1
|
Liang L, Wang X, Chen D, Sethu P, Giridharan GA, Wang Y, Wang Y, Qin KR. Study on the hemodynamic effects of different pulsatile working modes of a rotary blood pump using a microfluidic platform that realizes in vitro cell culture effectively. LAB ON A CHIP 2024; 24:2428-2439. [PMID: 38625094 DOI: 10.1039/d4lc00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.
Collapse
Affiliation(s)
- Lixue Liang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Xueying Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Dong Chen
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine and Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Yanxia Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, P. R. China
| | - Yu Wang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| | - Kai-Rong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| |
Collapse
|
2
|
Tanaka S, Nishinaka T, Umeki A, Murakami T, Imaoka S, Mizuno T, Tsukiya T, Ono M. Hemodynamic Evaluation of Asynchronous Speed Modulation of a Continuous-Flow Left Ventricular Assist Device in an Acute-Myocardial Injury Sheep Model. Ann Biomed Eng 2024; 52:364-375. [PMID: 37851145 DOI: 10.1007/s10439-023-03383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Asynchronous rotational-speed modulation of a continuous-flow left ventricular assist device (LVAD) can increase pulsatility; however, the feasibility of hemodynamic modification by asynchronous modulation of an LVAD has not been sufficiently verified. We evaluated the acute effect of an asynchronous-modulation mode under LVAD support and the accumulated effect of 6 consecutive hours of driving by the asynchronous-modulation mode on hemodynamics, including both ventricles, in a coronary microembolization-induced acute-myocardial injury sheep model. We evaluated 5-min LVAD-support hemodynamics, including biventricular parameters, by switching modes from constant-speed to asynchronous-modulation in the same animals ("acute-effect evaluation under LVAD support"). To determine the accumulated effect of a certain driving period, we evaluated hemodynamics including biventricular parameters after weaning from 6-hour (6 h) LVAD support by constant-speed or asynchronous-modulation mode ("6h-effect evaluation"). The acute-effect evaluation under LVAD support revealed that, compared to the constant-speed mode, the asynchronous-modulation mode increased vascular pulsatility but did not have significantly different effects on hemodynamics, including both ventricles. The 6 h-effect evaluation revealed that the hemodynamics did not differ significantly between the two groups except for some biventricular parameters which did not indicate negative effects of the asynchronous-modulation mode on both ventricles. The asynchronous-modulation mode could be feasible to increase vascular pulsatility without causing negative effects on hemodynamics including both ventricles. Compared to the constant-speed mode, the asynchronous-modulation mode increased pulsatility during LVAD support without negative effects on hemodynamics including both ventricles in the acute phase. Six hours of LVAD support with the asynchronous-modulation mode exerted no negative effects on hemodynamics, including both ventricles, after weaning from the LVAD.
Collapse
Affiliation(s)
- Shun Tanaka
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan.
| | - Tomohiro Nishinaka
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Akihide Umeki
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Takashi Murakami
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Shusuke Imaoka
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Toshihide Mizuno
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Tomonori Tsukiya
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo, 7-3-1, Hongo, Bunkyo , Tokyo, 113-8654, Japan
| |
Collapse
|
3
|
Huo M, Giridharan GA, Sethu P, Qu P, Qin K, Wang Y. Numerical simulation analysis of multi-scale computational fluid dynamics on hemodynamic parameters modulated by pulsatile working modes for the centrifugal and axial left ventricular assist devices. Comput Biol Med 2024; 169:107788. [PMID: 38091724 DOI: 10.1016/j.compbiomed.2023.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Continuous flow (CF) left ventricular assist devices (LVAD) operate at a constant speed mode, which could result in increased risk of adverse events due to reduced vascular pulsatility. Consequently, pump speed modulation algorithms have been proposed to augment vascular pulsatility. However, the quantitative local hemodynamic effects on the aorta when the pump is operating with speed modulation using different types of CF-LVADs are still under investigation. The computational fluid dynamics (CFD) study was conducted to quantitatively elucidate the hemodynamic effects on a clinical patient-specific aortic model under different speed patterns of CF-LVADs. Pressure distribution, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and velocity were calculated to compare their differences at constant and pulsatile speeds under centrifugal and axial LVAD support. Results showed that pulse pressure on the aorta was significantly larger under pulsatile speed mode than that under constant speed mode for both CF-LVADs, indicating enhanced aorta pulsatility, as well as the higher peak blood flow velocity on some representative slices of aorta. Pulsatile speed modulation enhanced peak WSS compared to constant speed; high TAWSS region appeared near the branch of left common carotid artery and distal aorta regardless of speed modes and CF-LVADs but these regions also had low OSI; RRT was almost the same for all the cases. This study may provide a basis for the scientific and reasonable selection of the pulsatile speed patterns of CF-LVADs for treating heart failure patients.
Collapse
Affiliation(s)
- Mingming Huo
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | | | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine and Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peng Qu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Kairong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Yu Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Gu Z, Ong CW, Mi Y, Seetharaman A, Ling RR, Ramanathan K, Leo HL. The Impact of Left Ventricular Assist Device Outflow Graft Positioning on Aortic Hemodynamics: Improving Flow Dynamics to Mitigate Aortic Insufficiency. Biomimetics (Basel) 2023; 8:465. [PMID: 37887596 PMCID: PMC10604423 DOI: 10.3390/biomimetics8060465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Heart failure is a global health concern with significant implications for healthcare systems. Left ventricular assist devices (LVADs) provide mechanical support for patients with severe heart failure. However, the placement of the LVAD outflow graft within the aorta has substantial implications for hemodynamics and can lead to aortic insufficiency during long-term support. This study employs computational fluid dynamics (CFD) simulations to investigate the impact of different LVAD outflow graft locations on aortic hemodynamics. The introduction of valve morphology within the aorta geometry allows for a more detailed analysis of hemodynamics at the aortic root. The results demonstrate that the formation of vortex rings and subsequent vortices during the high-velocity jet flow from the graft interacted with the aortic wall. Time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) indicate that modification of the outflow graft location changes mechanical states within the aortic wall and aortic valve. Among the studied geometric factors, both the height and inclination angle of the LVAD outflow graft are important in controlling retrograde flow to the aortic root, while the azimuthal angle primarily determines the rotational direction of blood flow in the aortic arch. Thus, precise positioning of the LVAD outflow graft emerges as a critical factor in optimizing patient outcomes by improving the hemodynamic environment.
Collapse
Affiliation(s)
- Zhuohan Gu
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yongzhen Mi
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore;
| | - Ashwin Seetharaman
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore (K.R.)
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore (K.R.)
- Cardiothoracic Intensive Care Unit, National University Heart Centre Singapore, National Univeristy Health System, Singapore 119228, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; (Z.G.); (A.S.)
| |
Collapse
|
5
|
Tan Z, Huo M, Qin K, El-Baz AS, Sethu P, Wang Y, Giridharan GA. A sensorless, physiologic feedback control strategy to increase vascular pulsatility for rotary blood pumps. Biomed Signal Process Control 2023; 83:104640. [PMID: 36936779 PMCID: PMC10019090 DOI: 10.1016/j.bspc.2023.104640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Continuous flow rotary blood pumps (RBP) operating clinically at constant rotational speeds cannot match cardiac demand during varying physical activities, are susceptible to suction, diminish vascular pulsatility, and have an increased risk of adverse events. A sensorless, physiologic feedback control strategy for RBP was developed to mitigate these limitations. The proposed algorithm used intrinsic pump speed to obtain differential pump speed (ΔRPM). The proposed gain-scheduled proportional-integral controller, switching of setpoints between a higher pump speed differential setpoint (ΔRPM Hr ) and a lower pump speed differential setpoint (ΔRPM Lr ), generated pulsatility and physiologic perfusion, while avoiding suction. The switching between ΔRPM Hr and ΔRPM Lr setpoints occurred when the measured ΔRPM reached the pump differential reference setpoint. In-silico tests were implemented to assess the proposed algorithm during rest, exercise, a rapid 3-fold pulmonary vascular resistance increase, rapid change from exercise to rest, and compared with maintaining a constant pump speed setpoint. The proposed control algorithm augmented aortic pressure pulsatility to over 35 mmHg during rest and around 30 mmHg during exercise. Significantly, ventricular suction was avoided, and adequate cardiac output was maintained under all simulated conditions. The performance of the sensorless algorithm using estimation was similar to the performance of sensor-based method. This study demonstrated that augmentation of vascular pulsatility was feasible while avoiding ventricular suction and providing physiological pump outflows. Augmentation of vascular pulsatility can minimize adverse events that have been associated with diminished pulsatility. Mock circulation and animal studies would be conducted to validate these results.
Collapse
Affiliation(s)
- Zhehuan Tan
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Mingming Huo
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Kairong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Ayman S El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Palaniappan Sethu
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | | |
Collapse
|
6
|
Giridharan GA, Berg IC, Ismail E, Nguyen KT, Hecking J, Kirklin JK, Cheng X, Sethu P. Loss of pulsatility with continuous-flow left ventricular assist devices and the significance of the arterial endothelium in von-Willebrand factor production and degradation. Artif Organs 2023; 47:640-648. [PMID: 36404709 PMCID: PMC10065921 DOI: 10.1111/aor.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients on continuous flow ventricular assist devices (CF-VADs) are at high risk for the development of Acquired von-Willebrand Syndrome (AVWS) and non-surgical bleeding. von Willebrand Factor (vWF) plays an essential role in maintaining hemostasis via platelet binding to the damaged endothelium to facilitate coagulation. In CF-VAD patients, degradation of vWF into low MW multimers that are inefficient in facilitating coagulation occurs and has been primarily attributed to the supraphysiological shear stress associated with the CF-VAD impeller. METHODS In this review, we evaluate information from the literature regarding the unraveling behavior of surface-immobilized vWF under pulsatile and continuous flow pertaining to: (A) the process of arterial endothelial vWF production and release into circulation, (B) the critical shear stress required to unravel surface bound versus soluble vWF which leads to degradation, and (C) the role of pulsatility in on the production and degradation of vWF. RESULTS AND CONCLUSION Taken together, these data suggests that the loss of pulsatility and its impact on arterial endothelial cells plays an important role in the production, release, unraveling, and proteolytic degradation of vWF into low MW multimers, contributing to the development of AVWS. Restoration of pulsatility can potentially mitigate this issue by preventing AVWS and minimizing the risk of non-surgical bleeding.
Collapse
Affiliation(s)
- Guruprasad A. Giridharan
- Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, KY 40292
| | - Ian C. Berg
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
- Department of Biomedical Engineering, School of Engineering and Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
| | - Esraa Ismail
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18018
| | - Khanh T. Nguyen
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
- Department of Biomedical Engineering, School of Engineering and Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
| | - Jana Hecking
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
- Department of Biomedical Engineering, School of Engineering and Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
| | - James K. Kirklin
- Division of Cardiothoracic Surgery, Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18018
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18018
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
- Department of Biomedical Engineering, School of Engineering and Heersink School of Medicine, University of Alabama at Birmingham, AL 35294
| |
Collapse
|
7
|
Smith PA, Wang Y, Frazier OH. The Evolution of Durable, Implantable Axial-Flow Rotary Blood Pumps. Tex Heart Inst J 2023; 50:492012. [PMID: 37011366 PMCID: PMC10178652 DOI: 10.14503/thij-22-7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Left ventricular assist devices (LVADs) are increasingly used to treat patients with end-stage heart failure. Implantable LVADs were initially developed in the 1960s and 1970s. Because of technological constraints, early LVADs had limited durability (eg, membrane or valve failure) and poor biocompatibility (eg, driveline infections and high rates of hemolysis caused by high shear rates). As the technology has improved over the past 50 years, contemporary rotary LVADs have become smaller, more durable, and less likely to result in infection. A better understanding of hemodynamics and end-organ perfusion also has driven research into the enhanced functionality of rotary LVADs. This paper reviews from a historical perspective some of the most influential axial-flow rotary blood pumps to date, from benchtop conception to clinical implementation. The history of mechanical circulatory support devices includes improvements related to the mechanical, anatomical, and physiologic aspects of these devices. In addition, areas for further improvement are discussed, as are important future directions-such as the development of miniature and partial-support LVADs, which are less invasive because of their compact size. The ongoing development and optimization of these pumps may increase long-term LVAD use and promote early intervention in the treatment of patients with heart failure.
Collapse
Affiliation(s)
- P Alex Smith
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| | - Yaxin Wang
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| | - O H Frazier
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
8
|
A Mathematical Model of Artificial Pulse Synchronization for the HeartMate3 Left Ventricular Assist Device. ASAIO J 2023; 69:284-289. [PMID: 35797437 DOI: 10.1097/mat.0000000000001771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Constant speed control of rotary LVADs attenuates vascular pulsatility, which has been linked to clinical complications such as thrombus formation, bleeding, and valvular dysfunction. Speed modulation can improve pulsatility and washout, but optimization requires coordination with the native heartbeat. A simple mathematical model of the left ventricle-left ventricular assist device (LV-LVAD) flow interaction was developed that sums the individual contributions of the native LV and the HeartMate3 artificial pulse (AP) to predict the total systemic flow. The model flow and pulsatility predictions results were in good agreement with experimental data from a mock circulatory loop measured for full bypass support conditions. The model was used to evaluate three schemes for optimizing the synchronization of the AP with the native heart. The optimized interaction occurred when the AP speed increase occurred during contraction, resulting in a doubling of flow pulsatility, and corresponded to an increase in the area enclosed by the dynamic pressure-flow relation. The model provides a simple tool for exploring the optimization of LVAD speed modulation that can reduce the time and expense of mock loop studies during the development process.
Collapse
|
9
|
A Physiological Control Method Based on SMC and GAPSO for Artificial Heart Pumps to Maintain Pulsatility and Avoid Regurgitation and Suction. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Magkoutas K, Arm P, Meboldt M, Schmid Daners M. Physiologic Data-Driven Iterative Learning Control for Left Ventricular Assist Devices. Front Cardiovasc Med 2022; 9:922387. [PMID: 35911509 PMCID: PMC9326058 DOI: 10.3389/fcvm.2022.922387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Continuous flow ventricular assist devices (cfVADs) constitute a viable and increasingly used therapy for end-stage heart failure patients. However, they are still operating at a fixed-speed mode that precludes physiological cfVAD response and it is often related to adverse events of cfVAD therapy. To ameliorate this, various physiological controllers have been proposed, however, the majority of these controllers do not account for the lack of pulsatility in the cfVAD operation, which is supposed to be beneficial for the physiological function of the cardiovascular system. In this study, we present a physiological data-driven iterative learning controller (PDD-ILC) that accurately tracks predefined pump flow trajectories, aiming to achieve physiological, pulsatile, and treatment-driven response of cfVADs. The controller has been extensively tested in an in-silico environment under various physiological conditions, and compared with a physiologic pump flow proportional-integral-derivative controller (PF-PIDC) developed in this study as well as the constant speed (CS) control that is the current state of the art in clinical practice. Additionally, two treatment objectives were investigated to achieve pulsatility maximization and left ventricular stroke work (LVSW) minimization by implementing copulsation and counterpulsation pump modes, respectively. Under all experimental conditions, the PDD-ILC as well as the PF-PIDC demonstrated highly accurate tracking of the reference pump flow trajectories, outperforming existing model-based iterative learning control approaches. Additionally, the developed controllers achieved the predefined treatment objectives and resulted in improved hemodynamics and preload sensitivities compared to the CS support.
Collapse
Affiliation(s)
| | | | | | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Zhang Y, Wu X, Wang Y, Liu H, Liu GM. The hemodynamics and blood trauma in axial blood pump under different operating model. Artif Organs 2022; 46:2159-2170. [PMID: 35735995 DOI: 10.1111/aor.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Speed modulation of blood pump has been proved to help restore vascular pulsatility and implemented clinically during treatment for cardiac failure. However, its effect on blood trauma has not been studied thoroughly. In this paper, we study the flow field of an axial pump FW-X under the modes of co-pulse, counter pulse and constant speed to evaluate the blood trauma. Based on the coupling model of cardiovascular system and axial blood pump, aortic pressure and the pump flow were obtained and applied as the boundary conditions at the pump outlet and inlet. The level of shear stress and hemolysis index were derived from computational fluid dynamics (CFD) simulation. Results showed the constant speed mode had the lowest shear stress level and hemolytic index at the expense of diminished pulsatility. Compared with the constant speed mode, the hemolysis index of co-pulse and counter pulse mode was higher, but it was helpful to restore vascular pulsatility. This method can be easily incorporated in the in vitro testing phase to analyze and decrease a pump's trauma before animal experimentation, thereby reducing the cost of blood pump development.
Collapse
Affiliation(s)
- Yunpeng Zhang
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Xiangyu Wu
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Yiming Wang
- School of Electrical Engineering, Shandong University, Jinan, China
| | - Hongtao Liu
- School of Goertek Technology and Industry, Weifang University, Weifang, China
| | - Guang-Mao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Wang Y, Nguyen KT, Ismail E, Donoghue L, Giridharan GA, Sethu P, Cheng X. Effect of pulsatility on shear-induced extensional behavior of Von Willebrand factor. Artif Organs 2022; 46:887-898. [PMID: 34866200 PMCID: PMC9791949 DOI: 10.1111/aor.14133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with continuous flow ventricular assist devices (CF-VADs) are at high risk for non-surgical bleeding, speculated to associate with the loss of pulsatility following CF-VAD placement. It has been hypothesized that continuous shear stress causes elongation and increased enzymatic degradation of von Willebrand Factor (vWF), a key player in thrombus formation at sites of vascular damage. However, the role of loss of pulsatility on the unravelling behavior of vWF has not been widely explored. METHODS vWF molecules were immobilized on the surface of microfluidic devices and subjected to various pulsatile flow profiles, including continuous flow and pulsatile flow of different magnitudes, dQ/dt (i.e., first derivative of flow rate) of pulsatility and pulse frequencies to mimic in vivo shear flow environments with and without CF-VAD support. VWF elongation was observed using total internal reflection fluorescence (TIRF) microscopy. Besides, the vWF level is measured from the patients' blood sample before and after CF-VAD implantation from a clinical perspective. To our knowledge, this work is the first in providing direct, visual observation of single vWF molecule extension under controlled-pulsatile shear flow. RESULTS Unravelling of vWF (total sample size n ~ 200 molecules) is significantly reduced under pulsatile flow (p < 0.01) compared to continuous flow. An increase in the magnitude of pulsatility further reduces unravelling lengths, while lower frequency of pulsatility (20 vs. 60 pulses per min) does not have a major effect on the maximum or minimum unravelling lengths. Evaluation of CF-VAD patient blood samples (n = 13) demonstrates that vWF levels decreased by ~40% following CF-VAD placement (p < 0.01), which correlates to single-molecule observations from a clinical point of view. CONCLUSIONS Pulsatile flow reduces unfolding of vWF compared to continuous flow and a lower pulse frequency of 20 pulses/minute yielded comparable vWF unfolding to 60 pulses/minute. These findings could shed light on non-surgical bleeding associated with the loss of pulsatility following CF-VAD placement.
Collapse
Affiliation(s)
- Yi Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Khanh T. Nguyen
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, School of Engineering and School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Esraa Ismail
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Leslie Donoghue
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, School of Engineering and School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guruprasad A. Giridharan
- Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, School of Engineering and School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
13
|
Effect of Timings of the Lavare Cycle on the Ventricular Washout in an In Vitro Flow Visualization Setup. ASAIO J 2021; 67:517-528. [PMID: 33606388 DOI: 10.1097/mat.0000000000001269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Left ventricular assist devices inherently alter the intraventricular flow field and create areas of blood stasis with potential thrombus formation. The Lavare cycle of the Medtronic HeartWare HVAD was designed to improve ventricular washout. This study aims to evaluate its effects on ventricular washout in a pulsatile in vitro setting with a focus on the timing of pump speed changes. Ventricular flow fields were obtained via particle image velocimetry in two modes: With constant left ventricular assist devices speed and with the Lavare cycle applied. The start of the Lavare cycle was shifted over an entire cardiac cycle, and ventricular washout was evaluated based on velocity fields, kinetic energy, and normalized pulsatility of flow fields. The ventricular flow fields showed dependence on the timing of the Lavare cycle and interaction between speed changes and the cardiac phase. Higher apical velocity was observed for speed decreases at the late E wave and for increases at mid systole by 29% (P = 0.002) and 61% (P < 0.001), respectively. Mean apical kinetic energy for these phases also increased by 21% (P = 0.0013) and 46% (P < 0.001). The Lavare cycle generally promotes higher apical washout and can specifically generate further improved washout if speed steps are applied at the correct timing on the cardiac cycle.
Collapse
|
14
|
Designing an Active Valvulated Outflow Conduit for a Continuous-Flow Left Ventricular Assist Device to Increase Pulsatility: A Simulation Study. ASAIO J 2021; 67:529-535. [PMID: 33902101 DOI: 10.1097/mat.0000000000001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this work was to investigate, using a lumped parameter model, the feasibility of increasing the pulsatility of a continuous-flow ventricular assist device (VAD) by implanting an active valvulated outflow cannula. A lumped parameter model was adopted for this study. VAD was modeled, starting from its pressure-flow characteristics. The valvulated outflow conduit was modeled as an active resistance described by a square function. Starting from pathologic condition, the following simulations were performed: VAD, VAD and valvulated outflow conduit in copulsation and counterpulsation with different ratios between the VAD valve opening rate and the heart rate, and asynchrony work with the heart with different VAD valve opening intervals. The copulsation 1:1 configuration and the asynchrony 0.3s-close-0.7s-open configurations permit to maximize the hemodynamic benefits provided by the presence of the active VAD outflow valvulated conduit providing an increase of arterial pulsatility from 1.86% to 14.98% without the presence of left ventricular output. The presence of the active VAD valve in the outflow conduit causes a decrement of the left ventricular unloading and of VAD flow and, that can be counteracted by increasing the VAD speed without affecting arterial pulsatility. The valvulated outflow tube provides an increase in arterial pulsatility; it can be driven in different working modality and can be potentially applicable to all types of VADs. However, the valvulated outflow conduit causes a decrement of left ventricular unloading and of the VAD flow that can be counteracted, increasing the VAD speed.
Collapse
|
15
|
Di Molfetta A, Cusimano V, Ferrari G. Increasing the pulsatility of continuos flow VAD: comparison between a valvulated outflow cannula and speed modulation by simulation. J Artif Organs 2021; 24:146-156. [PMID: 33512579 DOI: 10.1007/s10047-020-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
To investigate by a lumped parameter model the feasibility of increasing the pulsatility of a continuous flow VAD, implanting an active valvulated outflow cannula and to compare the results with the haemodynamic outcome given by speed modulation methods. The concomitant presence of speed modulation and the active valvulated outflow conduit is also simulated. A lumped parameter model was adopted. VAD was modeled starting from its pressure flow characteristics with a second order polynomial equation. The valvulated outflow conduit was modeled as an active resistance described by a square function. Starting from pathological condition we simulated: VAD; VAD and valvulated outflow conduit in copulsation, counterpulsation and asynchrony work with the heart; VAD and active valvulated outflow tube and speed modulation. Copulsation 1:1 and asynchrony 0.3 s valve close-0.7 s valve open configurations maximised the haemodynamic benefits with the highest increment in pulsatility. The valvulated outflow conduit causes a decrement of the left ventricular unloading and of VAD flow that can be counteracted by increasing the VAD speed without affecting pulsatility. The concomitant use of the speed modulation and the active valvulated outflow conduit can further increase the pulsatility without altering left ventricular unloading and VAD flow. The valvulated outflow tube provide similar increase in pulsatility to speed modulation method but causes a decrement of left ventricular unloading and VAD flow that can be counteracted increasing the VAD speed or allowing a partial support. A valvulated outflow tube can be potentially applied to all continuous flow VADs.
Collapse
Affiliation(s)
- Arianna Di Molfetta
- Department of Cardiac Surgery, Policlinico Gemelli Hospital, Largo Agostino Gemelli, 8, 00100, Rome, Italy.
| | - Valerio Cusimano
- CNR-IASI BioMatLab, Italian National Research Council, Institute of Analysis, Systems and Computer Science, Biomathematics Laboratory, Rome, Italy
| | - Gianfranco Ferrari
- Institute of Biocybernetics and Biomedical Engineer, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
16
|
Liu H, Liu S, Ma X. Varying speed modulation of continuous-flow left ventricular assist device based on cardiovascular coupling numerical model. Comput Methods Biomech Biomed Engin 2020; 24:956-972. [PMID: 33347766 DOI: 10.1080/10255842.2020.1861601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Continuous-flow left ventricular assist devices (CFLVADs) routinely operate at a constant speed for the support of a failing heart, which decreases the pulsatility in the arteries. Some late complications could be related to a long-term lack of pulsatility. Modulating the CFLVAD speed is a solution to enhance the pulsatility. The purpose of this study is to modulate multiple varying speed patterns and investigate their effects on the ventricle and vascular system. A cardiovascular coupling numerical model is developed to provide a simulation platform for testing the varying speed patterns. The varying speed patterns are modulated by combining the shape, amplitude, frequency, phase shift, and pulsatile duty cycle of the speed profile. The influence of varying speed support is examined by analyzing the indexes of pulsatility, indexes of ventricular unloading, and hemodynamic variables. The results show that the synchronous counterpulsation pattern can effectively reduce the ventricular unloading indexes, whereas the low-frequency asynchronous pattern can effectively increase the vascular pulsatility indexes. Also, the hemodynamics with synchronous varying speed support is more physiological than that with asynchronous varying speed support. This study provides valuable insight for further optimization of varying speed modulation by weighing vascular pulsatility, ventricular unloading, and hemodynamics.
Collapse
Affiliation(s)
- Hongtao Liu
- School of Electrical Engineering, Shandong University, Jinan, PR China
| | - Shuqin Liu
- School of Electrical Engineering, Shandong University, Jinan, PR China
| | - Xiaoxu Ma
- School of Electrical Engineering, Shandong University, Jinan, PR China
| |
Collapse
|
17
|
Ogawa D, Kobayashi S, Yamazaki K, Motomura T, Nishimura T, Shimamura J, Tsukiya T, Mizuno T, Takewa Y, Tatsumi E, Nishinaka T. Evaluation of cardiac beat synchronization control for a rotary blood pump on valvular regurgitation with a mathematical model. Artif Organs 2020; 45:124-134. [PMID: 32813920 DOI: 10.1111/aor.13795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/10/2020] [Accepted: 08/05/2020] [Indexed: 01/17/2023]
Abstract
We have studied the cardiac beat synchronization (CBS) control for a rotary blood pump (RBP) and revealed that it can promote pulsatility and reduce cardiac load. Besides, patients with LVAD support sometimes suffer from aortic and mitral regurgitation (AR and MR). A control method for the RBP should be validated in wider range of conditions to clarify its benefits and pitfalls prior to clinical application. In this study, we evaluated pulsatility and cardiac load reduction obtained with the CBS control on valvular failure conditions with a mathematical model. Diastolic assist could reduce cardiac load on the left ventricle by decreasing external work of the ventricle even in MR cases while it was not so effective in AR cases. Systolic assist can still promote pulsatility in AR and MR cases; however, aortic valve function should be carefully confirmed since pulse pressure can be wider not due to systolic assist but to AR.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Sun Medical Technology Research Corp., Nagano, Japan
| | | | | | | | - Takashi Nishimura
- Department of Cardiovascular and Thoracic Surgery, Graduate school of Medicine, Ehime University, Ehime, Japan
| | - Junichi Shimamura
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomonori Tsukiya
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toshihide Mizuno
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshiaki Takewa
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Hokkaido, Japan
| | - Eisuke Tatsumi
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomohiro Nishinaka
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Wu T, Lin H, Zhu Y, Huang P, Lin F, Chen C, Hsu PL. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: An in vitro study. Proc Inst Mech Eng H 2020; 234:1235-1242. [DOI: 10.1177/0954411920937919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Long-term using continuous flow ventricular assist devices could trigger complications associated with diminished pulsatility, such as valve insufficiency and gastrointestinal bleeding. One feasible solution is to produce pulsatile flow assist with speed regulation in continuous flow ventricular assist devices. A third-generation blood pump with pulsatile operation control algorithm was first characterized alone under pulsatile mode at various speeds, amplitudes, and waveforms. The pump was then incorporated in a Mock circulation system to evaluate in vitro hemodynamic effects when using continuous and different pulsatile operations. Pulsatility was evaluated by surplus hemodynamic energy. Results showed that pulsatile operations provided sufficient hemodynamic assistance and increased pulsatility of the circulatory system (53% increment), the mean aortic pressure (65% increment), and cardiac output (27% increment). The pulsatility of the system under pulsatile operation support was increased 147% compared with continuous operation support. The hemodynamic performance of pulsatile operations is susceptible to phase shifts, which could be a tacking angle for physiological control optimization. This study found third-generation blood pumps using different pulsatile operations for ventricular assistance promising.
Collapse
Affiliation(s)
- Tingting Wu
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | - Hao Lin
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | - Yuxin Zhu
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | - Penghui Huang
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| | | | - Chen Chen
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
- CH Biomedical, Inc., Suzhou, China
| | - Po-Lin Hsu
- Artificial Organ Technology Laboratory, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Lescroart M, Hébert JL, Vincent F, Nguyen LS. Pulsatility in ventricular assistance devices: A translational review focused on applied haemodynamics. Arch Cardiovasc Dis 2020; 113:461-472. [DOI: 10.1016/j.acvd.2020.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
|
20
|
Itkin GP, Bychnev AS, Kuleshov AP, Drobyshev AA. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro. Int J Artif Organs 2019; 43:157-164. [PMID: 31603372 DOI: 10.1177/0391398819879939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Continuous-flow ventricular-assist devices are widely used to support patients with advanced heart failure, because continuous-flow ventricular-assist devices are more durable, have smaller sizes and have better survival rates for patients compared to the pulsatile-flow ventricular-assist devices. Nevertheless, continuous-flow ventricular-assist devices often cause complications such as gastrointestinal bleeding, haemorrhagic stroke, and aortic insufficiency and have a negative impact on the microcirculation for both long-time implantable and short-time extracorporeal systems. The aim of this study is the evaluation of the pulsatile-flow generation method in continuous-flow ventricular-assist device without pump speed changes. The method may be used for short-time extracorporeal continuous-flow mechanical circulatory support and long-time implantable mechanical circulatory support. A shunt with a controlled adjustable valve, that clamps periodically, is connected in parallel to the continuous-flow ventricular-assist device. We compared the continuous-flow ventricular-assist device operating with and without the shunt on the mock circulation loop. The continuous-flow ventricular-assist device-shunt system was connected according to the left ventricle-aorta circuit and worked in phase with the ventricle. Heart failure was simulated on the mock circulation circuit. Rotaflow (Maquet Inc.) was used as the continuous-flow pump. Haemolysis studies of the system for generating a pulse flow were carried out at a flow rate of 5 L/min and a pressure drop of 100 mm Hg. To compare the haemodynamic efficiency, we used the aortic pulsation index Ip, the equivalent energy pressure and the surplus haemodynamic energy. These indexes were higher in the pulsatile mode (Ip - 4 times, equivalent energy pressure by 7.36% and surplus haemodynamic energy - 10 times), while haemolysis was the same. The normalised index of haemolysis was 0.0015 ± 0.001. The results demonstrate the efficiency of the pulsatile-flow generation method for continuous-flow ventricular-assist devices without impeller rotation rate changes.
Collapse
Affiliation(s)
- George P Itkin
- Laboratory of Biotechnical Systems, Federal State Budgetary Institution 'Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs', Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Alexander S Bychnev
- Laboratory of Biotechnical Systems, Federal State Budgetary Institution 'Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs', Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Arkady P Kuleshov
- Laboratory of Biotechnical Systems, Federal State Budgetary Institution 'Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs', Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Alexander A Drobyshev
- Laboratory of Biotechnical Systems, Federal State Budgetary Institution 'Academician V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs', Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
21
|
WU XIAO, ZHANG XIWEN, HAO PENGFEI, HE FENG. COMPARISON OF THREE CONTROL STRATEGIES FOR AXIAL BLOOD PUMP. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Facing the gradually increased prevalence of heart failure (HF) and the shortage of donated hearts, the blood pump is widely used to prolong the life of end-stage HF patients: however, the pump generates continuous flow under constant rotational speed, declining the arterial pulsatility and causing related complications. Previous studies show that synchronous copulsation might be the best control strategy for restoring pulsatility, but synchronous strategies are needed to monitor the phase of the heartbeat, which will make the controller complex and impair its robustness. Here, we compare constant speed, synchronous copulsation in a model of a cardiovascular system with a blood pump, which shows that copulsation offers more arterial pulsatility, less pump power-consumption, and thus better battery endurance, and constant speed offers a greater ventricular unloading effect. Meanwhile, we design a strategy based on transforming left ventricular pressure, which is easier to implement and has similar effect to synchronous copulsation.
Collapse
Affiliation(s)
- XIAO WU
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - XIWEN ZHANG
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - PENGFEI HAO
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - FENG HE
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
22
|
Ogawa D, Kobayashi S, Yamazaki K, Motomura T, Nishimura T, Shimamura J, Tsukiya T, Mizuno T, Takewa Y, Tatsumi E. Mathematical evaluation of cardiac beat synchronization control used for a rotary blood pump. J Artif Organs 2019; 22:276-285. [DOI: 10.1007/s10047-019-01117-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
|
23
|
|
24
|
Liao S, Wu EL, Neidlin M, Li Z, Simpson B, Gregory SD. The Influence of Rotary Blood Pump Speed Modulation on the Risk of Intraventricular Thrombosis. Artif Organs 2018; 42:943-953. [PMID: 30260033 DOI: 10.1111/aor.13330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rotary left ventricular assist devices (LVADs) are commonly operated at a constant speed, attenuating blood flow pulsatility. Speed modulation of rotary LVADs has been demonstrated to improve vascular pulsatility and pump washout. The effect of LVAD speed modulation on intraventricular flow dynamics is not well understood, which may have an influence on thromboembolic events. This study aimed to numerically evaluate intraventricular flow characteristics with a speed modulated LVAD. A severely dilated anatomical left ventricle was supported by a HeartWare HVAD in a three-dimensional multiscale computational fluid dynamics model. Three LVAD operating scenarios were evaluated: constant speed and sinusoidal co- and counter-pulsation. In all operating scenarios, the mean pump speed was set to restore the cardiac output to 5.0 L/min. Co- and counter-pulsation was speed modulated with an amplitude of 750 rpm. The risk of thrombosis was evaluated based on blood residence time, ventricular washout, kinetic energy densities, and a pulsatility index map. Blood residence time for co-pulsation was on average 1.8 and 3.7% lower than constant speed and counter-pulsation mode, respectively. After introducing fresh blood to displace preexisting blood for 10 cardiac cycles, co-pulsation had 1.5% less old blood in comparison to counter-pulsation. Apical energy densities were 84 and 27% higher for co-pulsation in comparison to counter-pulsation and constant speed mode, respectively. Co-pulsation had an increased pulsatility index around the left ventricular outflow tract and mid-ventricle. Improved flow dynamics with co-pulsation was caused by increased E-wave velocities which minimized blood stasis. In the studied scenario and from the perspective of intraventricular flow dynamics, co-pulsation of rotary LVADs could minimize the risk of intraventricular thrombosis.
Collapse
Affiliation(s)
- Sam Liao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Eric L Wu
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Zhiyong Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Benjamin Simpson
- Department of Engineering, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, The University of Queensland, St. Lucia, Queensland, Australia.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Applications of Implantable Hemodynamic Monitoring in the Setting of Durable Mechanical Circulatory Support. ASAIO J 2018; 64:283-285. [PMID: 29620610 DOI: 10.1097/mat.0000000000000777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Clinical Implications of Physiologic Flow Adjustment in Continuous-Flow Left Ventricular Assist Devices. ASAIO J 2018; 63:241-250. [PMID: 28459742 DOI: 10.1097/mat.0000000000000477] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is increasing evidence for successful management of end-stage heart failure with continuous-flow left ventricular assist device (CF-LVAD) technology. However, passive flow adjustment at fixed CF-LVAD speed is susceptible to flow balancing issues as well as adverse hemodynamic effects relating to the diminished arterial pulse pressure and flow. With current therapy, flow cannot be adjusted with changes in venous return, which can vary significantly with volume status. This limits the performance and safety of CF-LVAD. Active flow adjustment strategies have been proposed to improve the synchrony between the pump and the native cardiovascular system, mimicking the Frank-Starling mechanism of the heart. These flow adjustment strategies include modulation by CF-LVAD pump speed by synchrony and maintenance of constant flow or constant pressure head, or a combination of these variables. However, none of these adjustment strategies have evolved sufficiently to gain widespread attention. Herein we review the current challenges and future directions of CF-LVAD therapy and sensor technology focusing on the development of a physiologic, long-term active flow adjustment strategy for CF-LVADs.
Collapse
|
27
|
Gastrointestinal Bleeding in Patients with HeartWare Ventricular Assist Device: Does the Activation of the Lavare Cycle Make a Difference? ASAIO J 2018; 64:126-128. [DOI: 10.1097/mat.0000000000000607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
28
|
Debate: creating adequate pulse with a continuous flow ventricular assist device: can it be done and should it be done? Probably not, it may cause more problems than benefits! Curr Opin Cardiol 2017; 31:337-42. [PMID: 26998788 DOI: 10.1097/hco.0000000000000289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW The feasibility and benefits of creating adequate pulsatility with continuous flow left ventricular assist devices (LVADs) have long been debated. This review discusses recent technical and clinical findings to answer whether such intervention should be implemented in the standard patient management. RECENT FINDINGS Only a limited amount of pulsatility can be generated by periodic speed steps, both considerably smaller in flow increase and in pace rate than the natural circulation. Organ systems are not impeded in their normal function and even not in recovery by a continuous flow. Known problems such as gastrointestinal bleeding are not necessarily due to pulsatility per se, or not important for therapeutic progress, such as minor modifications of the arterial walls. SUMMARY The speculative benefits of augmented pulsatility with continuous flow LVADs could be overrated and are still incompletely evaluated. Potential risks that might arise from this strategy should be carefully weighed before implementing extensive pulsatility as standard patient management.
Collapse
|
29
|
Gregory SD, Stevens MC, Wu EL, Pauls JP, Kleinheyer M, Fraser JF. Mitral Valve Regurgitation with a Rotary Left Ventricular Assist Device: The Haemodynamic Effect of Inlet Cannulation Site and Speed Modulation. Ann Biomed Eng 2016; 44:2674-82. [PMID: 26932840 DOI: 10.1007/s10439-016-1579-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/24/2016] [Indexed: 11/29/2022]
Abstract
Mitral valve regurgitation (MVR) is common in patients receiving left ventricular assist device (LVAD) support, however the haemodynamic effect of MVR is not entirely clear. This study evaluated the haemodynamic effect of MVR with LVAD support and the influence of inflow cannulation site and LVAD speed modulation. Left atrial (LAC) and ventricular (LVC) cannulation was evaluated in a mock circulation loop with no, mild, moderate and severe MVR with constant speed and speed modulation (±600 RPM) modes. The use of an LVAD relieved pulmonary congestion during severe MVR, by reducing left atrial pressure from 20.5 to 10.8 (LAC) and 11.5 (LVC) mmHg. However, LAC resulted in decreased left ventricular stroke work (-0.08 J), ejection fraction (-7.9%) and higher MVR volume (+12.7 mL) and pump speed (+100 RPM) compared to LVC. This suggests that LVC, in addition to reducing MVR severity, also improves ventricular washout over LAC. LVAD speed modulation in synchrony with ventricular systole reduced MVR volume and increased ejection fraction with LAC and LVC, thus demonstrating the potential benefits of this mode, despite a reduction in cardiac output.
Collapse
Affiliation(s)
- Shaun D Gregory
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.
| | - Michael C Stevens
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Eric L Wu
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jo P Pauls
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- School of Engineering, Griffith University, Southport, QLD, Australia
| | - Matthias Kleinheyer
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- School of Engineering, Griffith University, Southport, QLD, Australia
| | - John F Fraser
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|