1
|
Chen YT, Liu CH, Pan WY, Jheng PR, Hsieh YSY, Burnouf T, Fan YJ, Chiang CC, Chen TY, Chuang EY. Biomimetic Platelet Nanomotors for Site-Specific Thrombolysis and Ischemic Injury Alleviation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384742 DOI: 10.1021/acsami.3c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Due to the mortality associated with thrombosis and its high recurrence rate, there is a need to investigate antithrombotic approaches. Noninvasive site-specific thrombolysis is a current approach being used; however, its usage is characterized by the following limitations: low targeting efficiency, poor ability to penetrate clots, rapid half-life, lack of vascular restoration mechanisms, and risk of thrombus recurrence that is comparable to that of traditional pharmacological thrombolysis agents. Therefore, it is vital to develop an alternative technique that can overcome the aforementioned limitations. To this end, a cotton-ball-shaped platelet (PLT)-mimetic self-assembly framework engineered with a phototherapeutic poly(3,4-ethylenedioxythiophene) (PEDOT) platform has been developed. This platform is capable of delivering a synthetic peptide derived from hirudin P6 (P6) to thrombus lesions, forming P6@PEDOT@PLT nanomotors for noninvasive site-specific thrombolysis, effective anticoagulation, and vascular restoration. Regulated by P-selectin mediation, the P6@PEDOT@PLT nanomotors target the thrombus site and subsequently rupture under near-infrared (NIR) irradiation, achieving desirable sequential drug delivery. Furthermore, the movement ability of the P6@PEDOT@PLT nanomotors under NIR irradiation enables effective penetration deep into thrombus lesions, enhancing bioavailability. Biodistribution analyses have shown that the administered P6@PEDOT@PLT nanomotors exhibit extended circulation time and metabolic capabilities. In addition, the photothermal therapy/photoelectric therapy combination can significantly augment the effectiveness (ca. 72%) of thrombolysis. Consequently, the precisely delivered drug and the resultant phototherapeutic-driven heat-shock protein, immunomodulatory, anti-inflammatory, and inhibitory plasminogen activator inhibitor-1 (PAI-1) activities can restore vessels and effectively prevent rethrombosis. The described biomimetic P6@PEDOT@PLT nanomotors represent a promising option for improving the efficacy of antithrombotic therapy in thrombus-related illnesses.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wu-Hsing Street, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23559, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE106 91, Sweden
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| |
Collapse
|
2
|
Decouture B, Leuci A, Dizier B, Belleville-Rolland T, Mansour A, Martin F, Pidard D, Gaussem P, Bachelot-Loza C. Evaluation of commonly used tests to measure the effect of single-dose aspirin on mouse hemostasis. Prostaglandins Leukot Essent Fatty Acids 2019; 149:46-51. [PMID: 31442897 DOI: 10.1016/j.plefa.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 11/27/2022]
Abstract
Discrepancies in preclinical studies of aspirin (ASA) antiplatelet activity in mouse models of bleeding and arterial thrombosis led us to evaluate commonly reported methods in order to propose a procedure for reliably measuring the effects of single dose ASA on mouse hemostasis. FVB and C57Bl6 mice received 100 mg/kg of ASA or vehicle orally 30 min or 3 h prior to investigate either hemostasis using the tail bleeding assay or carotid thrombosis induced by FeCl3, or to blood sampling for isolated platelet aggregation and TXB2 generation. Expected inhibition of COX1 by ASA was ascertained by a strong decrease in TXB2 production, and its effect on platelet function and hemostasis, by decreased collagen-induced aggregation and increased bleeding time, respectively. Strikingly, we determined that anti-hemostatic effects of ASA were more predictable 30 min after administration than 3 h later. Conversely, ASA did not alter time to arterial occlusion of the carotid upon FeCl3-induced thrombosis, suggesting ASA not to be used as reference inhibitor drug in this model of arterial thrombosis.
Collapse
Affiliation(s)
- Benoit Decouture
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Alexandre Leuci
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Blandine Dizier
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Tiphaine Belleville-Rolland
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France; Service d'Hématologie Biologique, AH-HP, Georges Pompidou European Hospital, F-75015 Paris, France
| | - Alexandre Mansour
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Fanny Martin
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Dominique Pidard
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France
| | - Pascale Gaussem
- Université de Paris, Innovative Therapies in Haemostasis, INSERM, F-75006 Paris, France; Service d'Hématologie Biologique, AH-HP, Georges Pompidou European Hospital, F-75015 Paris, France.
| | | |
Collapse
|