1
|
Bender M, Escher A, Messner B, Rohrich M, Fischer MB, Hametner C, Laufer G, Kertzscher U, Zimpfer D, Jakubek S, Granegger M. An Atraumatic Mock Loop for Realistic Hemocompatibility Assessment of Blood Pumps. IEEE Trans Biomed Eng 2024; 71:1651-1662. [PMID: 38133971 DOI: 10.1109/tbme.2023.3346206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Conventional mock circulatory loops (MCLs) cannot replicate realistic hemodynamic conditions without inducing blood trauma. This constrains in-vitro hemocompatibility examinations of blood pumps to static test loops that do not mimic clinical scenarios. This study aimed at developing an atraumatic MCL based on a hardware-in-the-loop concept (H-MCL) for realistic hemocompatibility assessment. METHODS The H-MCL was designed for 450 ± 50 ml of blood with the polycarbonate reservoirs, the silicone/polyvinyl-chloride tubing, and the blood pump under investigation as the sole blood-contacting components. To account for inherent coupling effects a decoupling pressure control was derived by feedback linearization, whereas the level control was addressed by an optimization task to overcome periodic loss of controllability. The HeartMate 3 was showcased to evaluate the H-MCL's accuracy at typical hemodynamic conditions. To verify the atraumatic properties of the H-MCL, hemolysis (bovine blood, n = 6) was evaluated using the H-MCL in both inactive (static) and active (minor pulsatility) mode, and compared to results achieved in conventional loops. RESULTS Typical hemodynamic scenarios were replicated with marginal coupling effects and root mean square error (RMSE) below 1.74 ± 1.37 mmHg while the fluid level remained within ±4% of its target value. The normalized indices of hemolysis (NIH) for the inactive H-MCL showed no significant differences to conventional loops ( ∆NIH = -1.6 mg/100 L). Further, no significant difference was evident between the active and inactive mode in the H-MCL ( ∆NIH = +0.3 mg/100 L). CONCLUSION AND SIGNIFICANCE Collectively, these findings indicated the H-MCL's potential for in-vitro hemocompatibility assessment of blood pumps within realistic hemodynamic conditions, eliminating inherent setup-related risks for blood trauma.
Collapse
|
2
|
Agrafiotis E, Zimpfer D, Mächler H, Holzapfel GA. Review of Systemic Mock Circulation Loops for Evaluation of Implantable Cardiovascular Devices and Biological Tissues. J Endovasc Ther 2024:15266028241235876. [PMID: 38528650 DOI: 10.1177/15266028241235876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
CLINICAL IMPACT On needs-based ex vivo monitoring of implantable devices or tissues/organs in cardiovascular simulators provides new insights and paves new paths for device prototypes. The insights gained could not only support the needs of patients, but also inform engineers, scientists and clinicians about undiscovered aspects of diseases (during routine monitoring). We analyze seminal and current work and highlight a variety of opportunities for developing preclinical tools that would improve strategies for future implantable devices. Holistically, mock circulation loop studies can bridge the gap between in vivo and in vitro approaches, as well as clinical and laboratory settings, in a mutually beneficial manner.
Collapse
Affiliation(s)
| | - Daniel Zimpfer
- Division of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Heinrich Mächler
- Division of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Tran P, Tedesco V, Kiang S, Karnik S, Nguyen D, Frazier OH, Fraser KH, Wang Y. Personalized Numerical Cardiovascular Model with Weight Growth for Evaluating Pediatric Left Ventricular Assist Devices: Derivation from an Experimental Mock Circulatory Loop. Ann Biomed Eng 2024; 52:302-317. [PMID: 37777691 DOI: 10.1007/s10439-023-03376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Pediatric patients with heart failure have limited treatment options because of a shortage of donor hearts and compatible left ventricular assist devices (LVADs). To address this issue, our group is developing an implantable pediatric LVAD for patients weighing 5-20 kg, capable of accommodating different physiological hemodynamic conditions as patients grow. To evaluate LVAD prototypes across a wide range of conditions, we developed a numerical cardiovascular model, using data from a mock circulatory loop (MCL) and patient-specific elastance functions. The numerical MCL was validated against experimental MCL results, showing good agreement, with differences ranging from 0 to 11%. The numerical model was also tested under left heart failure conditions and showed a worst-case difference of 16%. In an MCL study with a pediatric LVAD, a pediatric dataset was obtained from the experimental MCL and used to tune the numerical MCL. Then, the numerical model simulated LVAD flow by using an HQ curve obtained from the LVAD's impeller. When the numerical MCL was validated against the experimental MCL, hemodynamic differences ranged between 0 and 9%. These findings suggest that the numerical model can replicate various physiological conditions and impeller designs, indicating its potential as a tool for developing and optimizing pediatric LVADs.
Collapse
Affiliation(s)
- Phong Tran
- Innovative Device and Engineering Applications Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Victor Tedesco
- Innovative Device and Engineering Applications Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Simon Kiang
- Innovative Device and Engineering Applications Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Shweta Karnik
- Bioengineering Department, Georgia Institute of Technology, Atlanta, GA, USA
| | - David Nguyen
- Innovative Device and Engineering Applications Laboratory, Texas Heart Institute, Houston, TX, USA
| | - O H Frazier
- Innovative Device and Engineering Applications Laboratory, Texas Heart Institute, Houston, TX, USA
| | | | - Yaxin Wang
- Innovative Device and Engineering Applications Laboratory, Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
4
|
Iscan M, Yesildirek A. A New Cardiovascular Mock Loop Driven by Novel Active Capacitance in Normal and Abnormal Conditions. Appl Bionics Biomech 2023; 2023:2866637. [PMID: 37928744 PMCID: PMC10624551 DOI: 10.1155/2023/2866637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
The hybrid mock circulatory loop (hMCL) serves as a crucial hemodynamic simulation tool, offering exceptional flexibility, controllability, and reproducibility for investigating the mechanisms underlying cardiovascular diseases (CVD) in a controlled environment, circumventing the limitations of live organism studies. This paper introduces a novel design and control strategy for hMCL, introducing a novel left ventricle volume-elastance (LVVE) equation that unifies the autoregulation of the Frank-Starling mechanism (FSM) with left ventricle contractility (LVC). LVVE establishes a dynamic link between left ventricular volume (LVV) and LVC, inherently satisfying the regulatory relationship between left ventricular pressure (LVP) and LVV through a mathematical equation. For the first time, LVVE integration significantly enhances the physiological relevance of hMCL by faithfully replicating FSM responses across diverse conditions, including aortic stenosis (AS), variations in systemic vascular resistance (SVR), and heart rate (HR) variations. Furthermore, this study introduces the stability proofs for the discrete closed-loop hMCL, enabling real-time proportional valve control through discrete feedback linearization-an innovative departure from conventional methods. Notably, FSM emulation is achieved by tracking reference maximum and minimum LVV values, eliminating the reliance on predefined functions or existing data, such as the maximum LV elastance value. Rigorous experimental validation, encompassing numerical simulations and comparative analyses with prior research, attests to the precision and efficacy of the proposed hMCL in faithfully replicating both normal and abnormal CV conditions. Significantly, the hMCL demonstrates that increasing HR enhances LVC while maintaining physiological pressures; however, this increase in LVC corresponds with a decrease in LVV, in alignment with human data and FSM principles. Crucially, the coupling mechanism between the FSM and LVC yields results of enhanced physiological fidelity, significantly advancing the hMCL's utility in physiological research. Moreover, the hMCL's capacity to simulate critical cardiovascular scenarios, including AS, SVR fluctuations, and HR variations, underscores its versatility and substantial potential for investigating complex CV dynamics.
Collapse
|
5
|
Petersdorff-Campen KV, Dupuch MA, Magkoutas K, Meboldt M, Hierold C, Schmid Daners M. Pressure and Bernoulli-based Flow Measurement via a Tapered Inflow VAD Cannula. IEEE Trans Biomed Eng 2021; 69:1620-1629. [PMID: 34727020 DOI: 10.1109/tbme.2021.3123983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Currently available ventricular assist devices provide continuous flow and do not adapt to the changing needs of patients. Physiological control algorithms have been proposed that adapt the pump speed based on the left ventricular pressure. However, so far, no clinically used pump can acquire this pressure. Therefore, for the validation of physiological control concepts in vivo, a system that can continuously and accurately provide the left ventricular pressure signal is needed. METHODS We demonstrate the integration of two pressure sensors into a tapered inflow cannula compatible with the HeartMate 3 (HM3) ventricular assist device. Selective laser melting was used to incorporate functional elements with a small footprint and therefore retain the geometry, function and implantability of the original cannula. The system was tested on a hybrid mock circulation system. Static and simulated physiological flow and pressure profiles were used to evaluate the combined pressure and flow sensing capabilities of the modified cannula. CONCLUSION The cannula prototypes enabled continuous pressure measurements at two points of their inner wall in the range of 100 and 200 mmHg. The developed, Bernoulli-based, two sensor model improved the accuracy of the measured simulated left ventricular pressure by eliminating the influence of flow inside the cannula. This method reduced the flow induced pressure uncertainty from up to 7.6 mmHg in single sensor measurements to 0.3 mmHg. Additionally, the two-sensor system and model enable the measurement of the blood flow through the pump with an accuracy of 0.140.04 L/min, without dedicated flow sensors.
Collapse
|
6
|
Cappon F, Wu T, Papaioannou T, Du X, Hsu PL, Khir AW. Mock circulatory loops used for testing cardiac assist devices: A review of computational and experimental models. Int J Artif Organs 2021; 44:793-806. [PMID: 34581613 DOI: 10.1177/03913988211045405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart failure is a major health risk, and with limited availability of donor organs, there is an increasing need for developing cardiac assist devices (CADs). Mock circulatory loops (MCL) are an important in-vitro test platform for CAD's performance assessment and optimisation. The MCL is a lumped parameter model constructed out of hydraulic and mechanical components aiming to simulate the native cardiovascular system (CVS) as closely as possible. Further development merged MCLs and numerical circulatory models to improve flexibility and accuracy of the system; commonly known as hybrid MCLs. A total of 128 MCLs were identified in a literature research until 25 September 2020. It was found that the complexity of the MCLs rose over the years, recent MCLs are not only capable of mimicking the healthy and pathological conditions, but also implemented cerebral, renal and coronary circulations and autoregulatory responses. Moreover, the development of anatomical models made flow visualisation studies possible. Mechanical MCLs showed excellent controllability and repeatability, however, often the CVS was overly simplified or lacked autoregulatory responses. In numerical MCLs the CVS is represented with a higher order of lumped parameters compared to mechanical test rigs, however, complex physiological aspects are often simplified. In hybrid MCLs complex physiological aspects are implemented in the hydraulic part of the system, whilst the numerical model represents parts of the CVS that are too difficult to represent by mechanical components per se. This review aims to describe the advances, limitations and future directions of the three types of MCLs.
Collapse
Affiliation(s)
- Femke Cappon
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| | - Tingting Wu
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Theodore Papaioannou
- Biomedical Engineering Unit, First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Zografou, Greece
| | - Xinli Du
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| | - Po-Lin Hsu
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Ashraf W Khir
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UK
| |
Collapse
|
7
|
Agrafiotis E, Geith MA, Golkani MA, Hergesell V, Sommer G, Spiliopoulos S, Holzapfel GA. An active approach of pressure waveform matching for stress-based testing of arteries. Artif Organs 2021; 45:1562-1575. [PMID: 34519059 PMCID: PMC9292962 DOI: 10.1111/aor.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Arterial compliance assists the cardiovascular system with three key roles: (i) storing up to 50% of the stroke volume; (ii) ensuring blood flow during diastole; (iii) dampening pressure oscillations through arterial distension. In mock circulation loops (MCLs), arterial compliance was simulated either with membrane, spring, or Windkessel chambers. Although they have been shown to be suitable for cardiac device testing, their passive behavior can limit stress-based testing of arteries. Here we present an active compliance chamber with a feedback control of variable compliance as part of an MCL designed for biomechanical evaluation of arteries under physiological waveforms. MATERIALS AND METHODS The chamber encloses a piston that changes the volume via a cascaded controller when there is a difference between the real-time pressure and the physiological reference pressure with the aim to equilibrate both pressures. RESULTS The experimental results showed repeatable physiological waveforms of aortic pressure in health (80-120 mm Hg), systemic hypertension (90-153 mm Hg), and heart failure reduced ejection fraction (78-108 mm Hg). Statistical validation (n = 20) of the function of the chamber is presented against compared raw data. CONCLUSION We demonstrate that the active compliance chamber can track the actual pressure of the MCL and balance it in real time (every millisecond) with the reference values in order to shape the given pressure waveform. The active compliance chamber is an advanced tool for MCL applications for biomechanical examination of stented arteries and for preclinical evaluation of vascular implants.
Collapse
Affiliation(s)
| | - Markus A Geith
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Mohammad A Golkani
- Institute of Automation and Control, Graz University of Technology, Graz, Austria
| | - Vera Hergesell
- Department of Cardiac Surgery, Medical University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria.,Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
8
|
Boes S, Thamsen B, Haas M, Daners MS, Meboldt M, Granegger M. Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Trans Biomed Eng 2019; 66:1618-1627. [DOI: 10.1109/tbme.2018.2876840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
King JM, Bergeron CA, Taylor CE. Finite state machine implementation for left ventricle modeling and control. Biomed Eng Online 2019; 18:10. [PMID: 30700298 PMCID: PMC6354391 DOI: 10.1186/s12938-019-0628-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/16/2019] [Indexed: 11/24/2022] Open
Abstract
Background Simulation of a left ventricle has become a critical facet of evaluating therapies and operations that interact with cardiac performance. The ability to simulate a wide range of possible conditions, changes in cardiac performance, and production of nuisances at transition points enables evaluation of precision medicine concepts that are designed to function through this spectrum. Ventricle models have historically been based on biomechanical analysis, with model architectures constituted of continuous states and not conducive to deterministic processing. Producing a finite-state machine governance of a left ventricle model would enable a broad range of applications: physiological controller development, experimental left ventricle control, and high throughput simulations of left ventricle function. Methods A method for simulating left ventricular pressure-volume control utilizing a preload, afterload, and contractility sensitive computational model is shown. This approach uses a logic-based conditional finite state machine based on the four pressure-volume phases that describe left ventricular function. This was executed with a physical system hydraulic model using MathWorks’ Simulink® and Stateflow tools. Results The approach developed is capable of simulating changes in preload, afterload, and contractility in time based on a patient’s preload analysis. Six pressure–volume loop simulations are presented to include a base-line, preload change only, afterload change only, contractility change only, a clinical control, and heart failure with normal ejection fraction. All simulations produced an error of less than 1 mmHg and 1 mL of the absolute difference between the desired and simulated pressure and volume set points. The acceptable performance of the fixed-timestep architecture in the finite state machine allows for deployment to deterministic systems, such as experimental systems for validation. Conclusions The proposed approach allows for personalized data, revealed through an individualized clinical pressure–volume analysis, to be simulated in silico. The computational model architecture enables this control structure to be executed on deterministic systems that govern experimental left ventricles. This provides a mock circulatory system with the ability to investigate the pathophysiology for a specific individual by replicating the exact pressure–volume relationship defined by their left ventricular functionality; as well as perform predictive analysis regarding changes in preload, afterload, and contractility in time.
Collapse
Affiliation(s)
- Jacob M King
- Department of Mechanical Engineering, University of Louisiana at Lafayette, 241 E. Lewis St. RM320, Lafayette, LA, 70503, USA
| | - Clint A Bergeron
- Department of Mechanical Engineering, University of Louisiana at Lafayette, 241 E. Lewis St. RM320, Lafayette, LA, 70503, USA
| | - Charles E Taylor
- Department of Mechanical Engineering, University of Louisiana at Lafayette, 241 E. Lewis St. RM320, Lafayette, LA, 70503, USA.
| |
Collapse
|
10
|
Simulated Performance of the Cleveland Clinic Continuous-Flow Total Artificial Heart Using the Virtual Mock Loop. ASAIO J 2018; 65:565-572. [PMID: 30074965 DOI: 10.1097/mat.0000000000000857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our new Virtual Mock Loop (VML) is a mathematical model designed to simulate the human cardiovascular system and gauge performance of mechanical circulatory support devices. We aimed to mimic the hemodynamic performance of Cleveland Clinic's self-regulating continuous-flow total artificial heart (CFTAH) via VML and evaluate VML's accuracy versus bench data from our standard mock circulatory loop. The VML reproduced 23 hemodynamic conditions. Systemic/pulmonary vascular resistances and pump rotational speed were set for VML from bench test data. We compared outputs (pump flow, left/right pump pressure rise, normalized pump performance, and atrial pressure difference) of the two methods. Data from pump flow and left pump pressure rise were similar, but right pump pressure rise slightly differed. Left pump normalized pump performance curves were similar. Right pump VML results were within the same performance range indicated by bench tests. The plots of atrial pressure differences of VML versus bench-test data were similar, but slightly differed in the midrange of systemic/pulmonary gradients. Virtual Mock Loop successfully reproduced results from our mock circulatory loop of CFTAH test conditions. The CFTAH's self-regulation feature of right pump performance was also calculated effectively. We foresee using versions of the VML for training, simulating physiologic cardiac conditions, and patient monitoring.
Collapse
|
11
|
Corazza I, Casadei L, Bonafè E, Cercenelli L, Marcelli E, Zannoli R. How to transform a fixed stroke alternating syringe ventricle into an adjustable elastance ventricle. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:074301. [PMID: 30068143 DOI: 10.1063/1.5030100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most devices used for bench simulation of the cardiovascular system are based either on a syringe-like alternating pump or an elastic chamber inside a fluid-filled rigid box. In these devices, it is very difficult to control the ventricular elastance and simulate pathologies related to the mechanical mismatch between the ventricle and arterial load (i.e., heart failure). This work presents a possible solution to transforming a syringe-like pump with a fixed ventricle into a ventricle with variable elastance. Our proposal was tested in two steps: (1) fixing the ventricle and the aorta and changing the peripheral resistance (PHR); (2) fixing the aorta and changing the ventricular elastance and the PHR. The signals of interest were acquired to build the ventricular pressure-volume (P-V) loops describing the different physiological conditions, and the end-systolic pressure-volume relationships (ESPVRs) were calculated with linear interpolation. The results obtained show a good physiological behavior of our mock for both steps. (1) Since the ventricle is the same, the systolic pressures increase and the stroke volumes decrease with the PHR: the ESPVR, obtained by interpolating the pressure and volume values at end-systolic phases, is linear. (2) Each ventricle presents ESPVR with different slopes depending on the ventricle elastance with a very good linear behavior. In conclusion, this paper demonstrates that a fixed stroke alternating syringe ventricle can be transformed into an adjustable elastance ventricle.
Collapse
Affiliation(s)
- Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lorenzo Casadei
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Elisa Bonafè
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Laura Cercenelli
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Emanuela Marcelli
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Romano Zannoli
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Boës S, Ochsner G, Amacher R, Petrou A, Meboldt M, Schmid Daners M. Control of the Fluid Viscosity in a Mock Circulation. Artif Organs 2017; 42:68-77. [DOI: 10.1111/aor.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Boës
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Gregor Ochsner
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Raffael Amacher
- Wyss Zurich, ETH Zurich and University of Zurich; Zurich Switzerland
| | - Anastasios Petrou
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| |
Collapse
|
13
|
Jansen-Park SH, Hsu PL, Müller I, Steinseifer U, Abel D, Autschbach R, Rossaint R, Schmitz-Rode T. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing. BIOMED ENG-BIOMED TE 2017; 62:139-148. [PMID: 28375841 DOI: 10.1515/bmt-2016-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022]
Abstract
Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.
Collapse
Affiliation(s)
| | - Po-Lin Hsu
- Artificial Organ Technology Laboratory, Biomufacturing Centre, School of Mechanical and Electric Engineering, Soochow University, Jiangsu
| | - Indra Müller
- Institute of Applied Medical Engineering, RWTH Aachen University, Aachen
| | - Ulrich Steinseifer
- Institute of Applied Medical Engineering, RWTH Aachen University, Aachen
| | - Dirk Abel
- Institute of Automatic Control, RWTH Aachen University, Aachen
| | - Rüdiger Autschbach
- Department of Cardiothoracic and Vascular Surgery, University Hospital Aachen, Aachen
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital Aachen, Aachen
| | | |
Collapse
|
14
|
The need for hybrid modeling in analysis of cardiovascular and respiratory support. Int J Artif Organs 2016; 39:265-71. [PMID: 27443351 DOI: 10.5301/ijao.5000513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
Abstract
The analysis of the efficiency and optimum use of cardiovascular and respiratory support systems is of great importance in research and development as well as in clinical practice. To understand the complex interaction between human cardiovascular or respiratory systems and the mechanical assist devices, a number of physical, computational or hybrid (physical-electrical or physical-computational) models/simulators have been developed and used in recent years. The hybrid models combine the advantages of both the physical models (interaction with assist devices) and of the computational/electrical models (accuracy, flexibility). This paper reviews the existing solutions and briefly describes their characteristics, advantages and disadvantages, chiefly emphasizing the features of the hybrid models that are most promising for future development.
Collapse
|
15
|
Jansen-Park SH, Mahmood MN, Müller I, Turnhoff LK, Schmitz-Rode T, Steinseifer U, Sonntag SJ. Effects of Interaction Between Ventricular Assist Device Assistance and Autoregulated Mock Circulation Including Frank-Starling Mechanism and Baroreflex. Artif Organs 2015; 40:981-991. [DOI: 10.1111/aor.12635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- So-Hyun Jansen-Park
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Mohammad Nauzef Mahmood
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Indra Müller
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Lisa Kathrin Turnhoff
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Simon Johannes Sonntag
- Department of Cardiovascular Engineering; Institute of Applied Medical Engineering; Helmholtz Institute; RWTH Aachen University; Aachen Germany
| |
Collapse
|
16
|
Schampaert S, Pennings KAMA, van de Molengraft MJG, Pijls NHJ, van de Vosse FN, Rutten MCM. A mock circulation model for cardiovascular device evaluation. Physiol Meas 2014; 35:687-702. [DOI: 10.1088/0967-3334/35/4/687] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Ruiz P, Rezaienia MA, Rahideh A, Keeble TR, Rothman MT, Korakianitis T. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support. Artif Organs 2013; 37:549-60. [PMID: 23758568 DOI: 10.1111/aor.12109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article presents a new device designed to simulate in vitro flow rates, pressures, and other parameters representing normal and diseased conditions of the human cardiovascular system. Such devices are sometimes called bioreactors or "mock" simulator of cardiovascular loops (SCVLs) in literature. Most SCVLs simulate the systemic circulation only and have inherent limitations in studying the interaction of left and right sides of circulation. Those SCVLs that include both left and right sides of the circulation utilize header reservoirs simulating cycles with constant atrial pressures. The SCVL described in this article includes models for all four chambers of the heart, and the systemic and pulmonary circulation loops. Each heart chamber is accurately activated by a separate linear motor to simulate the suction and ejection stages, thus capturing important features in the perfusion waveforms. Four mechanical heart valves corresponding to mitral, pulmonary, tricuspid, and aortic are used to control the desired unidirectional flow. This SCVL can emulate different physiological and pathological conditions of the human cardiovascular system by controlling the different parameters of blood circulation through the vascular tree (mainly the resistance, compliance, and elastance of the heart chambers). In this study, four cases were simulated: healthy, congestive heart failure, left ventricular diastolic dysfunction conditions, and left ventricular dysfunction with the addition of a mechanical circulatory support (MCS) device. Hemodynamic parameters including resistance, pressure, and flow have been investigated at aortic sinus, carotid artery, and pulmonary artery, respectively. The addition of an MCS device resulted in a significant reduction in mean blood pressure and re-establishment of cardiac output. In all cases, the experimental results are compared with human physiology and numerical simulations. The results show the capability of the SCVL to replicate various physiological and pathological conditions with and without MCS.
Collapse
Affiliation(s)
- Paula Ruiz
- School of Engineering and Materials Science, Queen Mary University of London, UK
| | | | | | | | | | | |
Collapse
|
18
|
Ochsner G, Amacher R, Amstutz A, Plass A, Schmid Daners M, Tevaearai H, Vandenberghe S, Wilhelm MJ, Guzzella L. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. IEEE Trans Biomed Eng 2012. [PMID: 23204266 DOI: 10.1109/tbme.2012.2230000] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents a novel mock circulation for the evaluation of ventricular assist devices (VADs), which is based on a hardware-in-the-loop concept. A numerical model of the human blood circulation runs in real time and computes instantaneous pressure, volume, and flow rate values. The VAD to be tested is connected to a numerical-hydraulic interface, which allows the interaction between the VAD and the numerical model of the circulation. The numerical-hydraulic interface consists of two pressure-controlled reservoirs, which apply the computed pressure values from the model to the VAD, and a flow probe to feed the resulting VAD flow rate back to the model. Experimental results are provided to show the proper interaction between a numerical model of the circulation and a mixed-flow blood pump.
Collapse
Affiliation(s)
- Gregor Ochsner
- Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ferrari G, Kozarski M, Zieliński K, Fresiello L, Di Molfetta A, Górczyńska K, Pałko KJ, Darowski M. A modular computational circulatory model applicable to VAD testing and training. J Artif Organs 2011; 15:32-43. [DOI: 10.1007/s10047-011-0606-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
20
|
Munir MB, Malik DS, Khan MT, Schaefle KJ, Argenziano M, Cheema FH. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system. Artif Organs 2011; 35:96-7; author reply 97-8. [PMID: 21226747 DOI: 10.1111/j.1525-1594.2010.01153.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
A new pulse duplicator with a passive fill ventricle for analysis of cardiac dynamics. J Artif Organs 2010; 13:189-96. [DOI: 10.1007/s10047-010-0518-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
|