1
|
Wich LA, Gudex LM, Dann TM, Matich HJ, Thompson AJ, Atie M, Johnson MD, Bartlett RH, Rojas-Peña A, Hirschl RB, Potkay JA. A Reduced Resistance, Concentric-Gated Artificial Membrane Lung for Pediatric End-Stage Lung Failure. ASAIO J 2024:00002480-990000000-00555. [PMID: 39269894 DOI: 10.1097/mat.0000000000002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
The goal of the low-resistance pediatric artificial lung (PAL-LR) is to serve as a pumpless bridge-to-transplant device for children with end-stage lung failure. The PAL-LR doubles the exposed fiber length of the previous PAL design. In vitro and in vivo studies tested hemocompatibility, device flow, gas exchange and pressure drop performance. For in vitro tests, average rated blood flow (outlet SO2 of 95%) was 2.56 ± 0.93 L/min with a pressure drop of 25.88 ± 0.90 mm Hg. At the targeted pediatric flow rate of 1 L/min, the pressure drop was 8.6 mm Hg compared with 25 mm Hg of the PAL. At rated flow, the average O2 and CO2 transfer rates were 101.75 ± 10.81 and 77.93 ± 8.40 mL/min, respectively. The average maximum O2 and CO2 exchange efficiencies were 215.75 ± 22.93 and 176.99 ± 8.40 mL/(min m2), respectively. In vivo tests revealed an average outlet SO2 of 100%, and average pressure drop of 2 ± 0 mm Hg for a blood flow of 1.07 ± 0.02 L/min. Having a lower resistance, the PAL-LR is a promising step closer to a pumpless artificial membrane lung that alleviates right ventricular strain associated with idiopathic pulmonary hypertension.
Collapse
Affiliation(s)
- Lauren A Wich
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Leah M Gudex
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Tyler M Dann
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Hannah J Matich
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Alex J Thompson
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Michael Atie
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Matthew D Johnson
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Robert H Bartlett
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
| | - Alvaro Rojas-Peña
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
- Department of Surgery, Section of Transplantation, University of Michigan, Ann Arbor, MI
| | - Ronald B Hirschl
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI
| | - Joseph A Potkay
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
2
|
Spencer BL, Johnson MD, Wilhelm SK, Lautner-Csorba OD, Matich H, Lautner G, Fallon BP, Dann T, Gudex L, Langley M, Meyerhoff M, Potkay J, Bartlett R, Rojas-Pena A, Hirschl RB. A Pumpless Pediatric Artificial Lung Maintains Function for 72 h Without Systemic Anticoagulation Using the Nitric Oxide Surface Anticoagulation System. J Pediatr Surg 2024; 59:103-108. [PMID: 37858393 PMCID: PMC10843264 DOI: 10.1016/j.jpedsurg.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications. We tested the MLung with a novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system, to provide local anticoagulation for 72 h of support in a pediatric-size ovine model. METHODS Four mini sheep underwent thoracotomy and cannulation of the pulmonary artery (inflow) and left atrium (outflow), recovered and were monitored for 72hr. The circuit tubing and connectors were coated with the combination of an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. The animals were connected to the MLung and 100 ppm of NO was added to the sweep gas. Systemic hemodynamics, blood chemistry, blood gases, and methemoglobin were collected. RESULTS Mean device flow was 836 ± 121 mL/min. Device outlet saturation was 97 ± 4%. Pressure drop across the lung was 3.5 ± 1.5 mmHg and resistance was 4.3 ± 1.7 mmHg/L/min. Activated clotting time averaged 170 ± 45s. Methemoglobin was 2.9 ± 0.8%. Platelets declined from 590 ± 101 at baseline to 160 ± 90 at 72 h. NO flux (x10-10 mol/min/cm2) of the NOSA circuit averaged 2.8 ± 0.6 (before study) and 1.9 ± 0.1 (72 h) and across the MLung 18 ± 3 NO flux was delivered. CONCLUSION The MLung is a more portable form of ECLS that demonstrates effective gas exchange for 72 h without hemodynamic changes. Additionally, the NOSA system successfully maintained local anticoagulation without evidence of systemic effects.
Collapse
Affiliation(s)
- Brianna L Spencer
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States.
| | - Matthew D Johnson
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Spencer K Wilhelm
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Orsolya D Lautner-Csorba
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Hannah Matich
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Gergely Lautner
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Brian P Fallon
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Tyler Dann
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Leah Gudex
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Mark Langley
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Mark Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joseph Potkay
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States; VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Robert Bartlett
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Alvaro Rojas-Pena
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States
| | - Ronald B Hirschl
- Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, 1150 West Medical Center Dr. MSRB II, Ann Arbor, MI 48109, United States; Section of Pediatric Surgery, Department of Surgery, University of Michigan Medical School, C.S. Mott Children's Hospital, 1540 E Hospital Dr, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Strudthoff LJ, Hesselmann F, Clauser JC, Arens J. Refurbishment of Extracorporeal Life Support Oxygenators in the Context of In Vitro Testing. ASAIO J 2023; 69:924-931. [PMID: 37314830 DOI: 10.1097/mat.0000000000001999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Refurbishing single use extracorporeal membrane oxygenation (ECMO) oxygenators for in vitro research applications is common. However, the refurbishment protocols that are established in respective laboratories have never been evaluated. In the present study, we aim at proving the relevance of a well-designed refurbishing protocol by quantifying the burden of repeatedly reused oxygenators. We used the same three oxygenators in 5 days of 6 hours whole blood experiments. During each experiment day, the performance of the oxygenators was measured through the evaluation of gas transfer. Between experiment days, each oxygenator was refurbished applying three alternative refurbishment protocols based on purified water, pepsin and citric acid, and hydrogen peroxide solutions, respectively. After the last experiment day, we disassembled the oxygenators for visual inspection of the fiber mats. The refurbishment protocol based on purified water showed strong degeneration with a 40-50 %-performance drop and clearly visible debris on the fiber mats. Hydrogen peroxide performed better; nevertheless, it suffered a 20% decrease in gas transfer as well as clearly visible debris. Pepsin/citric acid performed best in the field, but also suffered from 10% performance loss and very few, but visible debris. The study showed the relevance of a well-suited and well-designed refurbishment protocol. The distinct debris on the fiber mats also suggests that reusing oxygenators is ill-advised for many experiment series, especially regarding hemocompatibility and in vivo testing. Most of all, this study revealed the relevance of stating the status of test oxygenators and, if refurbished, comment on the implemented refurbishment protocol in detail.
Collapse
Affiliation(s)
- Lasse J Strudthoff
- From the Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Hesselmann
- From the Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Enmodes GmbH, Aachen, Germany
| | - Johanna C Clauser
- From the Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- From the Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Fallon BP, Thompson AJ, Prater AR, Buchan S, Alberts T, Hoenerhoff M, Rojas-Pena A, Bartlett RH, Hirschl RB. Seven-day in vivo testing of a novel, low-resistance, pumpless pediatric artificial lung for long-term support. J Pediatr Surg 2022; 57:614-623. [PMID: 35953340 PMCID: PMC10112847 DOI: 10.1016/j.jpedsurg.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION For children with end-stage lung disease that cannot wean from extracorporeal life support (ECLS), a wearable artificial lung would permit extubation and provide a bridge to recovery or transplantation. We evaluate the function of the novel Pediatric MLung-a low-resistance, pumpless artificial lung developed specifically for children-in healthy animal subjects. METHODS Adolescent "mini sheep" weighing 12-20 kg underwent left thoracotomy, cannulation of the main pulmonary artery (PA; inflow) and left atrium (outflow), and connection to the MLung. RESULTS Thirteen sheep were studied; 6 were supported for 7 days. Mean PA pressure was 23.9 ± 6.9 mmHg. MLung blood flow was 633±258 mL/min or 30.0 ± 16.0% of CO. MLung pressure drop was 4.4 ± 3.4 mmHg. Resistance was 7.2 ± 5.2 mmHg/L/min. Device outlet oxygen saturation was 99.0 ± 3.3% with inlet saturation 53.8 ± 7.3%. Oxygen delivery was 41.1 ± 18.4 mL O2/min (maximum 84.9 mL/min) or 2.8 ± 1.5 mL O2/min/kg. Platelet count significantly decreased; no platelet transfusions were required. Plasma free hemoglobin significantly increased only on day 7, at which point 2 of the animals had plasma free hemoglobin levels above 50 mg/dL. CONCLUSION The MLung provides adequate gas exchange at appropriate blood flows for the pediatric population in a PA-to-LA configuration. Further work remains to improve the biocompatibility of the device. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Brian P Fallon
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Alex J Thompson
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Aaron R Prater
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Skylar Buchan
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Trevor Alberts
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Mark Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alvaro Rojas-Pena
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Surgery, Section of Transplant Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - Robert H Bartlett
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ronald B Hirschl
- Department of Surgery, Extracorporeal Life Support Laboratory, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Surgery, Section of Pediatric Surgery, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Prater AR, Fallon BP, Hirschl RB, Drake DH, Rojas-Pena A. Novel Left Atrial Cannulation Technique for Attachment of a Pumpless Artificial Lung. ASAIO J 2022; 68:1071-1073. [PMID: 35905308 PMCID: PMC9346620 DOI: 10.1097/mat.0000000000001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A pumpless artificial lung has the potential to provide a bridge to recovery or transplantation in children with respiratory failure. Pulmonary artery inflow and left atrial outflow are necessary for low-gradient, pumpless systems; however, long-term cannulation of the fragile left atrium remains problematic. In this technique, the left atrium and pulmonary artery were exposed through a left anterior thoracotomy. Inflow to the artificial lung was created using an end-to-side anastomosis with the pulmonary artery. Device outflow was established through the left atrium. A single-stage venous cannula was passed through a free PTFE graft. Using polypropylene with pledgets, two concentric purse-string sutures were placed in the dome of the left atrium. The venous cannula was inserted. The graft was slid down the cannula and circumferentially secured to the adjacent left atrial tissue and pledgets. The other end of the graft was secured to the cannula with silk ties. The procedure was successful in 10 sheep. Initial device blood flow was 969 ± 222 ml/min, which remained stable for up to 7 days with no anastomotic complications. This is an effective method of achieving secure, long-term left atrial cannulation without cardiopulmonary bypass for use in a low-resistance, pumpless artificial lung. And, most importantly, improves the ease and safety of cannula replacement and final decannulation when AL support is no longer required.
Collapse
Affiliation(s)
- Aaron R Prater
- From the Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Brian P Fallon
- From the Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Ronald B Hirschl
- From the Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
- Section of Pediatric Surgery, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Daniel H Drake
- From the Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Alvaro Rojas-Pena
- From the Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
- Section of Transplantation Surgery, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
6
|
Fallon BP, Lautner-Csorba O, Thompson AJ, Lautner G, Kayden A, Johnson MD, Harvey SL, Langley MW, Peña AR, Bartlett RH, Hirschl RB. A pumpless artificial lung without systemic anticoagulation: The Nitric Oxide Surface Anticoagulation system. J Pediatr Surg 2022; 57:26-33. [PMID: 34649727 PMCID: PMC8810669 DOI: 10.1016/j.jpedsurg.2021.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Artificial lungs have the potential to serve as a bridge to transplantation or recovery for children with end-stage lung disease dependent on extracorporeal life support, but such devices currently require systemic anticoagulation. We describe our experience using the novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system-an NO-releasing circuit with NO in the sweep gas-with the Pediatric MLung-a low-resistance, pumpless artificial lung. METHODS NO flux testing: MLungs (n = 4) were tested using veno-venous extracorporeal life support in a sheep under anesthesia with blood flow set to 0.5 and 1 L/min and sweep gas blended with 100 ppm NO at 1, 2, and 4 L/min. NO and NO2 were measured in the sweep and exhaust gas to calculate NO flux across the MLung membrane. Pumpless implants: Sheep (20-100 kg, n = 3) underwent thoracotomy and cannulation via the pulmonary artery (device inflow) and left atrium (device outflow) using cannulae and circuit components coated with an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. Animals were connected to the MLung with 100 ppm NO in the sweep gas under anesthesia for 24 h with no systemic anticoagulation after cannulation. RESULTS NO flux testing: NO flux averaged 3.4 ± 1.0 flux units (x10-10 mol/cm2/min) (human vascular endothelium: 0.5-4 flux units). Pumpless implants: 3 sheep survived 24 h with patent circuits. MLung blood flow was 716 ± 227 mL/min. Outlet oxygen saturation was 98.3 ± 2.6%. Activated clotting time was 151±24 s. Platelet count declined from 334,333 ± 112,225 to 123,667 ± 7,637 over 24 h. Plasma free hemoglobin and leukocyte and platelet activation did not significantly change. CONCLUSIONS The NOSA system provides NO flux across a gas-exchange membrane of a pumpless artificial lung at a similar rate as native vascular endothelium and achieves effective local anticoagulation of an artificial lung circuit for 24 h.
Collapse
Affiliation(s)
- Brian P Fallon
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, B560 MSRB II/SPC 5686, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Orsolya Lautner-Csorba
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Alex J Thompson
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Gergely Lautner
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Adrianna Kayden
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Matthew D Johnson
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Stephen L Harvey
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Mark W Langley
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Alvaro Rojas Peña
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Robert H Bartlett
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ronald B Hirschl
- Extracorporeal Life Support Laboratory, Department of Surgery, Michigan Medicine, Ann Arbor, Michigan, USA,Department of Surgery, Section of Pediatric Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Willers A, Arens J, Mariani S, Pels H, Maessen JG, Hackeng TM, Lorusso R, Swol J. New Trends, Advantages and Disadvantages in Anticoagulation and Coating Methods Used in Extracorporeal Life Support Devices. MEMBRANES 2021; 11:membranes11080617. [PMID: 34436380 PMCID: PMC8399034 DOI: 10.3390/membranes11080617] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022]
Abstract
The use of extracorporeal life support (ECLS) devices has significantly increased in the last decades. Despite medical and technological advancements, a main challenge in the ECLS field remains the complex interaction between the human body, blood, and artificial materials. Indeed, blood exposure to artificial surfaces generates an unbalanced activation of the coagulation cascade, leading to hemorrhagic and thrombotic events. Over time, several anticoagulation and coatings methods have been introduced to address this problem. This narrative review summarizes trends, advantages, and disadvantages of anticoagulation and coating methods used in the ECLS field. Evidence was collected through a PubMed search and reference scanning. A group of experts was convened to openly discuss the retrieved references. Clinical practice in ECLS is still based on the large use of unfractionated heparin and, as an alternative in case of contraindications, nafamostat mesilate, bivalirudin, and argatroban. Other anticoagulation methods are under investigation, but none is about to enter the clinical routine. From an engineering point of view, material modifications have focused on commercially available biomimetic and biopassive surfaces and on the development of endothelialized surfaces. Biocompatible and bio-hybrid materials not requiring combined systemic anticoagulation should be the future goal, but intense efforts are still required to fulfill this purpose.
Collapse
Affiliation(s)
- Anne Willers
- ECLS Centre, Cardio-Thoracic Surgery, and Cardiology Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (S.M.); (J.G.M.); (R.L.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
- Correspondence: (A.W.); (J.S.); Tel.: +31-(0)649-07-9752 (A.W.); +49-(911)-398-0 (J.S.)
| | - Jutta Arens
- Engineering Organ Support Technologies Group, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (J.A.); (H.P.)
| | - Silvia Mariani
- ECLS Centre, Cardio-Thoracic Surgery, and Cardiology Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (S.M.); (J.G.M.); (R.L.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Helena Pels
- Engineering Organ Support Technologies Group, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (J.A.); (H.P.)
| | - Jos G. Maessen
- ECLS Centre, Cardio-Thoracic Surgery, and Cardiology Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (S.M.); (J.G.M.); (R.L.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Tilman M. Hackeng
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
- Department of Biochemistry, Faculty of Health, Medicine and Life, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roberto Lorusso
- ECLS Centre, Cardio-Thoracic Surgery, and Cardiology Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (S.M.); (J.G.M.); (R.L.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Justyna Swol
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Ernst-Nathan Str. 1, 90419 Nuremberg, Germany
- Correspondence: (A.W.); (J.S.); Tel.: +31-(0)649-07-9752 (A.W.); +49-(911)-398-0 (J.S.)
| |
Collapse
|
8
|
Santos J, Vedula EM, Lai W, Isenberg BC, Lewis DJ, Lang D, Sutherland D, Roberts TR, Harea GT, Wells C, Teece B, Karandikar P, Urban J, Risoleo T, Gimbel A, Solt D, Leazer S, Chung KK, Sukavaneshvar S, Batchinsky AI, Borenstein JT. Toward Development of a Higher Flow Rate Hemocompatible Biomimetic Microfluidic Blood Oxygenator. MICROMACHINES 2021; 12:888. [PMID: 34442512 PMCID: PMC8398684 DOI: 10.3390/mi12080888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
The recent emergence of microfluidic extracorporeal lung support technologies presents an opportunity to achieve high gas transfer efficiency and improved hemocompatibility relative to the current standard of care in extracorporeal membrane oxygenation (ECMO). However, a critical challenge in the field is the ability to scale these devices to clinically relevant blood flow rates, in part because the typically very low blood flow in a single layer of a microfluidic oxygenator device requires stacking of a logistically challenging number of layers. We have developed biomimetic microfluidic oxygenators for the past decade and report here on the development of a high-flow (30 mL/min) single-layer prototype, scalable to larger structures via stacking and assembly with blood distribution manifolds. Microfluidic oxygenators were designed with biomimetic in-layer blood distribution manifolds and arrays of parallel transfer channels, and were fabricated using high precision machined durable metal master molds and microreplication with silicone films, resulting in large area gas transfer devices. Oxygen transfer was evaluated by flowing 100% O2 at 100 mL/min and blood at 0-30 mL/min while monitoring increases in O2 partial pressures in the blood. This design resulted in an oxygen saturation increase from 65% to 95% at 20 mL/min and operation up to 30 mL/min in multiple devices, the highest value yet recorded in a single layer microfluidic device. In addition to evaluation of the device for blood oxygenation, a 6-h in vitro hemocompatibility test was conducted on devices (n = 5) at a 25 mL/min blood flow rate with heparinized swine donor blood against control circuits (n = 3). Initial hemocompatibility results indicate that this technology has the potential to benefit future applications in extracorporeal lung support technologies for acute lung injury.
Collapse
Affiliation(s)
- Jose Santos
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Else M. Vedula
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Weixuan Lai
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Brett C. Isenberg
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Diana J. Lewis
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Dan Lang
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - David Sutherland
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - George T. Harea
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - Christian Wells
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Bryan Teece
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Paramesh Karandikar
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Joseph Urban
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Thomas Risoleo
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Alla Gimbel
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| | - Derek Solt
- Thrombodyne, Inc., Salt Lake City, UT 84103, USA; (D.S.); (S.S.)
| | - Sahar Leazer
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.L.); (K.K.C.)
| | - Kevin K. Chung
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (S.L.); (K.K.C.)
| | | | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA; (T.R.R.); (G.T.H.); (A.I.B.)
| | - Jeffrey T. Borenstein
- Draper, Cambridge, MA 02139, USA; (J.S.); (W.L.); (B.C.I.); (D.J.L.); (D.L.); (D.S.); (C.W.); (B.T.); (P.K.); (J.U.); (T.R.); (A.G.)
| |
Collapse
|
9
|
Gimbel AA, Hsiao JC, Kim ES, Lewis DJ, Risoleo TF, Urban JN, Borenstein JT. A high gas transfer efficiency microfluidic oxygenator for extracorporeal respiratory assist applications in critical care medicine. Artif Organs 2021; 45:E247-E264. [PMID: 33561881 DOI: 10.1111/aor.13935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Advances in microfluidics technologies have spurred the development of a new generation of microfluidic respiratory assist devices, constructed using microfabrication techniques capable of producing microchannel dimensions similar to those found in human capillaries and gas transfer films in the same thickness range as the alveolar membrane. These devices have been tested in laboratory settings and in some cases in extracorporeal animal experiments, yet none have been advanced to human clinical studies. A major challenge in the development of microfluidic oxygenators is the difficulty in scaling the technology toward high blood flows necessary to support adult humans; such scaling efforts are often limited by the complexity of the fabrication process and the manner in which blood is distributed in a three-dimensional network of microchannels. Conceptually, a central advantage of microfluidic oxygenators over existing hollow-fiber membrane-based configurations is the potential for shallower channels and thinner gas transfer membranes, features that reduce oxygen diffusion distances, to result in a higher gas transfer efficiency defined as the ratio of the volume of oxygen transferred to the blood per unit time to the active surface area of the gas transfer membrane. If this ratio is not significantly higher than values reported for hollow fiber membrane oxygenators (HFMO), then the expected advantage of the microfluidic approach would not be realized in practice, potentially due to challenges encountered in blood distribution strategies when scaling microfluidic designs to higher flow rates. Here, we report on scaling of a microfluidic oxygenator design from 4 to 92 mL/min blood flow, within an order of magnitude of the flow rate required for neonatal applications. This scaled device is shown to have a gas transfer efficiency higher than any other reported system in the literature, including other microfluidic prototypes and commercial HFMO cartridges. While the high oxygen transfer efficiency is a promising advance toward clinical scaling of a microfluidic architecture, it is accompanied by an excessive blood pressure drop in the circuit, arising from a combination of shallow gas transfer channels and equally shallow distribution manifolds. Therefore, next-generation microfluidic oxygenators will require novel design and fabrication strategies to minimize pressure drops while maintaining very high oxygen transfer efficiencies.
Collapse
Affiliation(s)
| | | | - Ernest S Kim
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
10
|
Blauvelt DG, Abada EN, Oishi P, Roy S. Advances in extracorporeal membrane oxygenator design for artificial placenta technology. Artif Organs 2021; 45:205-221. [PMID: 32979857 PMCID: PMC8513573 DOI: 10.1111/aor.13827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Extreme prematurity, defined as a gestational age of fewer than 28 weeks, is a significant health problem worldwide. It carries a high burden of mortality and morbidity, in large part due to the immaturity of the lungs at this stage of development. The standard of care for these patients includes support with mechanical ventilation, which exacerbates lung pathology. Extracorporeal life support (ECLS), also called artificial placenta technology when applied to extremely preterm (EPT) infants, offers an intriguing solution. ECLS involves providing gas exchange via an extracorporeal device, thereby doing the work of the lungs and allowing them to develop without being subjected to injurious mechanical ventilation. While ECLS has been successfully used in respiratory failure in full-term neonates, children, and adults, it has not been applied effectively to the EPT patient population. In this review, we discuss the unique aspects of EPT infants and the challenges of applying ECLS to these patients. In addition, we review recent progress in artificial placenta technology development. We then offer analysis on design considerations for successful engineering of a membrane oxygenator for an artificial placenta circuit. Finally, we examine next-generation oxygenators that might advance the development of artificial placenta devices.
Collapse
Affiliation(s)
- David G. Blauvelt
- Department of Pediatrics, University of California, San Francisco, California
| | - Emily N. Abada
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Peter Oishi
- Department of Pediatrics, University of California, San Francisco, California
| | - Shuvo Roy
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
11
|
Fallon BP, Gadepalli SK, Hirschl RB. Pediatric and neonatal extracorporeal life support: current state and continuing evolution. Pediatr Surg Int 2021; 37:17-35. [PMID: 33386443 PMCID: PMC7775668 DOI: 10.1007/s00383-020-04800-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The use of extracorporeal life support (ECLS) for the pediatric and neonatal population continues to grow. At the same time, there have been dramatic improvements in the technology and safety of ECLS that have broadened the scope of its application. This article will review the evolving landscape of ECLS, including its expanding indications and shrinking contraindications. It will also describe traditional and hybrid cannulation strategies as well as changes in circuit components such as servo regulation, non-thrombogenic surfaces, and paracorporeal lung-assist devices. Finally, it will outline the modern approach to managing a patient on ECLS, including anticoagulation, sedation, rehabilitation, nutrition, and staffing.
Collapse
Affiliation(s)
- Brian P Fallon
- Department of Surgery, ECLS Laboratory, B560 MSRB II/SPC 5686, Michigan Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Samir K Gadepalli
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ronald B Hirschl
- Department of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Steuer NB, Hugenroth K, Beck T, Spillner J, Kopp R, Reinartz S, Schmitz-Rode T, Steinseifer U, Wagner G, Arens J. Long-Term Venovenous Connection for Extracorporeal Carbon Dioxide Removal (ECCO 2R)-Numerical Investigation of the Connection to the Common Iliac Veins. Cardiovasc Eng Technol 2020; 11:362-380. [PMID: 32405926 PMCID: PMC7385029 DOI: 10.1007/s13239-020-00466-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Purpose Currently used cannulae for extracorporeal carbon dioxide removal (ECCO2R) are associated with complications such as thrombosis and distal limb ischemia, especially for long-term use. We hypothesize that the risk of these complications is reducible by attaching hemodynamically optimized grafts to the patient’s vessels. In this study, as a first step towards a long-term stable ECCO2R connection, we investigated the feasibility of a venovenous connection to the common iliac veins. To ensure its applicability, the drainage of reinfused blood (recirculation) and high wall shear stress (WSS) must be avoided. Methods A reference model was selected for computational fluid dynamics, on the basis of the analysis of imaging data. Initially, a sensitivity analysis regarding recirculation was conducted using as variables: blood flow, the distance of drainage and return to the iliocaval junction, as well as the diameter and position of the grafts. Subsequently, the connection was optimized regarding recirculation and the WSS was evaluated. We validated the simulations in a silicone model traversed by dyed fluid. Results The simulations were in good agreement with the validation measurements (mean deviation 1.64%). The recirculation ranged from 32.1 to 0%. The maximum WSS did not exceed 5.57 Pa. The position and diameter of the return graft show the highest influence on recirculation. A correlation was ascertained between recirculation and WSS. Overall, an inflow jet directed at a vessel wall entails not only high WSS, but also a flow separation and thereby an increased recirculation. Therefore, return grafts aligned to the vena cava are crucial. Conclusion In conclusion, a connection without recirculation could be feasible and therefore provides a promising option for a long-term ECCO2R connection.
Collapse
Affiliation(s)
- N B Steuer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - K Hugenroth
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - T Beck
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - J Spillner
- Clinic for Cardiothoracic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - R Kopp
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - S Reinartz
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - T Schmitz-Rode
- Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - U Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - G Wagner
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - J Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Chair in Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, Enschede, The Netherlands
| |
Collapse
|
13
|
|