear Implants, Shanghai, 201318, China.
| | - Chen-Long Li
- Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
11
|
Robotics and cochlear implant surgery: goals and developments. Curr Opin Otolaryngol Head Neck Surg 2022; 30:314-319. [PMID: 36036531 DOI: 10.1097/moo.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cochlear implantation (CI) is a viable option for patients with severe sensorineural hearing loss. Advances in CI have focused on minimizing cochlear trauma to improve hearing preservation outcomes, and in doing so expanding candidacy to patients with useful cochlear reserve. Robotics holds promise as a potential tool to minimize intracochlear trauma with electrode insertion, improve surgical efficiency, and reduce surgical complications. The purpose of this review is to summarize efforts and advances in the field of robotic-assisted CI. RECENT FINDINGS Work on robotics and CI over the past few decades has explored distinct surgical aspects, including image-based surgical planning and intraoperative guidance, minimally invasive robotic-assisted approaches mainly through percutaneous keyhole direct cochlear access, robotic electrode insertion systems, robotic manipulators, and drilling feedback control through end effector sensors. Feasibility and safety have been established and many devices are undergoing clinical trials for clinical adoption, with some having already achieved approval of national licensing bodies. SUMMARY Significant work has been done over the past two decades that has shown robotic-assisted CI to be feasible and safe. Wider clinical adoption can potentially result in improved hearing preservation and quality of life outcomes to more CI candidates.
Collapse
|
12
|
Rau TS, Ehmann T, Zuniga MG, Plaskonka K, Keck A, Majdani O, Lenarz T. Toward a cochlear implant electrode array with shape memory effect for post-insertion perimodiolar positioning. J Biomed Mater Res B Appl Biomater 2022; 110:2494-2505. [PMID: 35678249 DOI: 10.1002/jbm.b.35107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
For cochlear implants (CI) a final position of the electrode array (EA) along the inner wall of the spirally shaped cochlea is considered to be beneficial because it results in a closer proximity to the auditory nerve fibers. A shape memory effect (SME) could facilitate such shift of the EA toward the cochlear inner wall, but its implementation remains to be solved. The current study presents an EA prototype featuring the SME with minute adjustments of the material properties of Nitinol, a shape memory alloy, in combination with a suitable cooling strategy to prevent premature curling. Ten samples were successfully inserted by a CI surgeon into an artificial cochlear model submerged into a temperature-controllable water bath to simulate temporary hypothermia of the inner ear (31°C). Gentle insertions were possible, with an average insertion speed of 0.81 ± 0.14 mm/s. After recovery of body temperature, the desired position shift toward the modiolus was observed in all trials. Angular insertion depth increased by approximately 81.8° ± 23.4°. We demonstrate for the first time that using the body temperature responsive SME for perimodiolar EA positioning is feasible and does not impede a gentle surgical insertion.
Collapse
Affiliation(s)
- Thomas S Rau
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Tim Ehmann
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - M Geraldine Zuniga
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | | | | | - Omid Majdani
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|