1
|
Kuroda T, Miyagi C, Polakowski AR, Flick CR, Kuban BD, Fukamachi K, Karimov JH. Cleveland Clinic Continuous-Flow Total Artificial Heart: Progress Report and Technology Update. ASAIO J 2024; 70:116-123. [PMID: 37851000 PMCID: PMC10842968 DOI: 10.1097/mat.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Cleveland Clinic's continuous-flow total artificial heart (CFTAH) is being developed at our institution and has demonstrated system reliability and optimal performance. Based on the results from recent chronic in vivo experiments, CFTAH has been revised, especially to improve biocompatibility. The purpose of this article is to report our progress in developing CFTAH. To improve biocompatibility, the right impeller, the pump housing, and the motor were reviewed for design revision. Updated design features were based on computational fluid dynamics analysis and observations from in vitro and in vivo studies. A new version of CFTAH was created, manufactured, and tested. All hemodynamic and pump-related parameters were observed and found to be within the intended ranges, and the new CFTAH yielded acceptable biocompatibility. Cleveland Clinic's continuous-flow total artificial heart has demonstrated reliable performance, and has shown satisfactory progress in its development.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony R. Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine R. Flick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Barry D. Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
- Kaufman Center for Heart Failure Treatment and Recovery, Section of Heart Failure and Cardiac Transplant Medicine, Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH
| |
Collapse
|
2
|
Huang F, Lei H, Ying S, Fu Y, Li Q, Ruan X. Numerical hemolysis performance evaluation of a rotary blood pump under different speed modulation profiles. Front Physiol 2023; 14:1116266. [PMID: 36818439 PMCID: PMC9931726 DOI: 10.3389/fphys.2023.1116266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Speed modulation methods have been studied and even used clinically to create extra pulsation in the blood circulatory system with the assistance of a continuous flow rotary blood pump. However, fast speed variations may also increase the hemolysis potential inside the pump. Methods: This study investigates the hemolysis performance of a ventricular assist rotary blood pump under sinusoidal, square, and triangular wave speed modulation profiles using the computational fluid dynamics (CFD) method. The CFD boundary pressure conditions of the blood pump were obtained by combining simulations with the pump's mathematical model and a complete cardiovascular lumped parameter model. The hemolysis performance of the blood pump was quantified by the hemolysis index (HI) calculated from a Eulerian scalar transport equation. Results: The HI results were obtained and compared with a constant speed condition when the blood pump was run under three speed profiles. The speed modulations were revealed to slightly affect the pump hemolysis, and the hemolysis differences between the different speed modulation profiles were insignificant. Discussion: This study suggests that speed modulations could be a feasible way to improve the flow pulsatility of rotary blood pumps while not increasing the hemolysis performance.
Collapse
Affiliation(s)
- Feng Huang
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China,State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China,*Correspondence: Feng Huang, ; Qipeng Li,
| | - Huan Lei
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shunv Ying
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Fu
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qipeng Li
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China,*Correspondence: Feng Huang, ; Qipeng Li,
| | - Xiaodong Ruan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Xu KW, Gao Q, Wan M, Zhang K. Mock circulatory loop applications for testing cardiovascular assist devices and in vitro studies. Front Physiol 2023; 14:1175919. [PMID: 37123281 PMCID: PMC10133581 DOI: 10.3389/fphys.2023.1175919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The mock circulatory loop (MCL) is an in vitro experimental system that can provide continuous pulsatile flows and simulate different physiological or pathological parameters of the human circulation system. It is of great significance for testing cardiovascular assist device (CAD), which is a type of clinical instrument used to treat cardiovascular disease and alleviate the dilemma of insufficient donor hearts. The MCL installed with different types of CADs can simulate specific conditions of clinical surgery for evaluating the effectiveness and reliability of those CADs under the repeated performance tests and reliability tests. Also, patient-specific cardiovascular models can be employed in the circulation of MCL for targeted pathological study associated with hemodynamics. Therefore, The MCL system has various combinations of different functional units according to its richful applications, which are comprehensively reviewed in the current work. Four types of CADs including prosthetic heart valve (PHV), ventricular assist device (VAD), total artificial heart (TAH) and intra-aortic balloon pump (IABP) applied in MCL experiments are documented and compared in detail. Moreover, MCLs with more complicated structures for achieving advanced functions are further introduced, such as MCL for the pediatric application, MCL with anatomical phantoms and MCL synchronizing multiple circulation systems. By reviewing the constructions and functions of available MCLs, the features of MCLs for different applications are summarized, and directions of developing the MCLs are suggested.
Collapse
Affiliation(s)
- Ke-Wei Xu
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
| | - Qi Gao
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
- *Correspondence: Qi Gao,
| | - Min Wan
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| | - Ke Zhang
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| |
Collapse
|
4
|
Kuroda T, Miyamoto T, Miyagi C, Polakowski AR, Flick CR, Kuban BD, Voros GB, Such K, Fukamachi K, Karimov JH. Pulsatility hemodynamics during speed modulation of continuous-flow total artificial heart in a chronic in vivo. Artif Organs 2022; 46:1555-1563. [PMID: 35318688 PMCID: PMC9543567 DOI: 10.1111/aor.14237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Background The evaluation of pulsatile flow created by the new Cleveland Clinic continuous‐flow total artificial heart (CFTAH100), which has a re‐designed right impeller and motor, had not been tested in vivo. The purpose of this study was to evaluate the feasibility of pulsatility with the CFTAH100 during the application of pump speed modulation protocols in a chronic animal model. Methods A 30‐day chronic animal experiment was conducted with a calf. Five pulsatile studies were performed on the alert animal. The mean pump speed was set at 2800 rpm, and modulated sinusoidally within a range of 0 to ± 35% of mean speed, in increments of 5% at 80 beats per minute (bpm). The pressures and pump flow were collected and a pulsatility index (PI) was calculated. Results The calf was supported with the CFTAH100 without any major complications. The maximum and minimum pump flows changed significantly from baseline in all conditions, while the mean pump flow did not change. All flow pulsatility (FP) readings in all conditions significantly increased from baseline, and the percent modulation (%S) and FP had a strong positive correlation (r = 0.99, p < 0.01). The PI also increased significantly in all conditions (maximum at %S of 35%, 2.2 ± 0.05, p < 0.01), and a positive correlation between %S and PI (r = 0.99, p < 0.01) was observed. Conclusion The CFTAH100 showed the feasibility of creating pulsatile circulation with sinusoidal pump speed modulation.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Takuma Miyamoto
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christine R Flick
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Barry D Kuban
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - George B Voros
- Biological Resources Unit, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kimberly Such
- Biological Resources Unit, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Komlo CM, Throckmorton AL, Tchantchaleishvili V. On the path to permanent artificial heart technology: Greater energy independence is paramount. Artif Organs 2021; 45:332-335. [PMID: 33576518 DOI: 10.1111/aor.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Caroline M Komlo
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amy L Throckmorton
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Vakhtang Tchantchaleishvili
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
6
|
Miyamoto T, Horvath DJ, Horvath DW, Kuban BD, Fukamachi K, Karimov JH. Analysis of Cleveland Clinic continuous-flow total artificial heart performance using the Virtual Mock Loop: Comparison with an in vivo study. Artif Organs 2020; 44:375-383. [PMID: 31573677 DOI: 10.1111/aor.13574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The Virtual Mock Loop (VML) is a mathematical model designed to simulate mechanism of the human cardiovascular system interacting with mechanical circulatory support devices. Here, we aimed to mimic the hemodynamic performance of Cleveland Clinic's self-regulating continuous-flow total artificial heart (CFTAH) via VML and evaluate the accuracy of the VML compared with an in vivo acute animal study. The VML reproduced 124 hemodynamic conditions from three acute in vivo experiments in calves. Systemic/pulmonary vascular resistances, pump rotational speed, pulsatility, and pulse rate were set for the VML from in vivo data. We compared outputs (pump flow, left and right pump pressure rises, and atrial pressure difference) between the two systems. The pump performance curves all fell in the designed range. There was a strong correlation between the VML and the in vivo study in the left pump flow (r2 = 0.84) and pressure rise (r2 = 0.80), and a moderate correlation in right pressure rise (r2 = 0.52) and atrial pressure difference (r2 = 0.59). Although there is room for improvement in simulating right-sided pump performance of self-regulating CFTAH, the VML acceptably simulated the hemodynamics observed in an in vivo study. These results indicate that pump flow and pressure rise can be estimated from vascular resistances and pump settings.
Collapse
Affiliation(s)
- Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Device Solutions (Electronics Core), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Influence of Impeller Speed Patterns on Hemodynamic Characteristics and Hemolysis of the Blood Pump. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A continuous-flow output mode of a rotary blood pump reduces the fluctuation range of arterial blood pressure and easily causes complications. For a centrifugal rotary blood pump, sinusoidal and pulsatile speed patterns are designed using the impeller speed modulation. This study aimed to analyze the hemodynamic characteristics and hemolysis of different speed patterns of a blood pump in patients with heart failure using computational fluid dynamics (CFD) and the lumped parameter model (LPM). The results showed that the impeller with three speed patterns (including the constant speed pattern) met the normal blood demand of the human body. The pulsating flow generated by the impeller speed modulation effectively increased the maximum pulse pressure (PP) to 12.7 mm Hg, but the hemolysis index (HI) in the sinusoidal and pulsatile speed patterns was higher than that in the constant speed pattern, which was about 2.1 × 10−5. The flow path of the pulsating flow field in the spiral groove of the hydrodynamic suspension bearing was uniform, but the alternating high shear stress (0~157 Pa) was caused by the impeller speed modulation, causing blood damage. Therefore, the rational modulation of the impeller speed and the structural optimization of a blood pump are important for improving hydrodynamic characteristics and hemolysis.
Collapse
|
8
|
Gharaie SH, Amir Moghadam AA, Al'Aref SJ, Caprio A, Alaie S, Zgaren M, Min JK, Dunham S, Mosadegh B. A Proof-of-Concept Demonstration for a Novel Soft Ventricular Assist Device. J Med Device 2019. [DOI: 10.1115/1.4043052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Patients treated by current ventricular assist devices (VADs) suffer from various post implantation complications including gastrointestinal bleeding and arteriovenous malformation. These issues are related to intrinsically mismatch of generated flow by VADs and the physiological flow. In addition, the common primary drawback of available VADs is excessive surgical dissection during implantation, which limits these devices to less morbid patients. We investigated an alternative soft VAD (SVAD) system that generates physiological flow, and designed to be implanted using minimally invasive surgery by leveraging soft materials. A soft VAD (which is an application of intraventricular balloon pump) is developed by utilizing a polyurethane balloon, which generates pulsatile flow by displacing volume within the left ventricle during its inflation and deflation phases. Our results show that the SVAD system generates an average ejection fraction of 50.18 ± 1.52% (n = 6 ± SD) in explanted porcine hearts. Since the SVAD is implanted via the apex of the heart, only a minithoracotomy should be required for implantation. Our results suggest that the SVAD system has the performance characteristics that could potentially make it useful for patients in acute and/or chronic heart failure, thus serving as a bridge-to-transplantation or bridge-to-recovery.
Collapse
Affiliation(s)
- Saleh H. Gharaie
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Amir Ali Amir Moghadam
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Subhi J. Al'Aref
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Alexandre Caprio
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Seyedhamidreza Alaie
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Mohamed Zgaren
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - James K. Min
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Simon Dunham
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, 413 E.69th street, Suite 108, New York, NY 10021 e-mail:
| |
Collapse
|
9
|
Liao S, Wu EL, Neidlin M, Li Z, Simpson B, Gregory SD. The Influence of Rotary Blood Pump Speed Modulation on the Risk of Intraventricular Thrombosis. Artif Organs 2018; 42:943-953. [PMID: 30260033 DOI: 10.1111/aor.13330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rotary left ventricular assist devices (LVADs) are commonly operated at a constant speed, attenuating blood flow pulsatility. Speed modulation of rotary LVADs has been demonstrated to improve vascular pulsatility and pump washout. The effect of LVAD speed modulation on intraventricular flow dynamics is not well understood, which may have an influence on thromboembolic events. This study aimed to numerically evaluate intraventricular flow characteristics with a speed modulated LVAD. A severely dilated anatomical left ventricle was supported by a HeartWare HVAD in a three-dimensional multiscale computational fluid dynamics model. Three LVAD operating scenarios were evaluated: constant speed and sinusoidal co- and counter-pulsation. In all operating scenarios, the mean pump speed was set to restore the cardiac output to 5.0 L/min. Co- and counter-pulsation was speed modulated with an amplitude of 750 rpm. The risk of thrombosis was evaluated based on blood residence time, ventricular washout, kinetic energy densities, and a pulsatility index map. Blood residence time for co-pulsation was on average 1.8 and 3.7% lower than constant speed and counter-pulsation mode, respectively. After introducing fresh blood to displace preexisting blood for 10 cardiac cycles, co-pulsation had 1.5% less old blood in comparison to counter-pulsation. Apical energy densities were 84 and 27% higher for co-pulsation in comparison to counter-pulsation and constant speed mode, respectively. Co-pulsation had an increased pulsatility index around the left ventricular outflow tract and mid-ventricle. Improved flow dynamics with co-pulsation was caused by increased E-wave velocities which minimized blood stasis. In the studied scenario and from the perspective of intraventricular flow dynamics, co-pulsation of rotary LVADs could minimize the risk of intraventricular thrombosis.
Collapse
Affiliation(s)
- Sam Liao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Eric L Wu
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Zhiyong Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Benjamin Simpson
- Department of Engineering, Nottingham Trent University, Clifton Lane, Nottingham, UK
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, The University of Queensland, St. Lucia, Queensland, Australia.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Fukamachi K, Karimov JH, Horvath DJ, Sunagawa G, Byram NA, Kuban BD, Moazami N. Initial in vitro testing of a paediatric continuous-flow total artificial heart. Interact Cardiovasc Thorac Surg 2018; 26:897-901. [PMID: 29365118 PMCID: PMC10903986 DOI: 10.1093/icvts/ivx429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/10/2017] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. METHODS The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. RESULTS Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. CONCLUSIONS The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.
Collapse
Affiliation(s)
- Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Gengo Sunagawa
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole A Byram
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Barry D Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Device Solutions (Electronics Core), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nader Moazami
- Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure, Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Fukamachi K, Karimov JH, Byram NA, Sunagawa G, Dessoffy R, Miyamoto T, Horvath DJ. Anatomical study of the Cleveland Clinic continuous-flow total artificial heart in adult and pediatric configurations. J Artif Organs 2018; 21:383-386. [DOI: 10.1007/s10047-018-1039-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
|
12
|
Abstract
Control of mechanical circulatory support pump output typically requires that pressure-regulating functions be accomplished by active control of the speed or geometry of the device, with feedback from pressure or flow sensors. This article presents a different design approach, with a pressure-regulating device as the core design feature, allowing the essential control function of regulating pressure to be directly programmed into the hydromechanical design. We show the step-by-step transformation of a pressure-regulating device into a continuous-flow total artificial heart that passively balances left and right circulations without the need for pressure and flow sensors. In addition, we discuss a ventricular assist device that prevents backflow in the event of power interruption and also dynamically interacts with residual ventricle function to preserve pulsatility.
Collapse
|
13
|
Horvath D, Byram N, Karimov JH, Kuban B, Sunagawa G, Golding LAR, Moazami N, Fukamachi K. Mechanism of Self-Regulation and In Vivo Performance of the Cleveland Clinic Continuous-Flow Total Artificial Heart. Artif Organs 2017; 41:411-417. [PMID: 27401215 DOI: 10.1111/aor.12780] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/11/2016] [Accepted: 05/10/2016] [Indexed: 01/20/2023]
Abstract
Cleveland Clinic's continuous-flow total artificial heart (CFTAH) provides systemic and pulmonary circulations using one assembly (one motor, two impellers). The right pump hydraulic output to the pulmonary circulation is self-regulated by the rotating assembly's passive axial movement in response to atrial differential pressure to balance itself to the left pump output. This combination of features integrates a biocompatible, pressure-balancing regulator with a double-ended pump. The CFTAH requires no flow or pressure sensors. The only control parameter is pump speed, modulated at programmable rates (60-120 beats/min) and amplitudes (0 to ±25%) to provide flow pulses. In bench studies, passive self-regulation (range: -5 mm Hg ≤ [left atrial pressure - right atrial pressure] ≤ 10 mm Hg) was demonstrated over a systemic/vascular resistance ratio range of 2.0-20 and a flow range of 3-9 L/min. Performance of the most recent pump configuration was demonstrated in chronic studies, including three consecutive long-term experiments (30, 90, and 90 days). These experiments were performed at a constant postoperative mean speed with a ±15% speed modulation, demonstrating a totally self-regulating mode of operation, from 3 days after implant to explant, despite a weight gain of up to 40%. The mechanism of self-regulation functioned properly, continuously throughout the chronic in vivo experiments, demonstrating the performance goals.
Collapse
Affiliation(s)
- David Horvath
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Nicole Byram
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Barry Kuban
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Gengo Sunagawa
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Leonard A R Golding
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Nader Moazami
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
- Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure, Cardiac Transplantation and Mechanical Circulatory Support, Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
14
|
Fukamachi K, Karimov JH, Sunagawa G, Horvath DJ, Byram N, Kuban BD, Dessoffy R, Sale S, Golding LAR, Moazami N. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves. J Artif Organs 2017; 20:381-385. [PMID: 28391521 DOI: 10.1007/s10047-017-0958-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.
Collapse
Affiliation(s)
- Kiyotaka Fukamachi
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Jamshid H Karimov
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Gengo Sunagawa
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - David J Horvath
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- R1 Engineering, Cleveland, OH, USA
| | - Nicole Byram
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Barry D Kuban
- Electronics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raymond Dessoffy
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Shiva Sale
- Department of Cardiothoracic Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard A R Golding
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Nader Moazami
- Cardiovascular Dynamics Laboratory, Department of Biomedical Engineering/ND20, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
15
|
Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH, Cohn WE. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller. Artif Organs 2016; 40:824-33. [DOI: 10.1111/aor.12827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Matthias Kleinheyer
- School of Engineering; Griffith University; Southport Queensland Australia
- Department of Engineering; BiVACOR Inc.; Houston TX USA
| | | | | | - Frank Nestler
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- School of Information Technology and Electrical Engineering; The University of Queensland; St. Lucia, Queensland Australia
| | | | - O. Howard Frazier
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- Department of Cardiovascular Surgery; Texas Heart Institute; Houston TX USA
| | - William E. Cohn
- Department of Engineering; BiVACOR Inc.; Houston TX USA
- Department of Cardiovascular Surgery; Texas Heart Institute; Houston TX USA
| |
Collapse
|
16
|
Sensorless Suction Recognition in the Self-Regulating Cleveland Clinic Continuous-Flow Total Artificial Heart. ASAIO J 2016; 61:726-8. [PMID: 26102177 DOI: 10.1097/mat.0000000000000263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Cleveland Clinic continuous-flow total artificial heart passively regulates itself in regard to the relative performance of systemic and pulmonary pumps. The system incorporates real-time monitoring to detect any indication of incipient left or right suction as input for automatic controller response. To recognize suction, the external controller compares the waveforms of modulating speed input and power feedback. Deviations in periodic waveforms indicate sudden changes to flow impedance, which are characteristic of suction events as the pump speed is modulating. Incipient suction is indicated within 3 seconds of being detected in the power wave form, allowing timely controller response before mean flow is affected. This article describes the results obtained from subjecting the system to severe hemodynamic manipulation during an acute study in a calf.
Collapse
|
17
|
Bozkurt S, van de Vosse FN, Rutten MCM. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System. J Med Biol Eng 2016; 36:308-315. [PMID: 27441034 PMCID: PMC4935750 DOI: 10.1007/s40846-016-0140-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/14/2015] [Indexed: 01/09/2023]
Abstract
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Collapse
Affiliation(s)
- Selim Bozkurt
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.18, 5600 MB Eindhoven, The Netherlands
| | - Frans N. van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.18, 5600 MB Eindhoven, The Netherlands
| | - Marcel C. M. Rutten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.18, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
18
|
Abstract
The aim of this work was to investigate the hemodynamic influence of the change of pump rate on the cardiovascular system with consideration of heart rate and the resonant characteristics of the arterial system when a reliable synchronous triggering source is unavailable. Hemodynamic waveforms are recorded at baseline conditions and with the pump rate of left ventricular assist device (LVAD) at 55, 60, 66, and 70 beats per minute for four test conditions in a mock circulatory system. The total input work (TIW) and energy equivalent pressure (EEP) are calculated as metrics for evaluating the hemodynamic performance within different test conditions. Experimental results show that TIW and EEP achieve their maximum values, where the pump rate is equal to the heart rate. In addition, it demonstrates that TIW and EEP are significantly affected by changing pump rate of LVAD, especially when the pump rate is closing to the natural frequency of the arterial system. When a reliable synchronous triggering source is not available for LVAD, it is suggested that selecting a pump rate equal to the resonant frequency of the arterial system could achieve better supporting effects.
Collapse
|
19
|
Sunagawa G, Horvath DJ, Karimov JH, Moazami N, Fukamachi K. Future Prospects for the Total Artificial Heart. Expert Rev Med Devices 2016; 13:191-201. [PMID: 26732059 DOI: 10.1586/17434440.2016.1136212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total artificial heart (TAH) is the sole remaining option for patients with biventricular failure who cannot be rescued by left ventricular assist devices (LVADs) alone. However, the pulsatile TAH in clinical use today has limitations: large pump size, unknown durability, required complex anticoagulation regimen, and association with significant postsurgical complications. That pump is noisy; its large pneumatic driving lines traverse the body, with bulky external components for its drivers. Continuous-flow pumps, which caused a paradigm shift in the LVAD field, have already contributed to the rapidly evolving development of TAHs. Novel continuous-flow TAHs are only in preclinical testing or developmental stages. We here review the current state of TAHs, with recommended requirements for the TAH of the future.
Collapse
Affiliation(s)
- Gengo Sunagawa
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - David J Horvath
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Jamshid H Karimov
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Nader Moazami
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,b Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure, Cardiac Transplantation and Mechanical Circulatory Support, Miller Family Heart and Vascular Institute , Cleveland Clinic , Cleveland , OH , USA
| | - Kiyotaka Fukamachi
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
20
|
Prospects for Development of Technologies for Complete Replacement of Heart Function by Mechanical Circulatory Support Systems. BIOMEDICAL ENGINEERING 2016. [DOI: 10.1007/s10527-016-9544-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Pulmonary Hypertension After Heart Transplantation in Patients Bridged with the Total Artificial Heart. ASAIO J 2016; 62:69-73. [DOI: 10.1097/mat.0000000000000298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Feng J, Cohn WE, Parnis SM, Sodha NR, Clements RT, Sellke N, Frazier OH, Sellke FW. New continuous-flow total artificial heart and vascular permeability. J Surg Res 2015; 199:296-305. [PMID: 26188957 PMCID: PMC4636951 DOI: 10.1016/j.jss.2015.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND We tested the short-term effects of completely nonpulsatile versus pulsatile circulation after ventricular excision and replacement with total implantable pumps in an animal model on peripheral vascular permeability. METHODS Ten calves underwent cardiac replacement with two HeartMate III continuous-flow rotary pumps. In five calves, the pump speed was rapidly modulated to impart a low-frequency pulse pressure in the physiologic range (10-25 mm Hg) at a rate of 40 pulses per minute (PP). The remaining five calves were supported with a pulseless systemic circulation and no modulation of pump speed (NP). Skeletal muscle biopsies were obtained before cardiac replacement (baseline) and on postoperative days (PODs) 1, 7, and 14. Skeletal muscle-tissue water content was measured, and morphologic alterations of skeletal muscle were assessed. VE-cadherin, phospho-VE-cadherin, and CD31 were analyzed by immunohistochemistry. RESULTS There were no significant changes in tissue water content and skeletal muscle morphology within group or between groups at baseline, PODs 1, 7, and 14, respectively. There were no significant alterations in the expression and/or distribution of VE-cadherin, phospho-VE-cadherin, and CD31 in skeletal muscle vasculature at baseline, PODs 1, 7, and 14 within each group or between the two groups, respectively. Although continuous-flow total artificial heart (CFTAH) with or without a pulse pressure caused slight increase in tissue water content and histologic damage scores at PODs 7 and 14, it failed to reach statistical significance. CONCLUSIONS There was no significant adherens-junction protein degradation and phosphorylation in calf skeletal muscle microvasculature after CFTAH implantation, suggesting that short term of CFTAH with or without pulse pressure did not cause peripheral endothelial injury and did not increase the peripheral microvascular permeability.
Collapse
Affiliation(s)
- Jun Feng
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - William E Cohn
- Cardiovascular Research Laboratories, Department of Surgery, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas
| | - Steven M Parnis
- Cardiovascular Research Laboratories, Department of Surgery, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas
| | - Neel R Sodha
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Richard T Clements
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nicholas Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - O Howard Frazier
- Cardiovascular Research Laboratories, Department of Surgery, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|
23
|
Physiologic outcome of varying speed rotary blood pump support algorithms: a review study. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 39:13-28. [DOI: 10.1007/s13246-015-0405-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
24
|
Fox CS, McKenna KL, Allaire PE, Mentzer RM, Throckmorton AL. Total Artificial Hearts-Past, Current, and Future. J Card Surg 2015; 30:856-64. [DOI: 10.1111/jocs.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carson S. Fox
- From the BioCirc Research Laboratory; School of Biomedical Engineering; Science and Health Systems; Drexel University; Philadelphia Pennsylvania
| | - Kelli L. McKenna
- From the BioCirc Research Laboratory; School of Biomedical Engineering; Science and Health Systems; Drexel University; Philadelphia Pennsylvania
| | - Paul E. Allaire
- Rotor Bearing Solutions International; Charlottesville Virginia
| | - Robert M. Mentzer
- Division of Cardiobiology; Cedars-Sinai Heart Institute; Cedars-Sinai Medical Center; Los Angeles California
- Wayne State University School of Medicine; Detroit Michigan
| | - Amy L. Throckmorton
- From the BioCirc Research Laboratory; School of Biomedical Engineering; Science and Health Systems; Drexel University; Philadelphia Pennsylvania
| |
Collapse
|
25
|
Pirbodaghi T, Asgari S, Cotter C, Bourque K. Physiologic and hematologic concerns of rotary blood pumps: what needs to be improved? Heart Fail Rev 2014; 19:259-66. [PMID: 23549998 DOI: 10.1007/s10741-013-9389-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the past few decades, advances in ventricular assist device (VAD) technology have provided a promising therapeutic strategy to treat heart failure patients. Despite the improved performance and encouraging clinical outcomes of the new generation of VADs based on rotary blood pumps (RBPs), their physiologic and hematologic effects are controversial. Currently, clinically available RBPs run at constant speed, which results in limited control over cardiac workload and introduces blood flow with reduced pulsatility into the circulation. In this review, we first provide an update on the new challenges of mechanical circulatory support using rotary pumps including blood trauma, increased non-surgical bleeding rate, limited cardiac unloading, vascular malformations, end-organ function, and aortic valve insufficiency. Since the non-physiologic flow characteristic of these devices is one of the main subjects of scientific debate in the literature, we next emphasize the latest research regarding the development of a pulsatile RBP. Finally, we offer an outlook for future research in the field.
Collapse
Affiliation(s)
- Tohid Pirbodaghi
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland,
| | | | | | | |
Collapse
|
26
|
Design and Evaluation of a Hybrid Mock Circulatory Loop for total Artificial Heart Testing. Int J Artif Organs 2014; 37:71-80. [DOI: 10.5301/ijao.5000301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
Abstract
Aims A hybrid mock circulatory loop (MCL) was developed for total artificial heart (TAH) performance evaluation. The hybrid MCL consists of hydraulic hardware components and a software computer model. Design The hydraulic components are divided into the systemic and pulmonary circulation, each of which includes electrically controlled compliances, resistors, and a venous volume which can be adjusted for a wide range of physiological and pathological conditions. The software model simulates the baroreflex autoregulatory response by automatically adjusting the hydraulic parameters according to changes of condition in the MCL. Results The experimental results demonstrated a good representation of the human cardiovascular system and the capability of real-time variation of physiological and pathological conditions. The functionality of the baroreflex autoregulatory mechanism was evaluated by simulation of a postural change. Conclusions The hybrid MCL that we developed allows variable and continuous in vitro evaluation of mechanical circulatory support devices in TAH configuration and particularly their control algorithms in response to various cardiovascular conditions. The system has been built in a modular configuration to allow testing of different types of devices and thus provides a valuable test platform prior to animal experiments.
Collapse
|
27
|
Amacher R, Ochsner G, Schmid Daners M. Synchronized Pulsatile Speed Control of Turbodynamic Left Ventricular Assist Devices: Review and Prospects. Artif Organs 2014; 38:867-75. [DOI: 10.1111/aor.12253] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raffael Amacher
- Institute for Dynamic Systems and Control; Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Gregor Ochsner
- Institute for Dynamic Systems and Control; Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| | - Marianne Schmid Daners
- Institute for Dynamic Systems and Control; Department of Mechanical and Process Engineering; ETH Zurich; Zurich Switzerland
| |
Collapse
|
28
|
|
29
|
|
30
|
Bartoli CR, Ailawadi G, Kern JA. Diagnosis, Nonsurgical Management, and Prevention of LVAD Thrombosis. J Card Surg 2013; 29:83-94. [DOI: 10.1111/jocs.12238] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlo R. Bartoli
- Division of Cardiovascular Surgery; University of Pennsylvania Medical Center; Philadelphia Pennsylvania
| | - Gorav Ailawadi
- Division of Thoracic and Cardiovascular Surgery; University of Virginia Health System; Charlottesville Virginia
| | - John A. Kern
- Division of Thoracic and Cardiovascular Surgery; University of Virginia Health System; Charlottesville Virginia
| |
Collapse
|
31
|
Flow Modulation Algorithms for Intra-Aortic Rotary Blood Pumps to Minimize Coronary Steal. ASAIO J 2013; 59:261-8. [DOI: 10.1097/mat.0b013e31828fd6c8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
The helical flow pump with a hydrodynamic levitation impeller. J Artif Organs 2012; 15:331-40. [DOI: 10.1007/s10047-012-0659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/06/2012] [Indexed: 11/26/2022]
|
33
|
Kobayashi M, Horvath DJ, Mielke N, Shiose A, Kuban B, Goodin M, Fukamachi K, Golding LAR. Progress on the design and development of the continuous-flow total artificial heart. Artif Organs 2012; 36:705-13. [PMID: 22747979 DOI: 10.1111/j.1525-1594.2012.01489.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cleveland Clinic's continuous-flow total artificial heart has one motor and one rotating assembly supported by a hydrodynamic bearing. The right hydraulic output is self regulated by passive axial movement of the rotating assembly to balance itself with the left output. The purpose of this article is to present progress in four areas of development: the automatic speed control system, self-regulation to balance right/left inlet pressures and flows, hemolysis testing using calf blood, and coupled electromagnetics (EMAG) and computational fluid dynamics (CFD) analysis. The relationships between functions of motor power and speed, systemic flow, and systemic vascular resistance (SVR) were used for the sensorless speed control algorithm and demonstrated close correlations. Based on those empirical relationships, systemic flow and SVR were calculated in the system module and showed good correlation with measured pump flow and SVR. The automatic system adjusted the pump's speed to obtain the target flow in response to the calculated SVR. Atrial pressure difference (left minus right atrial pressure) was maintained within ±10 mm Hg for a wide range of SVR/pulmonary vascular resistance ratios, demonstrating a wide margin of self-regulation under fixed-speed mode and 25% sinusoidally modulated speed mode. Hemolysis test results indicated acceptable values (normalized index of hemolysis <0.01 mg/dL). The coupled EMAG/CFD model was validated for use in further device development.
Collapse
Affiliation(s)
- Mariko Kobayashi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bartoli CR, Dowling RD. The future of adult cardiac assist devices: novel systems and mechanical circulatory support strategies. Cardiol Clin 2012; 29:559-82. [PMID: 22062206 DOI: 10.1016/j.ccl.2011.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The recent, widespread success of mechanical circulatory support has prompted the development of numerous implantable devices to treat advanced heart failure. It is important to raise awareness of novel device systems, the mechanisms by which they function, and implications for patient management. This article discusses devices that are being developed or are in clinical trials. Devices are categorized as standard full support, less-invasive full support, partial support: rotary pumps, partial support: counterpulsation devices, right ventricular assist device, and total artificial heart. Implantation strategy, mechanism of action, durability, efficacy, hemocompatibility, and human factors are considered. The feasibility of novel strategies for unloading the failing heart is examined.
Collapse
Affiliation(s)
- Carlo R Bartoli
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY, USA
| | | |
Collapse
|
35
|
Abe Y, Isoyama T, Saito I, Shi W, Inoue Y, Ishii K, Nakagawa H, Ono T, Ono M, Imachi K. Results of Animal Experiments With the Fourth Model of the Undulation Pump Total Artificial Heart. Artif Organs 2011; 35:781-90. [DOI: 10.1111/j.1525-1594.2011.01318.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Ising M, Warren S, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Flow Modulation Algorithms for Continuous Flow Left Ventricular Assist Devices to Increase Vascular Pulsatility: A Computer Simulation Study. Cardiovasc Eng Technol 2011. [DOI: 10.1007/s13239-011-0042-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|