1
|
De Novo Valve Tissue Morphology Following Bioscaffold Mitral Valve Replacement in a Juvenile Non-Human Primate Model. Bioengineering (Basel) 2021; 8:bioengineering8070100. [PMID: 34356207 PMCID: PMC8301182 DOI: 10.3390/bioengineering8070100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/04/2022] Open
Abstract
The utility of implanting a bioscaffold mitral valve consisting of porcine small intestinal submucosa (PSIS) in a juvenile baboon model (12 to 14 months old at the time of implant; n = 3) to assess their in vivo tissue remodeling responses was investigated. Our findings demonstrated that the PSIS mitral valve exhibited the robust presence of de novo extracellular matrix (ECM) at all explantation time points (at 3-, 11-, and 20-months). Apart from a significantly lower level of proteoglycans in the implanted valve’s annulus region (p < 0.05) at 3 months compared to the 11- and 20-month explants, there were no other significant differences (p > 0.05) found between any of the other principal valve ECM components (collagen and elastin) at the leaflet, annulus, or chordae tendinea locations, across these time points. In particular, neochordae tissue had formed, which seamlessly integrated with the native papillary muscles. However, additional processing will be required to trigger accelerated, uniform and complete valve ECM formation in the recipient. Regardless of the specific processing done to the bioscaffold valve, in this proof-of-concept study, we estimate that a 3-month window following bioscaffold valve replacement is the timeline in which complete regeneration of the valve and integration with the host needs to occur.
Collapse
|
2
|
Gębczak K, Wiatrak B, Fortuna W. Evaluation of PC12 Cells' Proliferation, Adhesion and Migration with the Use of an Extracellular Matrix (CorMatrix) for Application in Neural Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3858. [PMID: 34300779 PMCID: PMC8307728 DOI: 10.3390/ma14143858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
The use of extracellular matrix (ECM) biomaterials for soft tissue repair has proved extremely successful in animal models and in some clinical settings. The aim of the study was to investigate the effect of the commercially obtained CorMatrix bioscaffold on the viability, proliferation and migration of rat pheochromocytoma cell line PC12. PC12 cells were plated directly onto a CorMatrix flake or the well surface of a 12-well plate and cultured in RPMI-1640 medium and a medium supplemented with the nerve growth factor (NGF). The surface of the culture plates was modified with collagen type I (Col I). The number of PC12 cells was counted at four time points and then analysed for apoptosis using a staining kit containing annexin V conjugate with fluorescein and propidium iodide (PI). The effect of CorMatrix bioscaffold on the proliferation and migration of PC12 cells was tested by staining the cells with Hoechst 33258 solution for analysis using fluorescence microscopy. The research showed that the percentage of apoptotic and necrotic cells was low (less than 7%). CorMatrix stimulates the proliferation and possibly migration of PC12 cells that populate all levels of the three-dimensional architecture of the biomaterial. Further research on the mechanical and biochemical capabilities of CorMatrix offers prospects for the use of this material in neuro-regenerative applications.
Collapse
Affiliation(s)
- Katarzyna Gębczak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
3
|
Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020; 48:2132-2153. [PMID: 31741227 PMCID: PMC7231673 DOI: 10.1007/s10439-019-02408-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
Collapse
Affiliation(s)
- Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Gonzalez BA, Pour Issa E, Mankame OV, Bustillos J, Cuellar A, Rodriguez AJ, Scholl F, Bibevski S, Hernandez L, Brehier V, Casares M, Rivas-Wagner K, Morales P, Lopez J, Wagner J, Bibevski J, Agarwal A, George F, Ramaswamy S. Porcine Small Intestinal Submucosa Mitral Valve Material Responses Support Acute Somatic Growth. Tissue Eng Part A 2020; 26:475-489. [PMID: 31802695 DOI: 10.1089/ten.tea.2019.0220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Conceptually, a tissue engineered heart valve would be especially appealing in the pediatric setting since small size and somatic growth constraints would be alleviated. In this study, we utilized porcine small intestinal submucosa (PSIS) for valve replacement. Of note, we evaluated the material responses of PSIS and subsequently its acute function and somatic growth potential in the mitral position. Methods and Results: Material and mechanical assessment demonstrated that both fatigued 2ply (∼65 μm) and 4ply (∼110 μm) PSIS specimens exhibited similar failure mechanisms, but at an accelerated rate in the former. Specifically, the fatigued 2ply PSIS samples underwent noticeable fiber pullout and recruitment on the bioscaffold surface, leading to higher yield strength (p < 0.05) and yield strain (p < 0.05) compared to its fatigued 4ply counterparts. Consequently, 2ply PSIS mitral valve constructs were subsequently implanted in juvenile baboons (n = 3). Valve function was longitudinally monitored for 90 days postvalve implantation and was found to be robust in all animals. Histology at 90 days in one of the animals revealed the presence of residual porcine cells, fibrin matrix, and host baboon immune cells but an absence of tissue regeneration. Conclusions: Our findings suggest that the altered structural responses of PSIS, postfatigue, rather than de novo tissue formation, are primarily responsible for the valve's ability to accommodate somatic growth during the acute phase (90 days) following mitral valve replacement. Impact Statement Tissue engineered heart valves (TEHVs) offer the potential of supporting somatic growth. In this study, we investigated a porcine small intestinal submucosa bioscaffold for pediatric mitral heart valve replacement. The novelty of the study lies in identifying material responses under mechanical loading conditions and its effectiveness in being able to function as a TEHV. In addition, the ability of the scaffold valve to support acute somatic growth was evaluated in the Baboon model. The current study contributes toward finding a solution for critical valve diseases in children, whose current prognosis for survival is poor.
Collapse
Affiliation(s)
- Brittany A Gonzalez
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA
| | - Elnaz Pour Issa
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA
| | - Omkar V Mankame
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA
| | - Jenniffer Bustillos
- Department of Mechanical and Material Engineering, Florida International University, Miami, Florida, USA
| | - Antonio Cuellar
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA
| | - Andres J Rodriguez
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA
| | - Frank Scholl
- Joe DiMaggio Children's Hospital, Memorial Regional Hospital, Hollywood, Florida, USA
| | - Steven Bibevski
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA.,Joe DiMaggio Children's Hospital, Memorial Regional Hospital, Hollywood, Florida, USA
| | - Lazaro Hernandez
- Joe DiMaggio Children's Hospital, Memorial Regional Hospital, Hollywood, Florida, USA
| | - Vincent Brehier
- Joe DiMaggio Children's Hospital, Memorial Regional Hospital, Hollywood, Florida, USA
| | - Mike Casares
- Joe DiMaggio Children's Hospital, Memorial Regional Hospital, Hollywood, Florida, USA
| | | | - Pablo Morales
- Mannheimer Foundation, Inc., Homestead, Florida, USA
| | - Jesus Lopez
- Mannheimer Foundation, Inc., Homestead, Florida, USA
| | - Joseph Wagner
- Mannheimer Foundation, Inc., Homestead, Florida, USA
| | | | - Arvind Agarwal
- Department of Mechanical and Material Engineering, Florida International University, Miami, Florida, USA
| | - Florence George
- Department of Mathematics and Statistics, Florida International University, Miami, Florida, USA
| | - Sharan Ramaswamy
- Department of Biomedical Engineering and Florida International University, Miami, Florida, USA
| |
Collapse
|
5
|
Wang RM, Duran P, Christman KL. Processed Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Leskovar B, Furlan T, Poznic S, Hrastelj M, Adamlje A. Using CorMatrix for partial and complete (re)construction of arteriovenous fistulas in haemodialysis patients: (Re)construction of arteriovenous fistulas with CorMatrix. J Vasc Access 2019; 20:597-603. [PMID: 30722717 DOI: 10.1177/1129729819826032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION CorMatrix is an acellular extracellular matrix that acts as a biological scaffold and remodels into site-specific tissue. We used it for the (re)construction of arteriovenous fistulas. METHODS In this prospective pilot case study, we used CorMatrix in six patients. We included patients who required vascular access reconstruction due to thrombosis of unsalvageable arteriovenous fistulas, patients with high-flow arteriovenous fistulas and patients with microvasculature in which autologous arteriovenous fistulas did not mature, requiring reconstruction with a graft. We sutured the CorMatrix plate into a tubular shape and then constructed arterial and venous anastomoses. RESULTS There were no periprocedural complications, CorMatrix-related infections, bleeding or limb swelling after the procedures. CorMatrix was first punctured after 8-10 weeks. In five patients, a percutaneous angioplasty due to CorMatrix stenosis was performed; in one patient, a stent was placed due to refractory stenosis. We observed eight thromboses during the observation period (four in one patient). Perianastomotic stenosis of CorMatrix and interdialytic hypotension were the causes of the thrombosis in five patients, cephalic arch stenosis in two patients and thromboembolism to the brachial artery and arteriovenous fistula in one patient. Thrombendarteriectomy was successful in 87.5% of patients, and one patient required arteriovenous fistula reconstruction. After a median observation period of 12.5 (range 4-23) months, all arteriovenous fistulas were patent, with a median brachial artery flow of 1450 (range 700-1700) mL/min. CONCLUSION Arteriovenous fistula (re)construction with CorMatrix seems to be feasible and safe, with a relatively high incidence of neointimal hyperplasia, predominantly at venous anastomoses, but additional clinical studies are needed.
Collapse
Affiliation(s)
- Bostjan Leskovar
- Department of Internal Medicine, Trbovlje General Hospital, Trbovlje, Slovenia
| | - Tjasa Furlan
- Department of Internal Medicine, Trbovlje General Hospital, Trbovlje, Slovenia
| | - Simona Poznic
- Department of Internal Medicine, Trbovlje General Hospital, Trbovlje, Slovenia
| | - Miran Hrastelj
- Department of Surgery, Trbovlje General Hospital, Trbovlje, Slovenia
| | - Anton Adamlje
- Department of Haemodialysis, Trbovlje General Hospital, Trbovlje, Slovenia
| |
Collapse
|
7
|
Edgar L, Altamimi A, García Sánchez M, Tamburrinia R, Asthana A, Gazia C, Orlando G. Utility of extracellular matrix powders in tissue engineering. Organogenesis 2018; 14:172-186. [PMID: 30183489 PMCID: PMC6300104 DOI: 10.1080/15476278.2018.1503771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular matrix (ECM) materials have had remarkable success as scaffolds in tissue engineering (TE) and as therapies for tissue injury whereby the ECM microenvironment promotes constructive remodeling and tissue regeneration. ECM powder and solubilized derivatives thereof have novel applications in TE and RM afforded by the capacity of these constructs to be dynamically modulated. The powder form allows for effective incorporation and penetration of reagents; hence, ECM powder is an efficacious platform for 3D cell culture and vehicle for small molecule delivery. ECM powder offers minimally invasive therapy for tissue injury and successfully treatment for wounds refractory to first-line therapies. Comminution of ECM and fabrication of powder-derived constructs, however, may compromise the biological integrity of the ECM. The current lack of optimized fabrication protocols prevents a more extensive and effective clinical application of ECM powders. Further study on methods of ECM powder fabrication and modification is needed.
Collapse
Affiliation(s)
- Lauren Edgar
- Wake Forest School of Medicine, Department of Surgery, Winston-Salem, NC, USA,Correspondence to: Lauren Elizabeth Edgar, E-mail:
| | - Afnan Altamimi
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA,King Khalid University Hospital, Department of Surgery, Riyadh, Saudi Arabia
| | | | - Riccardo Tamburrinia
- Wake Forest School of Medicine, Department of Surgery, Winston-Salem, NC, USA,Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA,School of Experimental Medicine, University of Pavia, Pavia, Italy
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA
| | - Carlo Gazia
- Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Department of Surgery, Winston-Salem, NC, USA,Wake Forest Institute for Regenerative Medicine, Department of Surgery, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Yang B, Kilari S, Brahmbhatt A, McCall DL, Torres EN, Leof EB, Mukhopadhyay D, Misra S. CorMatrix Wrapped Around the Adventitia of the Arteriovenous Fistula Outflow Vein Attenuates Venous Neointimal Hyperplasia. Sci Rep 2017; 7:14298. [PMID: 29085001 PMCID: PMC5662725 DOI: 10.1038/s41598-017-14696-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Venous neointimal hyperplasia (VNH) at the outflow vein of hemodialysis AVF is a major factor contributing to failure. CorMatrix is an extracellular matrix that has been used in cardiovascular procedures primarily as scaffolding during surgery. In the present study, we sought to determine whether CorMatrix wrapped around the outflow vein of arteriovenous fistula (AVF) at the time of creation could reduce VNH. In mice, the carotid artery to the ipsilateral jugular vein was connected to create an AVF, and CorMatrix scaffold was wrapped around the outflow vein compared to control mice that received no scaffolding. Immunohistochemistry, Western blot, and qRT-PCR were performed on the outflow vein at 7 and 21 days after AVF creation. In outflow veins treated with CorMatrix, there was an increase in the mean lumen vessel area with a decrease in the ratio of neointima area/media + adventitia area (P < 0.05). Furthermore, there was a significant increase in apoptosis, with a reduction in cell density and proliferation in the outflow veins treated with CorMatrix compared to controls (P < 0.05). Immunohistochemical analysis revealed a significant reduction in fibroblasts, myofibroblasts, macrophages, and leukocytes with a reduction in Tnf-α gene expression (P < 0.05). In conclusion, outflow veins treated with CorMatrix have reduced VNH.
Collapse
Affiliation(s)
- Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Deborah L McCall
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Evelyn Nieves Torres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Edward B Leof
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
9
|
Kislitsina ON, Revishvili AS, Cox JL. Unlocking the secrets to regenerating cardiac tissue: an update. Interact Cardiovasc Thorac Surg 2017; 26:146-153. [DOI: 10.1093/icvts/ivx264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/11/2017] [Indexed: 11/14/2022] Open
|
10
|
Zhu Y, Matsumura Y, Wagner WR. Ventricular wall biomaterial injection therapy after myocardial infarction: Advances in material design, mechanistic insight and early clinical experiences. Biomaterials 2017; 129:37-53. [PMID: 28324864 PMCID: PMC5827941 DOI: 10.1016/j.biomaterials.2017.02.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Intramyocardial biomaterial injection therapy for myocardial infarction has made significant progress since concept initiation more than 10 years ago. The interim successes and progress in the first 5 years have been extensively reviewed. During the last 5 years, two phase II clinical trials have reported their long term follow up results and many additional biomaterial candidates have reached preclinical and clinical testing. Also in recent years deeper investigations into the mechanisms behind the beneficial effects associated with biomaterial injection therapy have been pursued, and a variety of process and material parameters have been evaluated for their impact on therapeutic outcomes. This review explores the advances made in this biomaterial-centered approach to ischemic cardiomyopathy and discusses potential future research directions as this therapy seeks to positively impact patients suffering from one of the world's most common sources of mortality.
Collapse
Affiliation(s)
- Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
11
|
Soucy KG, Bartoli CR, Phillips D, Giridharan GA, Sobieski MA, Wead WB, Dowling RD, Wu ZJ, Prabhu SD, Slaughter MS, Koenig SC. Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply:Demand in Chronic Heart Failure. Ann Biomed Eng 2017; 45:1475-1486. [PMID: 28168379 DOI: 10.1007/s10439-017-1804-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Continuous-flow left ventricular assist devices (CF LVADs) are rotary blood pumps that improve mean blood flow, but with potential limitations of non-physiological ventricular volume unloading and diminished vascular pulsatility. In this study, we tested the hypothesis that left ventricular unloading with increasing CF LVAD flow increases myocardial flow normalized to left ventricular work. Healthy (n = 8) and chronic ischemic heart failure (IHF, n = 7) calves were implanted with CF LVADs. Acute hemodynamics and regional myocardial blood flow were measured during baseline (LVAD off, clamped), partial (2-4 L/min) and full (>4 L/min) LVAD support. IHF calves demonstrated greater reduction of cardiac energy demand with increasing LVAD support compared to healthy calves, as calculated by rate-pressure product. Coronary artery flows (p < 0.05) and myocardial blood flow (left ventricle (LV) epicardium and myocardium, p < 0.05) decreased with increasing LVAD support in normal calves. In the IHF model, blood flow to the septum, LV, LV epicardium, and LV myocardium increased significantly with increasing LVAD support when normalized to cardiac energy demand (p < 0.05). In conclusion, myocardial blood flow relative to cardiac demand significantly increased in IHF calves, thereby demonstrating that CF LVAD unloading effectively improves cardiac supply and demand ratio in the setting of ischemic heart failure.
Collapse
Affiliation(s)
- Kevin G Soucy
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | - Carlo R Bartoli
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dustin Phillips
- Department of Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | | | - Michael A Sobieski
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA
| | - William B Wead
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Zhongjun J Wu
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | - Steven C Koenig
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA. .,Department of Bioengineering, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
12
|
Li M, Gu Q, Chen M, Zhang C, Chen S, Zhao J. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:260-267. [DOI: 10.1016/j.msec.2016.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
|
13
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
14
|
Feasibility study of particulate extracellular matrix (P-ECM) and left ventricular assist device (HVAD) therapy in chronic ischemic heart failure bovine model. ASAIO J 2016; 61:161-9. [PMID: 25423120 DOI: 10.1097/mat.0000000000000178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myocardial recovery with left ventricular assist device (LVAD) support is uncommon and unpredictable. We tested the hypothesis that injectable particulate extracellular matrix (P-ECM) with LVAD support promotes cell proliferation and improves cardiac function. LVAD, P-ECM, and P-ECM + LVAD therapies were investigated in chronic ischemic heart failure (IHF) calves induced using coronary embolization. Particulate extracellular matrix emulsion (CorMatrix, Roswell, GA) was injected intramyocardially using a 7 needle pneumatic delivery tool. Left ventricular assist devices (HVAD, HeartWare) were implanted in a left ventricle (LV) apex to proximal descending aorta configuration. Cell proliferation was identified using BrdU (5 mg/kg) injections over the last 45 treatment days. Echocardiography was performed weekly. End-organ regional blood flow (RBF) was quantified at study endpoints using fluorescently labeled microspheres. Before treatment, IHF calves had an ejection fraction (EF) of 33 ± 2% and left ventricular end-diastolic volume of 214 ± 18 ml with cardiac cachexia (0.69 ± 0.06 kg/day). Healthy weight gain was restored in all groups (0.89 ± 0.03 kg/day). EF increased with P-ECM + HVAD from 36 ± 5% to 75 ± 2%, HVAD 38 ± 4% to 58 ± 5%, and P-ECM 27 ± 1% to 66 ± 6%. P-ECM + HVAD demonstrated the largest increase in cell proliferation and end-organ RBF. This study demonstrates the feasibility of combined LVAD support with P-ECM injection to stimulate new cell proliferation and improve cardiac function, which warrants further investigation.
Collapse
|
15
|
Mosala Nezhad Z, Poncelet A, de Kerchove L, Gianello P, Fervaille C, El Khoury G. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. Interact Cardiovasc Thorac Surg 2016; 22:839-50. [PMID: 26912574 DOI: 10.1093/icvts/ivw020] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for 'next-generation' cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair.
Collapse
Affiliation(s)
- Zahra Mosala Nezhad
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| | - Alain Poncelet
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| | - Laurent de Kerchove
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| | - Pierre Gianello
- Institute of Experimental and Clinical Research (IREC), Division of Experimental Surgery and Transplantation (CHEX), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Fervaille
- Laboratory of Anatomy Pathology, Université catholique de Louvain, Godinne University Hospital-CHU, Yvoir, Belgium
| | - Gebrine El Khoury
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| |
Collapse
|