1
|
Xiao R, Zhou X, Zhang C, Liu X, Han S, Che C. Organic Thermoelectric Materials for Wearable Electronic Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:4600. [PMID: 39065999 PMCID: PMC11280558 DOI: 10.3390/s24144600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Wearable electronic devices have emerged as a pivotal technology in healthcare and artificial intelligence robots. Among the materials that are employed in wearable electronic devices, organic thermoelectric materials possess great application potential due to their advantages such as flexibility, easy processing ability, no working noise, being self-powered, applicable in a wide range of scenarios, etc. However, compared with classic conductive materials and inorganic thermoelectric materials, the research on organic thermoelectric materials is still insufficient. In order to improve our understanding of the potential of organic thermoelectric materials in wearable electronic devices, this paper reviews the types of organic thermoelectric materials and composites, their assembly strategies, and their potential applications in wearable electronic devices. This review aims to guide new researchers and offer strategic insights into wearable electronic device development.
Collapse
Affiliation(s)
- Runfeng Xiao
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xiaoyan Zhou
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317700, China;
| | - Chan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xi Liu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Shaobo Han
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Canyan Che
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Peel A, Bennion D, Horne R, Hansen MR, Guymon CA. Photografted Zwitterionic Hydrogel Coating Durability for Reduced Foreign Body Response to Cochlear Implants. ACS APPLIED BIO MATERIALS 2024; 7:3124-3135. [PMID: 38584364 PMCID: PMC11110053 DOI: 10.1021/acsabm.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
The durability of photografted zwitterionic hydrogel coatings on cochlear implant biomaterials was examined to determine the viability of these antifouling surfaces during insertion and long-term implant usage. Tribometry was used to determine the effect of zwitterionic coatings on the lubricity of surfaces with varying hydration levels, applied normal force, and time frame. Additionally, flexural resistance was investigated using mandrel bending. Ex vivo durability was assessed by determining the coefficient of friction between tissues and treated surfaces. Furthermore, cochlear implantation force was measured using cadaveric human cochleae. Hydrated zwitterionic hydrogel coatings reduced frictional resistance approximately 20-fold compared to uncoated PDMS, which led to significantly lower mean force experienced by coated cochlear implants during insertion compared to uncoated systems. Under flexural force, zwitterionic films resisted failure for up to 60 min of desiccation. The large increase in lubricity was maintained for 20 h under continual force while hydrated. For loosely cross-linked systems, films remained stable and lubricious even after rehydration following complete drying. All coatings remained hydrated and functional under frictional force for at least 30 min in ambient conditions allowing drying, with lower cross-link densities showing the greatest longevity. Moreover, photografted zwitterionic hydrogel samples showed no evidence of degradation and nearly identical lubricity before and after implantation. This work demonstrates that photografted zwitterionic hydrogel coatings are sufficiently durable to maintain viability before, during, and after implantation. Mechanical properties, including greatly increased lubricity, are preserved after complete drying and rehydration for various applied forces. Additionally, this significantly enhanced lubricity translates to significantly decreased force during insertion of implants which should result in less trauma and scarring.
Collapse
Affiliation(s)
- Adreann Peel
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas Bennion
- Department
of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan Horne
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R. Hansen
- Department
of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - C. Allan Guymon
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Yancey KL, Patro A, Smetak M, Perkins EL, Isaacson B, Bennett ML, O'Malley M, Haynes DS, Hunter JB. Evaluating calcium channel blockers and bisphosphonates as otoprotective agents in cochlear implantation hearing preservation candidates. Cochlear Implants Int 2024; 25:131-139. [PMID: 38738388 DOI: 10.1080/14670100.2024.2338003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Evaluate potential effects of calcium channel blockers (CCB) and bisphosphonates (BP) on residual hearing following cochlear implantation. METHODS Medications of 303 adult hearing preservation (HP) candidates (low frequency pure tone average [LFPTA] of 125, 250, and 500 Hz ≤80 dB HL) were reviewed. Postimplantation LFPTA of patients taking CCBs and BPs were compared to controls matched by age and preimplantation LFPTA. RESULTS Twenty-six HP candidates were taking a CCB (N = 14) or bisphosphonate (N = 12) at implantation. Median follow-up was 1.37 years (range 0.22-4.64y). Among subjects with initial HP, 29% (N = 2 of 7) CCB users compared to 50% (N = 2 of 4) controls subsequently lost residual hearing 3-6 months later (OR = 0.40, 95% CI = 0.04-4.32, p = 0.58). None of the four BP patients with initial HP experienced delayed loss compared to 50% (N = 2 of 4) controls with initial HP (OR = 0.00, 95% CI = 0.00-1.95, P = 0.43). Two CCB and one BP patients improved to a LFPTA <80 dB HL following initial unaided thresholds that suggested loss of residual hearing. DISCUSSION There were no significant differences in the odds of delayed loss of residual hearing with CCBs or BPs. CONCLUSION Further investigation into potential otoprotective adjuvants for maintaining residual hearing following initial successful hearing preservation is warranted, with larger cohorts and additional CCB/BP agents.
Collapse
Affiliation(s)
- Kristen L Yancey
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Ankita Patro
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miriam Smetak
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth L Perkins
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandon Isaacson
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc L Bennett
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew O'Malley
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacob B Hunter
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
4
|
Kashani RG, Henslee A, Nelson RF, Hansen MR. Robotic assistance during cochlear implantation: the rationale for consistent, controlled speed of electrode array insertion. Front Neurol 2024; 15:1335994. [PMID: 38318440 PMCID: PMC10839068 DOI: 10.3389/fneur.2024.1335994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Cochlear implants (CI) have revolutionized the treatment of patients with severe to profound sensory hearing loss by providing a method of bypassing normal hearing to directly stimulate the auditory nerve. A further advance in the field has been the introduction of "hearing preservation" surgery, whereby the CI electrode array (EA) is carefully inserted to spare damage to the delicate anatomy and function of the cochlea. Preserving residual function of the inner ear allows patients to receive maximal benefit from the CI and to combine CI electric stimulation with acoustic hearing, offering improved postoperative speech, hearing, and quality of life outcomes. However, under the current paradigm of implant surgery, where EAs are inserted by hand, the cochlea cannot be reliably spared from damage. Robotics-assisted EA insertion is an emerging technology that may overcome fundamental human kinetic limitations that prevent consistency in achieving steady and slow EA insertion. This review begins by describing the relationship between EA insertion speed and generation of intracochlear forces and pressures. The various mechanisms by which these intracochlear forces can damage the cochlea and lead to worsened postoperative outcomes are discussed. The constraints of manual insertion technique are compared to robotics-assisted methods, followed by an overview of the current and future state of robotics-assisted EA insertion.
Collapse
Affiliation(s)
- Rustin G. Kashani
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | | | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
5
|
Qian S, Lin HA, Pan Q, Zhang S, Zhang Y, Geng Z, Wu Q, He Y, Zhu B. Chemically revised conducting polymers with inflammation resistance for intimate bioelectronic electrocoupling. Bioact Mater 2023; 26:24-51. [PMID: 36875055 PMCID: PMC9975642 DOI: 10.1016/j.bioactmat.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Conducting polymers offer attractive mixed ionic-electronic conductivity, tunable interfacial barrier with metal, tissue matchable softness, and versatile chemical functionalization, making them robust to bridge the gap between brain tissue and electronic circuits. This review focuses on chemically revised conducting polymers, combined with their superior and controllable electrochemical performance, to fabricate long-term bioelectronic implants, addressing chronic immune responses, weak neuron attraction, and long-term electrocommunication instability challenges. Moreover, the promising progress of zwitterionic conducting polymers in bioelectronic implants (≥4 weeks stable implantation) is highlighted, followed by a comment on their current evolution toward selective neural coupling and reimplantable function. Finally, a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.
Collapse
Affiliation(s)
- Sihao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Hsing-An Lin
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Qichao Pan
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Shuhua Zhang
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yunhua Zhang
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Zhi Geng
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Qing Wu
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yong He
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Horne R, Ben-Shlomo N, Jensen M, Ellerman M, Escudero C, Hua R, Bennion D, Guymon CA, Hansen MR. Reducing the foreign body response on human cochlear implants and their materials in vivo with photografted zwitterionic hydrogel coatings. Acta Biomater 2023; 166:212-223. [PMID: 37187301 PMCID: PMC10330692 DOI: 10.1016/j.actbio.2023.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The foreign body response to implanted materials often complicates the functionality of sensitive biomedical devices. For cochlear implants, this response can reduce device performance, battery life and preservation of residual acoustic hearing. As a permanent and passive solution to the foreign body response, this work investigates ultra-low-fouling poly(carboxybetaine methacrylate) (pCBMA) thin film hydrogels that are simultaneously photo-grafted and photo-polymerized onto polydimethylsiloxane (PDMS). The cellular anti-fouling properties of these coatings are robustly maintained even after six-months subcutaneous incubation and over a broad range of cross-linker compositions. On pCBMA-coated PDMS sheets implanted subcutaneously, capsule thickness and inflammation are reduced significantly in comparison to uncoated PDMS or coatings of polymerized poly(ethylene glycol dimethacrylate) (pPEGDMA). Further, capsule thickness is reduced over a wide range of pCBMA cross-linker compositions. On cochlear implant electrode arrays implanted subcutaneously for one year, the coating bridges over the exposed platinum electrodes and dramatically reduces the capsule thickness over the entire implant. Coated cochlear implant electrode arrays could therefore lead to persistent improved performance and reduced risk of residual hearing loss. More generally, the in vivo anti-fibrotic properties of pCBMA coatings also demonstrate potential to mitigate the fibrotic response on a variety of sensing/stimulating implants. STATEMENT OF SIGNIFICANCE: This article presents, for the first time, evidence of the in vivo anti-fibrotic effect of zwitterionic hydrogel thin films photografted to polydimethylsiloxane (PDMS) and human cochlear implant arrays. The hydrogel coating shows no evidence of degradation or loss of function after long-term implantation. The coating process enables full coverage of the electrode array. The coating reduces fibrotic capsule thickness 50-70% over a broad range of cross-link densities for implantations from six weeks to one year.
Collapse
Affiliation(s)
- Ryan Horne
- University of Iowa Carver College of Medicine, United States of America; University of Iowa Department of Chemical and Biochemical Engineering, United States of America
| | - Nir Ben-Shlomo
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - Megan Jensen
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - Morgan Ellerman
- University of Iowa Department of Chemical and Biochemical Engineering, United States of America
| | - Caleb Escudero
- University of Iowa Carver College of Medicine, United States of America
| | - Rong Hua
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - Douglas Bennion
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - C Allan Guymon
- University of Iowa Department of Chemical and Biochemical Engineering, United States of America
| | - Marlan R Hansen
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America.
| |
Collapse
|
7
|
Wellens J, Deschaume O, Putzeys T, Eyley S, Thielemans W, Verhaert N, Bartic C. Sulfobetaine-based ultrathin coatings as effective antifouling layers for implantable neuroprosthetic devices. Biosens Bioelectron 2023; 226:115121. [PMID: 36774733 DOI: 10.1016/j.bios.2023.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Foreign body response (FBR), inflammation, and fibrotic encapsulation of neural implants remain major problems affecting the impedance of the electrode-tissue interface and altering the device performance. Adhesion of proteins and cells (e.g., pro-inflammatory macrophages, and fibroblasts) triggers the FBR cascade and can be diminished by applying antifouling coatings onto the implanted devices. In this paper, we report the deposition and characterization of a thin (±6 nm) sulfobetaine-based coating onto microfabricated platinum electrodes and cochlear implant (CI) electrode arrays. We found that this coating has stable cell and protein-repellent properties, for at least 31 days in vitro, not affected by electrical stimulation protocols. Additionally, its effect on the electrochemical properties relevant to stimulation (i.e., impedance, charge injection capacity) was negligible. When applied to clinical CI electrode arrays, the film was successful at inhibiting fibroblast adhesion on both the silicone packaging and the platinum/iridium electrodes. In vitro, in fibroblast cultures, coated CI electrode arrays maintained impedance values up to five times lower compared to non-coated devices. Our studies demonstrate that such thin sulfobetaine containing layers are stable and prevent protein and cell adhesion in vitro and are compatible for use on CI electrode arrays. Future in vivo studies should be conducted to investigate its ability to mitigate biofouling, fibrosis, and the resulting impedance changes upon long-term implantation in vivo.
Collapse
Affiliation(s)
- Jolan Wellens
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Tristan Putzeys
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium; Experimental Oto-rhino-laryngology Research Group, Dept. Neuroscience, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Nicolas Verhaert
- Experimental Oto-rhino-laryngology Research Group, Dept. Neuroscience, KU Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, Dept. Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| |
Collapse
|
8
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Rauterkus G, Maxwell AK, Kahane JB, Lentz JJ, Arriaga MA. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules 2022; 12:649. [PMID: 35625577 PMCID: PMC9138212 DOI: 10.3390/biom12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
As biomolecular approaches for hearing restoration in profound sensorineural hearing loss evolve, they will be applied in conjunction with or instead of cochlear implants. An understanding of the current state-of-the-art of this technology, including its advantages, disadvantages, and its potential for delivering and interacting with biomolecular hearing restoration approaches, is helpful for designing modern hearing-restoration strategies. Cochlear implants (CI) have evolved over the last four decades to restore hearing more effectively, in more people, with diverse indications. This evolution has been driven by advances in technology, surgery, and healthcare delivery. Here, we offer a practical treatise on the state of cochlear implantation directed towards developing the next generation of inner ear therapeutics. We aim to capture and distill conversations ongoing in CI research, development, and clinical management. In this review, we discuss successes and physiological constraints of hearing with an implant, common surgical approaches and electrode arrays, new indications and outcome measures for implantation, and barriers to CI utilization. Additionally, we compare cochlear implantation with biomolecular and pharmacological approaches, consider strategies to combine these approaches, and identify unmet medical needs with cochlear implants. The strengths and weaknesses of modern implantation highlighted here can mark opportunities for continued progress or improvement in the design and delivery of the next generation of inner ear therapeutics.
Collapse
Affiliation(s)
- Grant Rauterkus
- Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Anne K. Maxwell
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jacob B. Kahane
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jennifer J. Lentz
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Moises A. Arriaga
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Hearing and Balance Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
- Hearing Balance Center, Culicchia Neurological Clinic, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|
11
|
Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, Wang W. A review of advances in tribology in 2020–2021. FRICTION 2022; 10:1443-1595. [PMCID: PMC9552739 DOI: 10.1007/s40544-022-0685-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 07/22/2023]
Abstract
Around 1,000 peer-reviewed papers were selected from 3,450 articles published during 2020–2021, and reviewed as the representative advances in tribology research worldwide. The survey highlights the development in lubrication, wear and surface engineering, biotribology, high temperature tribology, and computational tribology, providing a show window of the achievements of recent fundamental and application researches in the field of tribology.
Collapse
Affiliation(s)
- Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Jun Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Zhongmin Jin
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Braham Prakash
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Tianbao Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Wenzhong Wang
- School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, 100082 China
| |
Collapse
|
12
|
Tarabichi O, Jensen M, Hansen MR. Advances in hearing preservation in cochlear implant surgery. Curr Opin Otolaryngol Head Neck Surg 2021; 29:385-390. [PMID: 34354014 PMCID: PMC9002354 DOI: 10.1097/moo.0000000000000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Advancements in cochlear implant surgical approaches and electrode designs have enabled preservation of residual acoustic hearing. Preservation of low-frequency hearing allows cochlear implant users to benefit from electroacoustic stimulation, which improves performance in complex listening situations, such as music appreciation and speech understanding in noise. Despite the relative high rates of success of hearing preservation, postoperative acoustic hearing outcomes remain unpredictable. RECENT FINDINGS Thin, flexible, lateral wall arrays are preferred for hearing preservation. Both shortened and thin, lateral wall arrays have shown success with hearing preservation and the optimal implant choice is an issue of ongoing investigation. Electrocochleography can monitor cochlear function during and after insertion of the electrode array. The pathophysiology of hearing loss acutely after cochlear implant may differ from that involved in delayed hearing loss following cochlear implant. Emerging innovations may reduce cochlear trauma and improve hearing preservation. SUMMARY Hearing preservation is possible using soft surgical techniques and electrode arrays designed to minimize cochlear trauma; however, a subset of patients suffer from partial to total loss of acoustic hearing months to years following surgery despite evidence of residual apical hair cell function. Early investigations in robotic-assisted insertion and dexamethasone-eluting implants show promise.
Collapse
Affiliation(s)
- Osama Tarabichi
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Megan Jensen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| |
Collapse
|