1
|
Matsui H, Lopez IA, Ishiyama G, Ishiyama A. Immunohistochemical localization of glucocorticoid receptors in the human cochlea. Brain Res 2023; 1806:148301. [PMID: 36868509 PMCID: PMC10521330 DOI: 10.1016/j.brainres.2023.148301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
In the present study we investigated the localization of glucocorticoid receptors (GCR) in the human inner ear using immunohistochemistry. Celloidin-embedded cochlear sections of patients with normal hearing (n = 5), patients diagnosed with MD (n = 5), and noise induced hearing loss (n = 5) were immunostained using GCR rabbit affinity-purified polyclonal antibodies and secondary fluorescent or HRP labeled antibodies. Digital fluorescent images were acquired using a light sheet laser confocal microscope. In celloidin-embedded sections GCR-IF was present in the cell nuclei of hair cells and supporting cells of the organ of Corti. GCR-IF was detected in cell nuclei of the Reisner's membrane. GCR-IF was seen in cell nuclei of the stria vascularis and the spiral ligament. GCR-IF was found in the spiral ganglia cell nuclei, however, spiral ganglia neurons showed no GCR-IF. Although GCRs were found in most cell nuclei of the cochlea, the intensity of IF was differential among the different cell types being more intense in supporting cells than in sensory hair cells. The differential expression of GCR receptors found in the human cochlea may help to understand the site of action of glucocorticoids in different ear diseases.
Collapse
Affiliation(s)
- Hirooki Matsui
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA; Department of Otolaryngology, Head and Neck Surgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA.
| | - Gail Ishiyama
- Department of Neurology. David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA
| |
Collapse
|
2
|
Graterón E, Scaglione T, Airen S, Goncalves S, Ceballos SA, Baguley D, Chiossone JA. Transient decrease in sound tolerance levels following hearing deprivation in normal-hearing subjects. J Otol 2022; 17:232-238. [PMID: 36249923 PMCID: PMC9547106 DOI: 10.1016/j.joto.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Eleazar Graterón
- Fundación Venezolana de Otología, Clinical Research Group, Venezuela
| | - Tricia Scaglione
- University of Miami, Department of Otolaryngology, USA
- Corresponding author. 8100 SW 10th Ave, Crossroads Business Park Bldg 3, Floor 3, Plantation, FL, 33322, USA.
| | - Shriya Airen
- University of Miami, Department of Otolaryngology, USA
| | | | - Sinay A. Ceballos
- Fundación Venezolana de Otología, Clinical Research Group, Venezuela
| | | | - Juan A. Chiossone
- Fundación Venezolana de Otología, Clinical Research Group, Venezuela
- University of Miami, Department of Otolaryngology, USA
| |
Collapse
|
3
|
Nelson L, Johns JD, Gu S, Hoa M. Utilizing Single Cell RNA-Sequencing to Implicate Cell Types and Therapeutic Targets for SSNHL in the Adult Cochlea. Otol Neurotol 2021; 42:e1410-e1421. [PMID: 34510123 PMCID: PMC8595752 DOI: 10.1097/mao.0000000000003356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify genes implicated in sudden sensorineural hearing loss (SSNHL) and localize their expression in the cochlea to further explore potential pathogenic mechanisms and therapeutic targets. STUDY DESIGN Systematic literature review and bioinformatics analysis. DATA SOURCES The following sources were searched from inception through July 2, 2020: PubMed-NCBI, MEDLINE, Embase, CINAHL, Cochrane Library, ClinicalTrials.gov, OpenGrey, GreyNet, GreyLiterature Report, and European Union Clinical Trials Registry. PubMed-NCBI and MEDLINE were additionally searched for human temporal bone histopathologic studies related to SSNHL. METHODS Literature review of candidate SSNHL genes was conducted according to PRISMA guidelines. Existing temporal bone studies from SSNHL patients were analyzed to identify the most commonly affected inner ear structures. Previously published single-cell and single-nucleus RNA-Seq datasets of the adult mouse stria vascularis, as well as postnatal day 7 and 15 mouse cochlear hair cells and supporting cells, were utilized for localization of the SSNHL-related genes curated through literature review. CONCLUSIONS We report 92 unique single nucleotide polymorphisms (SNPs) in 76 different genes that have been investigated in relation to SSNHL in the literature. We demonstrate that a subset of these genes are expressed by cell types in the adult mouse stria vascularis and organ of Corti, consistent with findings from temporal bone studies in human subjects with SSNHL. We highlight several potential genetic targets relevant to current and possible future SSNHL treatments.
Collapse
Affiliation(s)
- Lacey Nelson
- Georgetown University School of Medicine, Washington, D.C
| | - J. Dixon Johns
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Michael Hoa
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| |
Collapse
|
4
|
Song W, Cao H, Zhang D, Xu H, Zhang Q, Wang Z, Li S, Wang W, Hu W, Wang B, Duan H. Association between NR3C1 gene polymorphisms and age-related hearing impairment in Qingdao Chinese elderly. BMC Med Genomics 2021; 14:193. [PMID: 34320993 PMCID: PMC8320226 DOI: 10.1186/s12920-021-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Age-related hearing impairment (ARHI) has attracted increasing attention recently. It is caused by genetic and environmental factors. A number of ARHI-related genes have been found. This study aimed to detect the potential association between NR3C1 gene polymorphisms and ARHI by means of weighted allele score. METHODS A total of 861 participants from Qingdao city were selected by means of cluster random sampling. We statistically evaluated the characteristics of individuals and used the Mann-Whitney U test or chi-square test for comparison. The publicly available expression quantitative trait locus (eQTL) was queried on the website of the Genotype-Tissue Expression (GTEx). We used the weighted allele score and logistic regression analysis to explore the association between NR3C1 gene polymorphisms and ARHI. Finally, the prediction model was constructed by logistic regression and receiver operating characteristic (ROC) curve. RESULTS All individuals over 60 years of age were enrolled in this study. The allele of rs61757411, rs41423247 and rs6877893 were significantly different between the ARHI group and the normal hearing group (P < 0.01). Though eQTL analysis, rs6877893 and rs33388 might affect the occurrence of ARHI by affecting the expression of NR3C1 gene in artery aorta. Then we performed two models: one without adding any covariates into model and the other adjusting for demographic characteristic, smoking and drinking, diet and exercise, and physical conditions. In the multivariate-adjusted model 2, the odds ratio with 95% confidence interval for weighted allele score (NR3C1) was 0.841 (0.710-0.995, P = 0.043). The area under the ROC curve was 0.755, indicating that the model had good predictability. CONCLUSIONS Our study suggests that NR3C1 gene polymorphisms was significantly associated with ARHI.
Collapse
Affiliation(s)
- Wanxue Song
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Hainan Cao
- Department of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao, 266011, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Haiyan Xu
- Chengyang Street Community Health Service Center, No. 137 Wenyang Road, Chengyang District, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Qianqian Zhang
- Zaozhuang Municipal Center for Disease Control and Prevention, No. 223 Jiefang North Road, Shizhong District, Zaozhuang, 277100, Shandong Province, People's Republic of China
| | - Zhaoguo Wang
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China
| | - Wenchao Hu
- Department of Endocrinology, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Bingling Wang
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Haiping Duan
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, People's Republic of China.
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China.
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033, Shandong Province, People's Republic of China.
| |
Collapse
|
5
|
Liu Z, Fei B, Xie L, Liu J, Chen X, Zhu W, Lv L, Ma W, Gao Z, Hou J, She W. Glucocorticoids protect HEI-OC1 cells from tunicamycin-induced cell damage via inhibiting endoplasmic reticulum stress. Open Life Sci 2021; 16:695-702. [PMID: 34250248 PMCID: PMC8253451 DOI: 10.1515/biol-2021-0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background To analyze mechanisms of action of glucocorticoid treatment for endoplasmic reticulum stress (ERS) in sensorineural hearing loss (SNHL), we aimed to evaluate the expression and activation status of the protein kinase RNA-like ER kinase (PERK)–C/EBP homologous protein (CHOP) pathway, which is the major pathway in the ERS. Methods In the present study, we established an in vitro ERS model using tunicamycin-treated hair-cell-like HEI-OC1 cells. The effect of dexamethasone on proliferation inhibition, apoptosis, and ATF4–CHOP pathway in HEI-OC1 cells was examined by CCK-8 assay, flow cytometry, western blotting, and reverse transcription PCR, respectively. Results In HEI-OC1 cells, dexamethasone was shown to significantly reduce the tunicamycin-induced expression of ATF4 and CHOP in the context of sustained viability and proliferation, a therapeutic effect that was reversible by co-treatment with a glucocorticoid antagonist. Conclusion Dexamethasone can protect hair-cell-like HEI-OC1 cells from ERS damage, which may be one of the mechanisms of action for GCs in SNHL treatment.
Collapse
Affiliation(s)
- Zhibiao Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Nanjing, China
| | - Bing Fei
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Huai’an Hospital of Xuzhou Medical University, 62 South Huaihai Road, Huai’an 223002, China
| | - Lisheng Xie
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
| | - Jin Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaorui Chen
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenyan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Nanjing, China
| | - Lingyun Lv
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Nanjing, China
| | - Wei Ma
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
| | - Ziwen Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, China
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, China
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
6
|
The Physiologic Role of Corticosteroids in Menière's Disease: An Update on Glucocorticoid-mediated Pathophysiology and Corticosteroid Inner Ear Distribution. Otol Neurotol 2021; 41:271-276. [PMID: 31821251 DOI: 10.1097/mao.0000000000002467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: There are multiple treatment options for Ménière's disease (MD), including dietary modifications, aminoglycoside therapy, and surgery. All have limitations, ranging from limited effectiveness to permanent hearing loss. Corticosteroids have long been used to manage MD due to their relative efficacy and tolerability, but the exact mechanism for disease alleviation is uncertain. Until recently, the precise distribution and role that glucocorticoid receptors play in inner ear diseases have remained largely uninvestigated. Several studies propose they influence mechanisms of fluid regulation through ion and water homeostasis. This review will provide an update on the basic science literature describing the activity of endogenous glucocorticoids and exogenous corticosteroids in the inner ear and the relevance to MD, as well as early clinical trial data pertaining to the application of novel technologies for more effective administration of corticosteroids for the treatment of MD.
Collapse
|
7
|
Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line. Hear Res 2019; 377:12-23. [PMID: 30878773 DOI: 10.1016/j.heares.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023]
Abstract
Aminoglycoside antibiotics have potent antibacterial properties but cause hearing loss in up to 25% of patients. These drugs are commonly administered in patients with high glucocorticoid stress hormone levels and can be combined with exogenous glucocorticoid treatment. However, the interaction of stress and aminoglycoside-induced hearing loss has not been fully explored. In this study, we investigated the effect of the glucocorticoid stress hormone cortisol on hair cells in the zebrafish lateral line as an important step toward understanding how physiological stressors modulate hair cell survival. We found that 24-hr cortisol incubation sensitized hair cells to neomycin damage. Pharmacological and genetic manipulation demonstrates that sensitization depended on the action of the glucocorticoid receptor but not the mineralocorticoid receptor. Blocking endogenous cortisol production reduced hair cell susceptibility to neomycin, further evidence that glucocorticoids modulate aminoglycoside ototoxicity. Glucocorticoid transcriptional activity was apparent in lateral line hair cells, suggesting a direct action of cortisol in these aminoglycoside-sensitive cells. Our work shows that the stress hormone cortisol can increase hair cell sensitivity to aminoglycoside damage, which highlights the importance of recognizing stress and the impacts of glucocorticoid signaling in both ototoxicity research and clinical practice.
Collapse
|
8
|
Gauberg J, Kolosov D, Kelly SP. Claudin tight junction proteins in rainbow trout (Oncorhynchus mykiss) skin: Spatial response to elevated cortisol levels. Gen Comp Endocrinol 2017; 240:214-226. [PMID: 27771288 DOI: 10.1016/j.ygcen.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
This study examined regional distribution and corticosteroid-induced alterations of claudin (cldn) transcript abundance in teleost fish skin. Regional comparison of mRNA encoding 20 Cldns indicated that 12 exhibit differences in abundance along the dorsoventral axis of skin. However, relative abundance of cldns (i.e. most to least abundant) remained similar in different skin regions. Several cldns appear to be present in the epidermis and dermal vasculature whereas others are present only in the epidermis. Increased circulating cortisol levels significantly altered mRNA abundance of 10 cldns in a region specific manner, as well as corticosteroid receptors and 11β-hydroxysteroid dehydrogenase (type 2). Epidermis and epidermal mucous cell morphometrics also altered in response to cortisol, exhibiting changes that appear to enhance skin barrier properties. Taken together, data provide a first look at spatial variation in the molecular physiology of the teleost fish integument TJ complex and region-specific sensitivity to an endocrine factor.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Dennis Kolosov
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Scott P Kelly
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3 Canada.
| |
Collapse
|
9
|
Ion transport its regulation in the endolymphatic sac: suggestions for clinical aspects of Meniere's disease. Eur Arch Otorhinolaryngol 2016; 274:1813-1820. [PMID: 27804084 PMCID: PMC5340852 DOI: 10.1007/s00405-016-4362-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Ion transport and its regulation in the endolymphatic sac (ES) are reviewed on the basis of recent lines of evidence. The morphological and physiological findings demonstrate that epithelial cells in the intermediate portion of the ES are more functional in ion transport than those in the other portions. Several ion channels, ion transporters, ion exchangers, and so on have been reported to be present in epithelial cells of ES intermediate portion. An imaging study has shown that mitochondria-rich cells in the ES intermediate portion have a higher activity of Na+, K+-ATPase and a higher Na+ permeability than other type of cells, implying that molecules related to Na+ transport, such as epithelial sodium channel (ENaC), Na+–K+–2Cl− cotransporter 2 (NKCC2) and thiazide-sensitive Na+–Cl− cotransporter (NCC), may be present in mitochondria-rich cells. Accumulated lines of evidence suggests that Na+ transport is most important in the ES, and that mitochondria-rich cells play crucial roles in Na+ transport in the ES. Several lines of evidence support the hypothesis that aldosterone may regulate Na+ transport in ES, resulting in endolymph volume regulation. The presence of molecules related to acid/base transport, such as H+-ATPase, Na+–H+ exchanger (NHE), pendrin (SLC26A4), Cl−–HCO3− exchanger (SLC4A2), and carbonic anhydrase in ES epithelial cells, suggests that acid/base transport is another important one in the ES. Recent basic and clinical studies suggest that aldosterone may be involved in the effect of salt-reduced diet treatment in Meniere’s disease.
Collapse
|
10
|
Dogan R, Merıc A, Gedık O, Tugrul S, Eren SB, Ozturan O. Does systemic steroid deficiency affect inner ear functions? Am J Otolaryngol 2015; 36:568-74. [PMID: 25599654 DOI: 10.1016/j.amjoto.2014.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Today corticosteroids are employed for the treatment of various inner ear disorders. In this study we have investigated probable changes in hearing functions resulting from a deficiency of systemic steroid secretions. MATERIALS AND METHODS Twenty four healthy female rats were used in our study, allocated into three groups (medical adrenalectomy, medical adrenalectomy+dexamethasone, no treatment). Audiological evaluations were conducted at the beginning of the study and on days 7, 14 and 21. Blood samples were taken at the beginning and at the end of the study and blood corticosterone levels were determined. RESULTS While there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values of group 1, their ABR threshold values showed significant increases. In group 2, there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values. ABR thresholds of group 2 showed significant increases on days 7 and 14 as compared to their basal values, but there were no significant differences between the 21st day and basal ABR threshold values. There were no significant differences between the basal cortisol levels of the three groups. The mean cortisol level of group 1 on day 21 was found to be significantly lower than those of groups 2 and 3. CONCLUSION The results of the study demonstrated that there were no significant changes in DPOAE values with the cessation of cortisol secretion, while there was a progressive increase in ABR thresholds, which could be overcome with cortisone replacement.
Collapse
Affiliation(s)
- Remzi Dogan
- Department of Otorhinolaryngology, Bayrampasa State Hospital, Bayrampasa, Istanbul, Turkey.
| | - Ayşenur Merıc
- Department of Otorhinolaryngology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Ozge Gedık
- Faculty of Health Sciences, Department of Audiology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Selahattin Tugrul
- Department of Otorhinolaryngology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Sabri Baki Eren
- Department of Otorhinolaryngology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Orhan Ozturan
- Department of Otorhinolaryngology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| |
Collapse
|
11
|
Plante DT, Ingram DG. Seasonal trends in tinnitus symptomatology: evidence from Internet search engine query data. Eur Arch Otorhinolaryngol 2014; 272:2807-13. [PMID: 25234771 DOI: 10.1007/s00405-014-3287-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/07/2014] [Indexed: 11/25/2022]
Abstract
The primary aim of this study was to test the hypothesis that the symptom of tinnitus demonstrates a seasonal pattern with worsening in the winter relative to the summer using Internet search engine query data. Normalized search volume for the term 'tinnitus' from January 2004 through December 2013 was retrieved from Google Trends. Seasonal effects were evaluated using cosinor regression models. Primary countries of interest were the United States and Australia. Secondary exploratory analyses were also performed using data from Germany, the United Kingdom, Canada, Sweden, and Switzerland. Significant seasonal effects for 'tinnitus' search queries were found in the United States and Australia (p < 0.00001 for both countries), with peaks in the winter and troughs in the summer. Secondary analyses demonstrated similarly significant seasonal effects for Germany (p < 0.00001), Canada (p < 0.00001), and Sweden (p = 0.0008), again with increased search volume in the winter relative to the summer. Our findings indicate that there are significant seasonal trends for Internet search queries for tinnitus, with a zenith in winter months. Further research is indicated to determine the biological mechanisms underlying these findings, as they may provide insights into the pathophysiology of this common and debilitating medical symptom.
Collapse
Affiliation(s)
- David T Plante
- Department of Psychiatry, Wisconsin Psychiatric Institute and Clinics, University of Wisconsin School of Medicine and Public Health, 6001 Research Park Blvd., Madison, WI, 53719, USA,
| | | |
Collapse
|
12
|
Marshak T, Steiner M, Kaminer M, Levy L, Shupak A. Prevention of Cisplatin-Induced Hearing Loss by Intratympanic Dexamethasone. Otolaryngol Head Neck Surg 2014; 150:983-90. [DOI: 10.1177/0194599814524894] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
Objective To examine the role of intratympanic Dexamethasone (ITD) in the prevention of Cisplatin-induced hearing loss. Study Design Prospective randomized controlled clinical trial. Setting Tertiary referral center. Subjects and Methods Twenty-six patients suffering from a neoplastic disease for which the treatment protocol included Cisplatin were recruited. Prior to each Cisplatin treatment session ITD was injected to the baseline randomly assigned ear while the other ear of the same patient served as the control. Audiometry and Distortion Product Otoacoustic Emissions (DPOAEs) test results of the baseline and follow-up examinations were compared within and between the study and control ears. Results The cumulative dose of Cisplatin was greater than 400 mg for the 15 subjects who completed the study. The pure tone threshold at 8000 Hz and pure tone average threshold at 4000 to 8000 Hz significantly increased in both the study ( P < .005, P < .03, respectively) and control ears ( P < .01, P < .005, respectively). Significant increase in the pure tone threshold for 6000 Hz was observed in the control ( P < .02) but not in the study group. Within the groups comparison also revealed significant decrease in the DPOAE average signal-to-noise ratio (SNR) for the f2 frequencies 7031 ( P < .04) and 8391 Hz ( P < .04) and SNR average for 4000 to 8000 Hz in the control ( P < .04) but not in the study ears. Conclusions ITD significantly attenuated hearing loss at 6000 Hz and decreased the outer hair dysfunction in the DPOAE f2 range of 4000 to 8000 Hz. ITD might have potential in the reduction of Cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Tal Marshak
- Unit of Otoneurology, Lin Medical Center, Haifa, Israel
- Department of Otolaryngology Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | | | | | - Levana Levy
- Department of Oncology Lin Medical Center, Haifa, Israel
| | - Avi Shupak
- Unit of Otoneurology, Lin Medical Center, Haifa, Israel
- Department of Otolaryngology Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
- The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| |
Collapse
|
13
|
Wong ACY, Froud KE, Hsieh YSY. Noise-induced hearing loss in the 21 st century: A research and translational update. World J Otorhinolaryngol 2013; 3:58-70. [DOI: 10.5319/wjo.v3.i3.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Millions of people worldwide are exposed to harmful levels of noise daily in their work and leisure environment. This makes noise-induced hearing loss (NIHL) a major occupational health risk globally. NIHL is the second most common form of acquired hearing loss after age-related hearing loss and is itself a major contributing factor to presbycusis. Temporary threshold shifts, once thought to be relatively harmless and recoverable, are now known to cause permanent cochlear injury leading to permanent loss of hearing sensitivity. This article reviews the current understanding of the cellular and molecular pathophysiology of NIHL with latest findings from animal models. Therapeutic approaches to protect against or to mitigate NIHL are discussed based on their proposed action against these known mechanisms of cochlear injury. Successes in identifying genes that predispose individuals to NIHL by candidate gene association studies are discussed with matched gene knockout animal models. This links to exciting developments in experimental gene therapy to replace and regenerate lost hair cells and post-noise otoprotective therapies currently being investigated in clinical trials. The aim is to provide new insights into current and projected future strategies to manage NIHL; bench to bedside treatment is foreseeable in the next 5 to 10 years.
Collapse
|
14
|
Relationship of glucocorticoid receptor expression in peripheral blood mononuclear cells and the cochlea of guinea pigs and effects of dexamethasone administration. PLoS One 2013; 8:e56323. [PMID: 23409174 PMCID: PMC3567064 DOI: 10.1371/journal.pone.0056323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/08/2013] [Indexed: 11/30/2022] Open
Abstract
Background Glucocorticoids (GCs) are widely used to treat sudden sensorineural hearing loss (SSNHL) and significantly improve hearing. However, GC insensitivity has been observed in some patients of SSNHL. Objective To study the correlation between GR expression in peripheral blood mononuclear cells (PBMCs) and in the cochlea of guinea pigs at mRNA and protein levels. Methods One group of guinea pigs received dexamethasone (10 mg/kg/day) intraperitoneally for 7 consecutive days (dexamethasone group), and another group of guinea pigs received normal saline (control group). Real time PCR and Western blotting were used to detect the expression of GR mRNA and GR protein in PBMCs and the cochleae. Results The GR mRNA and GR protein were detected in both PBMCs and the cochlear tissue of guinea pigs. GR mRNA and GR protein levels in PBMCs were positively correlated with those in the cochlea. The expression of GR mRNA and GR protein was significantly increased in the dexamethasone group compared to the control group. Conclusions Levels of GR mRNA and GR protein in the PBMCs were positively correlated with those in the cochlea of guinea pigs. Systemic dexamethasone treatment can significantly up-regulate GR expression in PBMCs and in the cochlea. Measurement of the GR level in PBMCs could be used as an indicator of GR level in the cochlea.
Collapse
|