1
|
Jwair S, Ramekers D, Thomeer HGXM, Versnel H. Acute effects of cochleostomy and electrode-array insertion on compound action potentials in normal-hearing guinea pigs. Front Neurosci 2023; 17:978230. [PMID: 36845413 PMCID: PMC9945226 DOI: 10.3389/fnins.2023.978230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Electrocochleography (ECochG) is increasingly used in cochlear implant (CI) surgery, in order to monitor the effect of insertion of the electrode array aiming to preserve residual hearing. However, obtained results are often difficult to interpret. Here we aim to relate changes in ECochG responses to acute trauma induced by different stages of cochlear implantation by performing ECochG at multiple time points during the procedure in normal-hearing guinea pigs. Materials and methods Eleven normal-hearing guinea pigs received a gold-ball electrode that was fixed in the round-window niche. ECochG recordings were performed during the four steps of cochlear implantation using the gold-ball electrode: (1) Bullostomy to expose the round window, (2) hand-drilling of 0.5-0.6 mm cochleostomy in the basal turn near the round window, (3) insertion of a short flexible electrode array, and (4) withdrawal of electrode array. Acoustical stimuli were tones varying in frequency (0.25-16 kHz) and sound level. The ECochG signal was primarily analyzed in terms of threshold, amplitude, and latency of the compound action potential (CAP). Midmodiolar sections of the implanted cochleas were analyzed in terms of trauma to hair cells, modiolar wall, osseous spiral lamina (OSL) and lateral wall. Results Animals were assigned to cochlear trauma categories: minimal (n = 3), moderate (n = 5), or severe (n = 3). After cochleostomy and array insertion, CAP threshold shifts increased with trauma severity. At each stage a threshold shift at high frequencies (4-16 kHz) was accompanied with a threshold shift at low frequencies (0.25-2 kHz) that was 10-20 dB smaller. Withdrawal of the array led to a further worsening of responses, which probably indicates that insertion and removal trauma affected the responses rather than the mere presence of the array. In two instances, CAP threshold shifts were considerably larger than threshold shifts of cochlear microphonics, which could be explained by neural damage due to OSL fracture. A change in amplitudes at high sound levels was strongly correlated with threshold shifts, which is relevant for clinical ECochG performed at one sound level. Conclusion Basal trauma caused by cochleostomy and/or array insertion should be minimized in order to preserve the low-frequency residual hearing of CI recipients.
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Hans G. X. M. Thomeer
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands,*Correspondence: Huib Versnel,
| |
Collapse
|
2
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Andrade JSCD, Baumhoff P, Cruz OLM, Lenarz T, Kral A. Cochlear implantation in an animal model documents cochlear damage at the tip of the implant. Braz J Otorhinolaryngol 2022; 88:546-555. [PMID: 33039317 PMCID: PMC9422412 DOI: 10.1016/j.bjorl.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Electrocochleography has recently emerged as a diagnostic tool in cochlear implant surgery, purposing hearing preservation and optimal electrode positioning. OBJECTIVE In this experimental study, extra-cochlear potentials were obtained during cochlear implant surgery in guinea pigs. The aim was to determine electrophysiological changes indicating cochlear trauma after cochleostomy and after electrode implantation in different insertion depths. METHODS Normal-hearing guinea pigs (n = 14) were implanted uni- or bilaterally with a multichannel electrode. The extra-cochlear cochlear nerve action potentials were obtained in response to acoustic stimuli at specific frequencies before and after cochleostomy, and after introduction of the electrode bundle. After the electrophysiological experiments, the guinea pigs were euthanized and microtomography was performed, in order to determine the position of the electrode and to calculate of the depth of insertion. Based on the changes of amplitude and thresholds in relation to the stimulus frequency, the electrophysiological data and the position obtained by the microtomography reconstruction were compared. RESULTS Cochleostomy promoted a small electrophysiological impact, while electrode insertion caused changes in the amplitude of extra-cochlear electrophysiological potentials over a wide range of frequencies, especially in the deepest insertions. There was, however, preservation of the electrical response to low frequency stimuli in most cases, indicating a limited auditory impact in the intraoperative evaluation. The mean insertion depth of the apical electrodes was 5339.56 μm (±306.45 - 6 inserted contacts) and 4447.75 μm (±290.23 - 5 inserted contacts). CONCLUSIONS The main electrophysiological changes observed during surgical procedures occurred during implantation of the electrode, especially the deepest insertions, whereas the cochleostomy disturbed the potentials to a lesser extent. While hearing loss was often observed apical to the cochlear implant, it was possible to preserve low frequencies after insertion.
Collapse
Affiliation(s)
- José Santos Cruz de Andrade
- Universidade Federal de São Paulo (UNIFESP), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, São Paulo, SP, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Brasília, DF, Brazil; Institute of Audioneurotechnology (VIANNA) & Department of Experimental Otology, Department of Otolaryngology, Medical University Hannover, Hannover, Germany.
| | - Peter Baumhoff
- Institute of Audioneurotechnology (VIANNA) & Department of Experimental Otology, Department of Otolaryngology, Medical University Hannover, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Oswaldo Laércio Mendonça Cruz
- Universidade Federal de São Paulo (UNIFESP), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, São Paulo, SP, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Brasília, DF, Brazil
| | - Thomas Lenarz
- Institute of Audioneurotechnology (VIANNA) & Department of Experimental Otology, Department of Otolaryngology, Medical University Hannover, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Andrej Kral
- Institute of Audioneurotechnology (VIANNA) & Department of Experimental Otology, Department of Otolaryngology, Medical University Hannover, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| |
Collapse
|
4
|
Implications of Phase Changes in Extracochlear Electrocochleographic Recordings During Cochlear Implantation. Otol Neurotol 2021; 43:e181-e190. [PMID: 34772884 DOI: 10.1097/mao.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the prevalence and implications of phase changes in extracochlear electrocochleography (ECochG) recordings during cochlear implantation. MATERIALS AND METHODS Extracochlear ECochG recordings were performed before and after insertion of the cochlear implant (CI) electrode by a recording electrode placed on the promontory. Acoustic stimuli were tone bursts at 250, 500, 750, and 1,000 Hz. The pure tone average (PTA) was determined before and approximately 4 weeks after surgery. RESULTS Extracochlear ECochG recordings in 69 ears of 68 subjects were included. At 250 Hz, the mean phase change was 43° (n = 50, standard deviation (SD) 44°), at 500 Hz 36° (n = 64, SD 36°), at 750 Hz 33° (n = 42, SD 39°), and at 1,000 Hz 22° (n = 54, SD 27°). Overall, in 48 out of 210 ECochG recordings a phase change of ≥45° (23%) was detectable. Ears with an amplitude drop >3 dB and a phase change ≥45° (n = 3) had a complete or near complete loss of residual cochlear function in all cases. A phase change of ≥90° in one recording was not associated with a larger amplitude change of the ECochG signal (1.9 dB vs. -0.9 dB, p = 0.1052, n = 69), but with a significantly larger postoperative hearing loss (17 dB vs. 26 dB, p = 0.0156, n = 69). CONCLUSIONS Phase changes occur regularly in extracochlear ECochG recordings during cochlear implantation. Phase changes of ≥90° with or without amplitude changes in the ECochG signal are associated with a larger postoperative hearing loss and could therefore represent an independent marker for cochlear trauma or changes of inner ear mechanics relevant for the postoperative hearing outcome.
Collapse
|
5
|
Correlation Between Electrocochleographic Changes During Surgery and Hearing Outcome in Cochlear Implant Recipients: A Case Report and Systematic Review of the Literature. Otol Neurotol 2021; 41:318-326. [PMID: 31834213 DOI: 10.1097/mao.0000000000002506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the correlation between intraoperative changes of electrocochleography (ECochG) responses and traumatic cochlear implant insertions as well as postoperative hearing loss. METHODS ECochG, radiological, and audiological data were collected prospectively in a cochlear implant recipient with otosclerosis and assumed cochlear trauma during electrode insertion. A systematic review was conducted within PubMed-NCBI, EMBASE, and the Cochrane Library using the terms "Cochlear implant" and "Electrocochleography." Original studies that evaluated intraoperative ECochG responses and postoperative hearing loss were selected and analyzed. RESULTS The case report revealed a drop of intra- and extracochlear ECochG signals during electrode insertion. The postoperative computed tomography scan suggested a scalar dislocation. There was no measurable hearing 4 weeks after surgery. Within the database search, nine articles met the inclusion criteria. All were case series reports (range from 2 to 36 subjects) with a total of 173 subjects. Due to the heterogeneous data, a meta-analysis was unfeasible. CONCLUSIONS In concordance with some findings in the literature, the presented case report suggests that a drop of intra- and extracochlear ECochG signals during the insertion of the electrode array is associated with cochlear trauma and postoperative hearing loss in some cases. However, the literature is inconclusive regarding the correlation between intraoperative changes of the ECochG signals and postoperative hearing preservation. More studies investigating the correlation are needed to provide sufficient data.
Collapse
|
6
|
Abstract
OBJECTIVE Given the heterogeneity of papers about electrocochleography (ECochG) and cochlear implantation (CI) and the absence of a systematic review in the current literature, the aim of this work was to analyze the uses of ECochG in the different stages of CI. DATA SOURCES A search of PubMed from inception to December 8, 2019, with cross-references, was executed. Keywords were: "Cochlear Implant" OR "Cochlear Implantation" AND "Electrocochleography" OR "ECochG." The main eligibility criteria were English-language articles, investigating the use of ECochG in the different phases of CI. STUDY SELECTION Literature reviews, editorials, case reports, conference papers were excluded, as were papers in which ECochG was just sporadically executed. DATA EXTRACTION The quality of the included studies was assessed using "The Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) Statement. DATA SYNTHESIS A total of 95 articles were identified and 60 papers were included. The included articles covered a timeframe from 2003 to 2019. Of the 60 papers, 46 were human studies, 12 animal studies, and two involved more data sets. Eleven related to the diagnostic phase, 43 described intraoperative monitoring, and 10 were regarding follow-up testing. Hearing preservation was the most discussed topic with 25 included articles. CONCLUSIONS AND RELEVANCE ECochG measurements appeared to be useful in many aspects of CI, such as hearing preservation. Our review is the first that shows the evolution of the technique and how much has been achieved from the earliest experiments to the most recent signal process refinements and device implementation in CI.
Collapse
|
7
|
Abstract
Electric-acoustic stimulation (EAS) is a special treatment modality for those patients who are profoundly deaf in the high-frequency (HF) region and retain usable hearing in the low-frequency (LF) region. Combining the electric stimulation with cochlear implant (CI) in the HF and acoustic amplification of residual hearing using a conventional hearing aid (HA) in the LF region defines EAS. The EAS concept was first proposed by C. von Ilberg from Frankfurt, Germany in the year 1997. In association with MED-EL, all the necessary safety studies were performed in non-human subjects before the first patient received it in 1997. In association with MED-EL, all the necessary safety studies were performed in non-human subjects before the first patient received it in 1999. For the patient to successfully use the EAS concept, the residual hearing needs to be preserved to a high extent and for several years. This requires a highly flexible electrode array in safeguarding the intra-cochlear structures during and after the CI electrode array insertion. Combining the HA unit with the audio processor unit of the CI was necessary for the convenient wearing of the unified audio processor. Fitting of the unified audio processor is another important factor that contributes to the overall success of the EAS treatment. The key translational research efforts at MED-EL were on the development of flexible electrodes, a unified audio processor, innovations in the fitting process, intra-operative monitoring of cochlear health during electrode insertion, pre-operative soft-ware tool to evaluate the cochlear size and electrode selection and some new innovations tried within EAS topic. This article covers the milestones of translational research from the first concept to the widespread clinical use of EAS.
Collapse
Affiliation(s)
| | - Ingeborg Hochmair
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
| |
Collapse
|
8
|
Toward a Better Understanding of Electrocochleography: Analysis of Real-Time Recordings. ACTA ACUST UNITED AC 2020; 41:1560-1567. [DOI: 10.1097/aud.0000000000000871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Band-Limited Chirp-Evoked Compound Action Potential in Guinea Pig: Comprehensive Neural Measure for Cochlear Implantation Monitoring. Ear Hear 2020; 42:142-162. [PMID: 32665481 DOI: 10.1097/aud.0000000000000910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Patients with severely impaired high-frequency hearing and sufficient residual low-frequency hearing can be provided with a cochlear implant (CI), thereby facilitating ipsilateral electric and acoustic stimulation with established advantages over electric stimulation alone. However, partial or complete hearing loss often occurred after implantation due to, inter alia, acute mechanical trauma to cochlear structures during electrode insertion. Possibilities of intraoperative monitoring using electrocochleography (ECochG) have recently been studied in CI patients, primarily using the ongoing response to low-frequency tone bursts consisting of the cochlear microphonic (CM) and the auditory nerve neurophonic. By contrast, the transient neural response to tone bursts, that is, compound action potential (CAP), was generally less detectable or less sensitive as a monitoring measure, thus falling short of providing useful contribution to electrocochleography analysis. In this study, we investigate using chirps to evoke more robust CAP responses in a limited frequency band by synchronizing neural firing, and thereby improving CAP sensitivity to mechanical trauma in a guinea pig model of cochlear implantation. DESIGN Stimuli were band-limited between 100 Hz and 10 kHz to investigate their frequency range selectivity as a preliminary model for low-frequency hearing. They were constructed by adding a harmonic series either with zero phase delay (click) or by adjusting the phase delay at a rate that is inversely related to a traveling wave delay model (chirp), with three different parameters to examine level-dependent delay compression. The amplitude spectrum was thus identical between stimuli with differences only in phase. In Experiment 1, we compared input-output functions recorded at the round window in normal-hearing guinea pigs and implemented a high-pass noise masking paradigm to infer neural contribution to the CAP. In Experiment 2, guinea pigs were implanted with a custom-built CI electrode using a motorized micromanipulator. Acute mechanical trauma was simulated during the electrode insertion. At each insertion step, CAP and CM responses were measured at the round window for the following stimuli: broad-band click, band-limited click, and band-limited chirps (3 parameters), and tone bursts at frequencies 1, 2, 4, and 8 kHz. RESULTS Chirps compared with the equal-band click showed significantly lower thresholds and steeper slopes of sigmoid-fitted input-output functions. The shorter chirp evoked significantly larger amplitudes than click when compared at equal sensation level. However, the click evoked larger amplitudes than chirps at higher levels and correspondingly achieved larger saturation amplitudes. The results of the high-pass noise masking paradigm suggest that chirps could efficiently synchronize neural firing in their targeted frequency band, while the click recruited more basal fibers outside its limited band. Finally, monitoring sensitivity during electrode insertion, defined as relative amplitude change per unit distance, was higher for chirp-evoked CAP and tone burst-evoked CM, but smaller for CAP responses evoked by clicks or tone bursts. CONCLUSION The chirp was shown to be an efficient stimulus in synchronizing neural firing for a limited frequency band in the guinea pig model. This study provides a proof of principle for using chirp-evoked CAP as a comprehensive neural measure in CI patients with residual hearing.
Collapse
|
10
|
Changes of Electrocochleographic Responses During Cochlear Implantation Presented at the Annual Meeting of ADANO 2016 in Berlin. Otol Neurotol 2019; 40:e424-e429. [DOI: 10.1097/mao.0000000000001939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Helmstaedter V, Lenarz T, Erfurt P, Kral A, Baumhoff P. The Summating Potential Is a Reliable Marker of Electrode Position in Electrocochleography: Cochlear Implant as a Theragnostic Probe. Ear Hear 2019; 39:687-700. [PMID: 29251689 DOI: 10.1097/aud.0000000000000526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE For the increasing number of cochlear implantations in subjects with residual hearing, hearing preservation, and thus the prevention of implantation trauma, is crucial. A method for monitoring the intracochlear position of a cochlear implant (CI) and early indication of imminent cochlear trauma would help to assist the surgeon to achieve this goal. The aim of this study was to evaluate the reliability of the different electric components recorded by an intracochlear electrocochleography (ECochG) as markers for the cochleotopic position of a CI. The measurements were made directly from the CI, combining intrasurgical diagnostics with the therapeutical use of the CI, thus, turning the CI into a "theragnostic probe." DESIGN Intracochlear ECochGs were measured in 10 Dunkin Hartley guinea pigs of either sex, with normal auditory brainstem response thresholds. All subjects were fully implanted (4 to 5 mm) with a custom six contact CI. The ECochG was recorded simultaneously from all six contacts with monopolar configuration (retroauricular reference electrode). The gross ECochG signal was filtered off-line to separate three of its main components: compound action potential, cochlear microphonic, and summating potential (SP). Additionally, five cochleae were harvested and histologically processed to access the spatial position of the CI contacts. Both ECochG data and histological reconstructions of the electrode position were fitted with the Greenwood function to verify the reliability of the deduced cochleotopic position of the CI. RESULTS SPs could be used as suitable markers for the frequency position of the recording electrode with an accuracy of ±1/4 octave in the functioning cochlea, verified by histology. Cochlear microphonics showed a dependency on electrode position but were less reliable as positional markers. Compound action potentials were not suitable for CI position information but were sensitive to "cochlear health" (e.g., insertion trauma). CONCLUSIONS SPs directly recorded from the contacts of a CI during surgery can be used to access the intracochlear frequency position of the CI. Using SP monitoring, implantation may be stopped before penetrating functioning cochlear regions. If the technique was similarly effective in humans, it could prevent implantation trauma and increase hearing preservation during CI surgery. Diagnostic hardware and software for recording biological signals with a CI without filter limitations might be a valuable add-on to the portfolios of CI manufacturers.
Collapse
Affiliation(s)
- Victor Helmstaedter
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing 4 All" (DFG EXC 1077), Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing 4 All" (DFG EXC 1077), Hannover, Germany
| | - Peter Erfurt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing 4 All" (DFG EXC 1077), Hannover, Germany.,Department of Experimental Otology & Institute of AudioNeuroTechnology (VIANNA), Hannover, Germany
| | - Peter Baumhoff
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Department of Experimental Otology & Institute of AudioNeuroTechnology (VIANNA), Hannover, Germany
| |
Collapse
|
12
|
Lo J, Bester C, Collins A, Newbold C, Hampson A, Chambers S, Eastwood H, O'Leary S. Intraoperative force and electrocochleography measurements in an animal model of cochlear implantation. Hear Res 2018; 358:50-58. [DOI: 10.1016/j.heares.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
|
13
|
Dalbert A, Pfiffner F, Hoesli M, Koka K, Veraguth D, Roosli C, Huber A. Assessment of Cochlear Function during Cochlear Implantation by Extra- and Intracochlear Electrocochleography. Front Neurosci 2018; 12:18. [PMID: 29434534 PMCID: PMC5790789 DOI: 10.3389/fnins.2018.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022] Open
Abstract
Objective: The aims of this study were: (1) To investigate the correlation between electrophysiological changes during cochlear implantation and postoperative hearing loss, and (2) to detect the time points that electrophysiological changes occur during cochlear implantation. Material and Methods: Extra- and intracochlear electrocochleography (ECoG) were used to detect electrophysiological changes during cochlear implantation. Extracochlear ECoG recordings were conducted through a needle electrode placed on the promontory; for intracochlear ECoG recordings, the most apical contact of the cochlear implant (CI) electrode itself was used as the recording electrode. Tone bursts at 250, 500, 750, and 1000 Hz were used as low-frequency acoustic stimuli and clicks as high-frequency acoustic stimuli. Changes of extracochlear ECoG recordings after full insertion of the CI electrode were correlated with pure-tone audiometric findings 4 weeks after surgery. Results: Changes in extracochlear ECoG recordings correlated with postoperative hearing change (r = −0.44, p = 0.055, n = 20). Mean hearing loss in subjects without decrease or loss of extracochlear ECoG signals was 12 dB, compared to a mean hearing loss of 22 dB in subjects with a detectable decrease or a loss of ECoG signals (p = 0.0058, n = 51). In extracochlear ECoG recordings, a mean increase of the ECoG signal of 4.4 dB occurred after opening the cochlea. If a decrease of ECoG signals occurred during insertion of the CI electrode, the decrease was detectable during the second half of the insertion. Conclusion: ECoG recordings allow detection of electrophysiological changes in the cochlea during cochlear implantation. Decrease of extracochlear ECoG recordings during surgery has a significant correlation with hearing loss 4 weeks after surgery. Trauma to cochlear structures seems to occur during the final phase of the CI electrode insertion. Baseline recordings for extracochlear ECoG recordings should be conducted after opening the cochlea. ECoG responses can be recorded from an intracochlear site using the CI electrode as recording electrode. This technique may prove useful for monitoring cochlear trauma intraoperatively in the future.
Collapse
Affiliation(s)
- Adrian Dalbert
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Flurin Pfiffner
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Marco Hoesli
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Kanthaiah Koka
- Department of Research and Technology, Advanced Bionics LLC, Valencia, CA, United States
| | - Dorothe Veraguth
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Christof Roosli
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Alexander Huber
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Dalbert A, Pfiffner F, Hoesli M, Koka K, Veraguth D, Roosli C, Huber A. Assessment of Cochlear Function during Cochlear Implantation by Extra- and Intracochlear Electrocochleography. Front Neurosci 2018. [PMID: 29434534 DOI: 10.3389/fnins.2018.00018/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Objective: The aims of this study were: (1) To investigate the correlation between electrophysiological changes during cochlear implantation and postoperative hearing loss, and (2) to detect the time points that electrophysiological changes occur during cochlear implantation. Material and Methods: Extra- and intracochlear electrocochleography (ECoG) were used to detect electrophysiological changes during cochlear implantation. Extracochlear ECoG recordings were conducted through a needle electrode placed on the promontory; for intracochlear ECoG recordings, the most apical contact of the cochlear implant (CI) electrode itself was used as the recording electrode. Tone bursts at 250, 500, 750, and 1000 Hz were used as low-frequency acoustic stimuli and clicks as high-frequency acoustic stimuli. Changes of extracochlear ECoG recordings after full insertion of the CI electrode were correlated with pure-tone audiometric findings 4 weeks after surgery. Results: Changes in extracochlear ECoG recordings correlated with postoperative hearing change (r = -0.44, p = 0.055, n = 20). Mean hearing loss in subjects without decrease or loss of extracochlear ECoG signals was 12 dB, compared to a mean hearing loss of 22 dB in subjects with a detectable decrease or a loss of ECoG signals (p = 0.0058, n = 51). In extracochlear ECoG recordings, a mean increase of the ECoG signal of 4.4 dB occurred after opening the cochlea. If a decrease of ECoG signals occurred during insertion of the CI electrode, the decrease was detectable during the second half of the insertion. Conclusion: ECoG recordings allow detection of electrophysiological changes in the cochlea during cochlear implantation. Decrease of extracochlear ECoG recordings during surgery has a significant correlation with hearing loss 4 weeks after surgery. Trauma to cochlear structures seems to occur during the final phase of the CI electrode insertion. Baseline recordings for extracochlear ECoG recordings should be conducted after opening the cochlea. ECoG responses can be recorded from an intracochlear site using the CI electrode as recording electrode. This technique may prove useful for monitoring cochlear trauma intraoperatively in the future.
Collapse
Affiliation(s)
- Adrian Dalbert
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Flurin Pfiffner
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Marco Hoesli
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Kanthaiah Koka
- Department of Research and Technology, Advanced Bionics LLC, Valencia, CA, United States
| | - Dorothe Veraguth
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Christof Roosli
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Alexander Huber
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Dalbert A, Huber A, Veraguth D, Roosli C, Pfiffner F. Assessment of Cochlear Trauma During Cochlear Implantation Using Electrocochleography and Cone Beam Computed Tomography. Otol Neurotol 2017; 37:446-53. [PMID: 26945317 DOI: 10.1097/mao.0000000000000998] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess cochlear trauma during cochlear implantation by electrocochleography (ECoG) and cone beam computed tomography (CBCT) and to correlate intraoperative cochlear trauma with postoperative loss of residual hearing. METHODS ECoG recordings to tone bursts at 250, 500, 750, and 1000 Hz and click stimuli were recorded before and after insertion of the cochlear implant electrode array, using an extracochlear recording electrode. CBCTs were conducted within 6 weeks after surgery. Changes of intraoperative ECoG recordings and CBCT findings were correlated with postoperative threshold shifts in pure-tone audiograms. RESULTS Fourteen subjects were included. In three subjects a decrease of low-frequency ECoG responses at 250, 500, 750, and 1000 Hz occurred after insertion of the electrode array. This was associated with no or minimal residual hearing 4 weeks after surgery. ECoG responses to click stimuli were present in six subjects and showed a decrease after insertion of the electrode array in three. This was associated with a mean hearing loss of 21 dB in postoperative pure-tone audiograms. Scalar dislocation of the electrode array was assumed in one subject because of CBCT findings and correlated with a decrease of low-frequency ECoG responses and a complete loss of residual hearing. CONCLUSION Hearing loss of ≤11 dB is not associated with detectable decrease in ECoG recordings during cochlear implantation. However, in a majority of patients with threshold shifts of >11 dB or complete hearing loss, an intraoperative decrease of high- or low-frequency ECoG signals occurs, suggesting acute cochlear trauma.
Collapse
Affiliation(s)
- Adrian Dalbert
- University of Zurich and Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Abstract
HYPOTHESIS The compound action potential (CAP) is a purely neural component of the cochlea's response to sound, and may provide information regarding the existing neural substrate in cochlear implant (CI) subjects that can help account for variance in speech perception outcomes. BACKGROUND Measurement of the "total response" (TR), or sum of the magnitudes of spectral components in the ongoing responses to tone bursts across frequencies, has been shown to account for 40 to 50% of variance in speech perception outcomes. The ongoing response is composed of both hair cell and neural components. This correlation may be improved with the addition of the CAP. METHODS Intraoperative round window electrocochleography (ECochG) was performed in adult and pediatric CI subjects (n = 238). Stimuli were tones of different frequencies (250 Hz-4 kHz) at 90 dB nHL. The CAP was assessed in two ways, as an amplitude and with a scaling factor derived from a function fitted to the response. The results were correlated with consonant-nucleus-consonant (CNC) word scores at 6 months post-implantation (n = 51). RESULTS Only about half of the subjects had a measurable CAP at any frequency. The CNC word scores correlated weakly with both amplitude (r = 0.20, p < 0.001) and scaling factor (r = 0.25, p < 0.01). In contrast, the TR alone accounted for 43% of the variance, and addition of either CAP measurement in multiple regression did not account for additional variance. CONCLUSIONS The underlying pathology in CI patients causes the CAP to be often absent and highly variable when present. The TR is a better predictor of speech perception outcomes than the CAP.
Collapse
|
17
|
Mamelle E, Kechai NE, Granger B, Sterkers O, Bochot A, Agnely F, Ferrary E, Nguyen Y. Effect of a liposomal hyaluronic acid gel loaded with dexamethasone in a guinea pig model after manual or motorized cochlear implantation. Eur Arch Otorhinolaryngol 2016; 274:729-736. [PMID: 27714498 DOI: 10.1007/s00405-016-4331-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022]
Abstract
Goals of cochlear implantation have shifted from complete insertion of the cochlear electrode array towards low traumatic insertion with minimally invasive techniques. The aim of this study was first to evaluate, in a guinea pig model of cochlear implantation, the effect of a motorized insertion technique on hearing preservation. The second goal was to study a new gel formulation containing dexamethasone phosphate loaded in liposomes (DEX-P). Guinea pigs had a unilateral cochlear implantation with either a manual technique (n = 12), or a motorized technique (n = 15), with a 0.4 mm diameter and 4 mm long array trough a cochleostomy. At the end of the procedure, hyaluronic acid gel containing drug-free liposomes, or liposomes loaded with DEX-P, was injected into the bulla. Auditory brainstem responses thresholds were recorded before surgery and day 2 and 7 after surgery. All the animals had increased auditory brainstem responses thresholds after the cochlear implantation. Implanted animals with the motorized insertion tool experienced a partial hearing recovery at day 7 but not in those implanted with the manual insertion procedure (p < 0.001). In the manually implanted animals, a partial recovery was observed when DEX-P contained in liposomal gel was locally administrated (p < 0.0001). Finally, no additive effect with the motorized insertion was noticed. The deleterious effect of manual insertion, during cochlear implantation, can be prevented with local DEX-P administration in the bulla at day 7. The use of a motorized tool performed more atraumatic electrode array insertion for postoperative hearing.
Collapse
Affiliation(s)
- Elisabeth Mamelle
- UMPC, Paris Sorbonne, INSERM, "Minimally Invasive Robot-based Hearing Rehabilitation", Paris 6, France.
- AP-HP, Pitié-Salpêtrière Hospital, Unit of Otology, Auditory Implants and Skull Base Surgery, Otolaryngology Department, 75013, Paris 6, France.
| | - Naila El Kechai
- Institut Galien Paris Sud, CNRS 8612, Paris-Sud, Paris-Saclay University, 92290, Châtenay-Malabry, France
| | - Benjamin Granger
- AP-HP, Pitié-Salpêtrière Hospital, Unit of Otology, Auditory Implants and Skull Base Surgery, Otolaryngology Department, 75013, Paris 6, France
- Department of Public Health, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Olivier Sterkers
- UMPC, Paris Sorbonne, INSERM, "Minimally Invasive Robot-based Hearing Rehabilitation", Paris 6, France
- AP-HP, Pitié-Salpêtrière Hospital, Unit of Otology, Auditory Implants and Skull Base Surgery, Otolaryngology Department, 75013, Paris 6, France
| | - Amélie Bochot
- Institut Galien Paris Sud, CNRS 8612, Paris-Sud, Paris-Saclay University, 92290, Châtenay-Malabry, France
| | - Florence Agnely
- Institut Galien Paris Sud, CNRS 8612, Paris-Sud, Paris-Saclay University, 92290, Châtenay-Malabry, France
| | - Evelyne Ferrary
- UMPC, Paris Sorbonne, INSERM, "Minimally Invasive Robot-based Hearing Rehabilitation", Paris 6, France
- AP-HP, Pitié-Salpêtrière Hospital, Unit of Otology, Auditory Implants and Skull Base Surgery, Otolaryngology Department, 75013, Paris 6, France
| | - Yann Nguyen
- UMPC, Paris Sorbonne, INSERM, "Minimally Invasive Robot-based Hearing Rehabilitation", Paris 6, France
- AP-HP, Pitié-Salpêtrière Hospital, Unit of Otology, Auditory Implants and Skull Base Surgery, Otolaryngology Department, 75013, Paris 6, France
| |
Collapse
|
18
|
Risoud M, Bonne NX, Fourdrinier M, Hubert T, Vincent C. Technical note for post-auricular route surgery in Mongolian gerbil. Hear Res 2016; 337:65-9. [PMID: 27244698 DOI: 10.1016/j.heares.2016.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/19/2022]
Abstract
The Mongolian gerbil (Meriones unguiculatus) is commonly used in hearing research because the hearing frequency spectrum of the gerbil is rather similar to that of the human being. However, a precise description of the surgical post-auricular route has not been reported. The aim of this technical note is to provide details on the procedure and the surgical anatomy of the post-auricular route in the Mongolian gerbil. Surgery was performed under general anesthesia on eight (2 males and 6 females) adult Mongolian gerbils. All steps of the post-auricular route were detailed. This surgery provided an access to the following structures: the semi-circular posterior and lateral canals, the external auditory meatus, the tympanic membrane, the round window, the stapes, the stapedial artery and the reliefs of the cochlea. No anatomic variation was noticed among the 8 animals. This post-auricular route in the Mongolian gerbil defines a brief and simple surgery, overall standardized as a consequence of the absence of common anatomic variation, with painless and uncomplicated post-operative stage.
Collapse
Affiliation(s)
- Michaël Risoud
- CHU Lille, Department of Otology and Neurotology, F-59000 Lille, France; Univ. Lille 2, CHU Lille, INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France.
| | - Nicolas-Xavier Bonne
- CHU Lille, Department of Otology and Neurotology, F-59000 Lille, France; Univ. Lille 2, CHU Lille, INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Martin Fourdrinier
- Univ. Lille 2, CHU Lille, Experimental Resources Platform, Animal Housing Facility, F-59000 Lille, France
| | - Thomas Hubert
- Univ. Lille 2, CHU Lille, Experimental Resources Platform, Animal Housing Facility, F-59000 Lille, France
| | - Christophe Vincent
- CHU Lille, Department of Otology and Neurotology, F-59000 Lille, France; Univ. Lille 2, CHU Lille, INSERM U1008, Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| |
Collapse
|
19
|
Correlation of Electrophysiological Properties and Hearing Preservation in Cochlear Implant Patients. Otol Neurotol 2016; 36:1172-80. [PMID: 25839980 DOI: 10.1097/mao.0000000000000768] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To monitor changes in cochlear function during cochlear implantation using electrocochleography (ECoG) and to correlate changes to postoperative hearing preservation. METHODS ECoG responses to acoustic stimuli of 250, 500, and 1000 Hz were recorded during cochlear implantation. The recording electrode was placed on the promontory and stabilized to fix the position during cochlear implantation. Baseline recordings were obtained after completion of the posterior tympanotomy. Changes of the ongoing ECoG response at suprathreshold intensities were analyzed after full insertion of the cochlear implant electrode array. Audiometric tests were conducted before and 4 weeks after surgery and correlated with electrophysiological findings. RESULTS Ninety-five percent (18/19) of cochlear implant subjects had measurable ECoG responses. Under unchanged conditions, recordings showed a high repeatability without significant differences between 2 recordings (p ≤ 0.01). Ninety-four percent (17/18) of subjects showed no relevant changes in ECoG recordings after insertion of the cochlear implant electrode array. One subject showed decreases in responses at all frequencies indicative of cochlear trauma. This was associated with a complete hearing loss 4 weeks after surgery compared with mean presurgical low-frequency hearing of 78 dB HL. CONCLUSION Extracochlear ECoG is a reliable tool to assess cochlear function during cochlear implantation. Moderate threshold shifts could be caused by postoperative mechanisms or minor cochlear trauma. Detectable changes in extracochlear ECoG recordings, indicating gross cochlear trauma, are probably predictive of complete loss of residual acoustic hearing.
Collapse
|
20
|
Abstract
OBJECTIVE Electrophysiologic responses to acoustic stimuli are present in nearly all cochlear implant recipients when measured at the round window (RW). Intracochlear recording sites might provide an even larger signal and improve the sensitivity and the potential clinical utility of electrocochleography (ECoG). Thus, the goal of this study is to compare RW to intracochlear recording sites and to determine if such recordings can be used to monitor cochlear function during insertion of a cochlear implant. METHODS Intraoperative ECoG recordings were obtained in subjects receiving a cochlear implant from the RW and from just inside scala tympani (n = 26). Stimuli were tones at high levels (80-100 dB HL). Further recordings were obtained during insertions of a temporary lateral cochlear wall electrode (n = 8). Response magnitudes were determined as the sum of the first and second harmonics amplitudes. RESULTS All subjects had measurable extracochlear responses at the RW. Twenty cases (78%) showed a larger intracochlear response, compared with three (11%) that had a smaller response and three that were unchanged. On average, signal amplitudes increased with increasing electrode insertion depths, with the largest increase between 15 and 20 mm from the RW. CONCLUSION ECoG to acoustic stimuli via an intracochlear electrode is feasible in standard cochlear implant recipients. The increased signal can improve the speed and efficiency of data collection. The growth of response magnitudes with deeper intrascalar electrode positions could be explained by closer proximity or favorable geometry with respect to residual apical signal generators. Reductions in magnitude may represent unfavorable geometry or cochlear trauma.
Collapse
|
21
|
Honeder C, Landegger LD, Engleder E, Gabor F, Plasenzotti R, Plenk H, Kaider A, Hirtler L, Gstoettner W, Arnoldner C. Effects of intraoperatively applied glucocorticoid hydrogels on residual hearing and foreign body reaction in a guinea pig model of cochlear implantation. Acta Otolaryngol 2015; 135:313-9. [PMID: 25720453 DOI: 10.3109/00016489.2014.986758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONCLUSION The intraoperative application of glucocorticoid-loaded hydrogels seems to cause a reduction in neutrophil infiltration. No beneficial effect on hearing thresholds was detected. OBJECTIVES To evaluate the application of dexamethasone- and triamcinolone acetonide-loaded hydrogels for effects on hearing preservation and foreign body reaction in a guinea pig model for cochlear implantation (CI). METHODS A total of 48 guinea pigs (n = 12 per group) were implanted with a single channel electrode and intraoperatively treated with 50 μl of a 20% w/v poloxamer 407 hydrogel loaded with 6% dexamethasone or 30% triamcinolone acetonide, a control hydrogel, or physiological saline. Click- and tone burst-evoked compound action potential thresholds were determined preoperatively and directly postoperatively as well as on days 3, 7, 14, 21, and 28. At the end of the experiment, temporal bones were prepared for histological evaluation by a grinding/polishing technique with the electrode in situ. Three ears per treatment group were serially sectioned and evaluated for histological alterations. RESULTS The intratympanic application of glucocorticoid-loaded hydrogels did not improve the preservation of residual hearing in this cochlear implant model. The foreign body reaction to the electrode appeared reduced in the glucocorticoid-treated animals. No correlation was found between the histologically described trauma to the inner ear and the resulting hearing threshold shifts.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Forgues M, Koehn HA, Dunnon AK, Pulver SH, Buchman CA, Adunka OF, Fitzpatrick DC. Distinguishing hair cell from neural potentials recorded at the round window. J Neurophysiol 2013; 111:580-93. [PMID: 24133227 DOI: 10.1152/jn.00446.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients.
Collapse
Affiliation(s)
- Mathieu Forgues
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | |
Collapse
|