1
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Sankar J, Thakral V, Bharadwaj K, Agarwal S, Kabra SK, Lodha R, Rathore S. The Microbiome and Metabolome of the Gut of Children with Sepsis and Septic Shock. J Intensive Care Med 2024; 39:514-524. [PMID: 38073164 DOI: 10.1177/08850666231216361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND There is limited understanding of alteration of gut microbiota and metabolome in children with sepsis/septic shock. METHODS In this prospective observational study carried out in a pediatric intensive care unit of a tertiary care center from 2020 to 2022, patients aged <17 years with sepsis/septic shock and healthy children (HC) were enrolled. We characterized the gut bacterial compositions by metagenome sequencing and metabolomes by untargeted gas chromatography-mass spectrometry. The primary outcome was to compare the gut microbiota and metabolome of children with sepsis/septic shock with that of HC. The Firmicutes/Bacteroidetes (F/B) ratio was compared between children with sepsis/septic shock and HC. Key secondary outcomes were to evaluate association of factors associated with a low F/B ratio in children with sepsis/septic shock. RESULTS A total of 40 children (63% boys) (15 children with sepsis and septic shock and 10 healthy children) with a median (IQR) age of 5.5 (1.5, 10) years were enrolled. In the fecal microbiota, the α-diversity index including Shannon and Simpson indices of the sepsis/septic shock groups was significantly lower than that of the HC. The samples lacked beneficial Bifidobacterium spp. and were dominated by Bacteroides, Enterobacteriaceae, and Enterococcaceae. There was reduction in short-chain fatty acids (SCFAs) in patients with sepsis/septic shock as compared to healthy children. A lower F/B ratio (≤1.57) of the gut microbiota discriminated well between children with sepsis/septic shock and HC. Factors associated with lower F/B ratio were male gender, clinical GI dysfunction, elevated inflammatory markers, and higher organ failure scores. CONCLUSION There were significant alterations in the gut microbiota and metabolome in children with sepsis/septic shock as compared to healthy children. Larger study is needed to confirm these exploratory findings and develop potential therapeutic targets that will improve outcomes in children with sepsis/septic shock.
Collapse
Affiliation(s)
- Jhuma Sankar
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Thakral
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanchan Bharadwaj
- Department of Biotechnology, Manav Rachna University, Faridabad, Haryana, India
| | - Sheetal Agarwal
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Kreitmann L, Helms J, Martin-Loeches I, Salluh J, Poulakou G, Pène F, Nseir S. ICU-acquired infections in immunocompromised patients. Intensive Care Med 2024; 50:332-349. [PMID: 38197931 DOI: 10.1007/s00134-023-07295-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 01/11/2024]
Abstract
Immunocompromised patients account for an increasing proportion of the typical intensive care unit (ICU) case-mix. Because of the increased availability of new drugs for cancer and auto-immune diseases, and improvement in the care of the most severely immunocompromised ICU patients (including those with hematologic malignancies), critically ill immunocompromised patients form a highly heterogeneous patient population. Furthermore, a large number of ICU patients with no apparent immunosuppression also harbor underlying conditions altering their immune response, or develop ICU-acquired immune deficiencies as a result of sepsis, trauma or major surgery. While infections are associated with significant morbidity and mortality in immunocompromised critically ill patients, little specific data are available on the incidence, microbiology, management and outcomes of ICU-acquired infections in this population. As a result, immunocompromised patients are usually excluded from trials and guidelines on the management of ICU-acquired infections. The most common ICU-acquired infections in immunocompromised patients are ventilator-associated lower respiratory tract infections (which include ventilator-associated pneumonia and tracheobronchitis) and bloodstream infections. Recently, several large observational studies have shed light on some of the epidemiological specificities of these infections-as well as on the dynamics of colonization and infection with multidrug-resistant bacteria-in these patients, and these will be discussed in this review. Immunocompromised patients are also at higher risk than non-immunocompromised hosts of fungal and viral infections, and the diagnostic and therapeutic management of these infections will be covered. Finally, we will suggest some important areas of future investigation.
Collapse
Affiliation(s)
- Louis Kreitmann
- Department of Intensive Care Medicine, Imperial College Healthcare NHS Trust, London, UK
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Julie Helms
- Service de Médecine Intensive-Réanimation, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l'Hôpital, 67091, Strasbourg Cedex, France
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Leinster, D08NYH1, Dublin, Ireland
- Pulmonary Intensive Care Unit, Respiratory Institute, Hospital Clinic of Barcelona, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, ICREA CIBERes, 08380, Barcelona, Spain
| | - Jorge Salluh
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281-100, Brazil
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Frédéric Pène
- Médecine Intensive-Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Saad Nseir
- Médecine Intensive-Réanimation, CHU de Lille, 59000, Lille, France.
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, 59000, Lille, France.
| |
Collapse
|
4
|
Luan F, Zhou Y, Ma X, Li Y, Peng Y, Jia X, Li N, Wang X, Luo Y, Man M, Zhang Q, Wang C, Yu K, Zhao M, Wang C. Gut microbiota composition and changes in patients with sepsis: potential markers for predicting survival. BMC Microbiol 2024; 24:45. [PMID: 38302899 PMCID: PMC10832068 DOI: 10.1186/s12866-024-03188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Sepsis can cause immune dysregulation and multiple organ failure in patients and eventually lead to death. The gut microbiota has demonstrated its precise therapeutic potential in the treatment of various diseases. This study aimed to discuss the structural changes of the gut microbiota in patients with sepsis and to analyze the differences in the gut microbiota of patients with different prognoses. METHODS We conducted a multicenter study in which rectal swab specimens were collected on the first and third days of sepsis diagnosis. A total of 70 specimens were collected, and gut microbiota information was obtained by 16S rRNA analysis. RESULTS The relative abundance of Enterococcus decreased in rectal swab specimens during the first three days of diagnosis in patients with sepsis, while the relative abundance of inflammation-associated Bacillus species such as Escherichia coli, Enterobacteriaceae, and Bacteroidetes increased. By comparing the differences in the flora of the survival group and the death group, we found that the abundance of Veillonella and Ruminococcus in the death group showed an increasing trend (p < 0.05), while the abundance of Prevotella_6 and Prevotella_sp_S4_BM14 was increased in surviving patients (p < 0.05). CONCLUSIONS The Firmicutes/Bacteroidetes ratio, reflecting overall gut microbial composition, was significantly lower on day three of sepsis diagnosis. Changes in the abundance of specific gut microbiota may serve as prognostic markers in patients with sepsis.
Collapse
Affiliation(s)
- Feiyu Luan
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yang Zhou
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiaohui Ma
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yue Li
- Departments of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yahui Peng
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiaonan Jia
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Nana Li
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xibo Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yinghao Luo
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Mingyin Man
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Qianqian Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chunying Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Kaijiang Yu
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Mingyan Zhao
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Changsong Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
5
|
He S, Lin F, Hu X, Pan P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients-A Narrative Review. Nutrients 2023; 15:4734. [PMID: 38004128 PMCID: PMC10675331 DOI: 10.3390/nu15224734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore, utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies are all effective treatments for critical illness. However, different treatments are appropriate for different conditions, and more evidence is needed to support the selection of optimal gut microbiota-related treatments for different diseases. This narrative review summarizes the curative effects and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to provide possible directions for gut microbiome-based therapeutics for critically ill patients such as ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.
Collapse
Affiliation(s)
- Shiyue He
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Xinyue Hu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| |
Collapse
|
6
|
Zhang B, Chen X, He C, Su T, Cao K, Li X, Duan J, Chen M, Zhu Z, Yu W. Acute gastrointestinal injury and altered gut microbiota are related to sepsis-induced cholestasis in patients with intra-abdominal infection: a retrospective and prospective observational study. Front Med (Lausanne) 2023; 10:1144786. [PMID: 37575984 PMCID: PMC10414538 DOI: 10.3389/fmed.2023.1144786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Sepsis-associated liver dysfunction (SALD) has high incidence and mortality in patients with intra-abdominal infection (IAI). The associations between acute gastrointestinal injury (AGI), gut microbiota, and SALD were evaluated in patients with IAI. Methods A retrospective study was conducted to assess the relationship between AGI and SALD in patients with IAI. Patients were divided into non-SALD and sepsis-induced cholestasis (SIC) groups, which is a subtype of SALD. SIC was defined as total bilirubin >2 mg/dL. AGI incidences between the two groups were compared using Chi-square test. Subsequently, a prospective study was conducted to investigate the gut microbiota differences between patients without SALD and those with SIC. Fecal samples were collected on days 1, 3, and 7 after admission to analyze changes in gut microbiota using 16S ribosomal ribonucleic acid sequencing. Results One hundred thirty-four patients with IAI were included retrospectively, with 77 SALD and 57 non-SALD cases. Among patients with SALD, 71 were diagnosed with SIC. Patients with SIC had a higher incidence of AGI compared to those without SALD (28.07% vs. 56.34%, p < 0.05), and a severity-dependent relationship was found between AGI grade and SIC occurrence. Subsequently, 20 patients with IAI were recruited prospectively, with 10 patients each assigned to the non-SALD and SIC groups. Patients with SIC had a more severe gut microbiota disorder on day 7 than those without SALD, including lower microbiota diversities, decreased abundance of Firmicutes and Bacteroidetes, and increased abundance of Proteobacteria and Actinobacteria at the phylum level. Furthermore, Burkholderia - Caballeronia - Paraburkholderia and Delftia, the two most abundant genera, were significantly higher in the SIC group than in the non-SALD group. Functional prediction analysis showed that the top three KEGG pathways were ribosome, pyrimidine metabolism, and the two-component system. During the first week, the abundance of Proteobacteria decreased significantly, whereas Cyanobacteria increased in the non-SALD group; however, the phyla taxa did not change significantly in the SIC group. Conclusion There exists a severity-dependent relationship between AGI grade and SIC occurrence in adult patients with IAI. A severe gut microbiota disorder was discovered in SIC during the first week of the intensive care unit stay.
Collapse
Affiliation(s)
- Beiyuan Zhang
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiancheng Chen
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenhang He
- Nanjing Drum Tower Clinical College of Xu Zhou Medical University, Nanjing, China
| | - Ting Su
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ke Cao
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoyao Li
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Jianfeng Duan
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ming Chen
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhanghua Zhu
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Peng Y, Wei J, Jia X, Luan F, Man M, Ma X, Luo Y, Li Y, Li N, Wang Q, Wang X, Zhou Y, Ji Y, Mu W, Wang J, Wang C, Zhang Q, Yu K, Zhao M, Wang C. Changes in the microbiota in different intestinal segments of mice with sepsis. Front Cell Infect Microbiol 2023; 12:954347. [PMID: 36704101 PMCID: PMC9871835 DOI: 10.3389/fcimb.2022.954347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction The small intestine, as the main digestion and absorption site of the gastrointestinal tract, is often overlooked in studies, and the overall microbiota does not reflect the makeup of the microbiota in different segments of the intestine. Therefore, we aimed to exclude the influence of routine ICU treatment measures on sepsis patients and observed changes in the diversity and abundance of gut microbiota in different intestinal segments of septic mice. Methods The mice were randomly divided into the CLP6h group and the sham group. The contents of the colon and small intestine of the experimental group and the control group were collected after 6 h. Results After CLP, the number and structure of the gut microbiota in the colon changed most obviously, among which Bacteroidetes had the most significant changes. Akkermansia, D.Firmicutes_bacterium_M10_2, Blautia, Bifidobacterium, Lactobacillus, Candidatus_Arthromitus, and Muribaculaceae were changed in the colon. Lactobacillus, Bifidobacterium, Akkermansia, Blautia, Candidatus_Arthromitus, and Lachnospiraceae_NK4A136_group were changed in the small intestine. Discussion Our experiment found that there were different numbers of unique and common gut microbiota in the small intestine and colon after sepsis, and the gut microbiota of the colon changed more drastically after sepsis than the small intestine. Thus, we should focus on protective gut microbiota and mucin-degrading microbes. We hope that these results will provide help for sepsis treatment in the future.
Collapse
Affiliation(s)
- Yahui Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jieling Wei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaonan Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Feiyu Luan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mingyin Man
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaohui Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yinghao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Nana Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Qian Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xibo Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuanyuan Ji
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Wenjing Mu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chunying Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Qianqian Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Sun W, Cui Y, Zhang X, Wang Y, Zhang Z, Ding X, Liang H, Wang D, Sun Y, Liu S, Duan X, Lu Y, Sun T. Effects of Gabexate Mesylate on the Gut Microbiota and Metabolomics in Rats with Sepsis. J Inflamm Res 2022; 15:6581-6594. [PMID: 36506782 PMCID: PMC9733569 DOI: 10.2147/jir.s392060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/12/2022] [Indexed: 12/07/2022] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. However, there is still no single drug that could reduce septic mortality. Previous studies have reported gabexate mesylate (GM) significantly reduced serum inflammatory factors, alleviated sepsis-induced lung injury and improved clinical outcomes. This study aimed to combine with microbiome sequencing and metabolomics analysis to explore the effects of GM administration in septic rats. Methods Sixty SD rats were randomly divided into the sham control (SC), cecal ligation and puncture (CLP), and GM injection (GM) groups. The mortality was measured and colonic feces were collected to examine the gut microbiota and metabolism 24 h after the procedure. The lung tissues were collected for hematoxylin-eosin staining. Results We observed the relative abundance of Pygmaiobacter, which contributed to short-chain fatty acids (SCFAs) promotion, Lactobacillus and Erysipelotrichaceae UCG-003 increased in the GM-treated rats, while Escherichia-Shigella and Akkermansia decreased compared to the sepsis-induced lung injury group. Furthermore, these 3 metabolites including Palmitoylethanolamide, Deoxycholic acid and Chenodeoxycholic acid correlated significantly to CLP- and GM-rich genus (P < 0.05). Besides, the lung tissues of CLP group showed more severe inflammatory infiltration and edema, and the mortality rate in the CLP group (10/20) was significantly higher than in the SC group (0/20) (P < 0.001) and GM group (4/20) (P < 0.05). Conclusion Our findings showed that GM attenuated sepsis-induced lung injury rats and regulated metabolites related to gut microbiota, which may provide an effective treatment for sepsis patients.
Collapse
Affiliation(s)
- Wenju Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yuze Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Zihao Zhang
- Department of Clinical Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Dong Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yali Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yibin Lu
- Department of Critical Care Medicine, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, 464000, People’s Republic of China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China,Correspondence: Tongwen Sun, General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine,Zhengzhou, Henan Province, 450052, People’s Republic of China, Email
| |
Collapse
|
9
|
Naseri A, Seyedi-Sahebari S, Mahmoodpoor A, Sanaie S. Probiotics in Critically Ill Patients: An Umbrella Review. Indian J Crit Care Med 2022; 26:339-360. [PMID: 35519905 PMCID: PMC9015916 DOI: 10.5005/jp-journals-10071-24129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Data sources Study selection Data extraction Data synthesis Conclusion How to cite this article
Collapse
Affiliation(s)
- Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based-Medicine, Iranian EBM Center: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Seyedi-Sahebari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based-Medicine, Iranian EBM Center: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Critical Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Sarvin Sanaie, Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran, Phone: +98 9143116744, e-mail:
| |
Collapse
|
10
|
Lin J, Tan B, Li Y, Feng H, Chen Y. Sepsis-Exacerbated Brain Dysfunction After Intracerebral Hemorrhage. Front Cell Neurosci 2022; 15:819182. [PMID: 35126060 PMCID: PMC8814659 DOI: 10.3389/fncel.2021.819182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Sepsis susceptibility is significantly increased in patients with intracerebral hemorrhage (ICH), owing to immunosuppression and intestinal microbiota dysbiosis. To date, ICH with sepsis occurrence is still difficult for clinicians to deal with, and the mortality, as well as long-term cognitive disability, is still increasing. Actually, intracerebral hemorrhage and sepsis are mutually exacerbated via similar pathophysiological mechanisms, mainly consisting of systemic inflammation and circulatory dysfunction. The main consequence of these two processes is neural dysfunction and multiple organ damages, notably, via oxidative stress and neurotoxic mediation under the mediation of central nervous system activation and blood-brain barrier disruption. Besides, the comorbidity-induced multiple organ damages will produce numerous damage-associated molecular patterns and consequently exacerbate the severity of the disease. At present, the prospective views are about operating artificial restriction for the peripheral immune system and achieving cross-tolerance among organs via altering immune cell composition to reduce inflammatory damage.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Binbin Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Yuhong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Hua Feng, ;
| | - Yujie Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Yujie Chen, ;
| |
Collapse
|
11
|
Seifi N, Sedaghat A, Nematy M, Khadem-Rezaiyan M, Shirazinezhad R, Ranjbar G, Safarian M. Effects of synbiotic supplementation on the serum endotoxin level, inflammatory status, and clinical outcomes of adult patients with critical illness: A randomized controlled trial. Nutr Clin Pract 2021; 37:451-458. [PMID: 34462956 DOI: 10.1002/ncp.10758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Gutmicrobiota dysbiosis, endotoxemia, and systemic inflammation are major factors contributing to disease pathophysiology in patients with critical illness. The present study aimed to assess the effects of synbiotic supplementation on serum endotoxin and inflammationof adult patients with critical illness. METHODS This double-anonymized, randomized controlled trial was conducted at the intensive care unit (ICU) of Imam Reza Hospital in Mashhad, Iran. In the intervention group, 20 patients received synbiotic capsules (containing a combination of Lactobacillus, Bifidobacterium, Streptococcus, and fructooligosaccharides) twice per day for a maximum of 14 days. In the control group, 18 patients received placebo capsules. The serum levels of endotoxin and C-reactive protein and the neutrophil to lymphocyte ratio (NLR) were measured before and after the intervention. In addition, clinical outcomes and Acute Physiology and Chronic Health Evaluation and Sequential Organ Failure Assessment scores were recorded. RESULTS Basic characteristics were similar in the intervention and control groups. The NLR and serum endotoxin levels (median [IQR]) significantly declined in the synbiotic group (7.83 [4.58-12.57] to 6.01 [4.25-9.38]; P = .04; and 11.98 [10.64-12.65] to 10.58 [9.41-12.34]; P = .03, respectively). However, no significant changes were observed in the mentioned parameters in the placebo group. The clinical outcomes were also similar in the study groups, such as the length of hospital/ICU stay and hospital/28-day mortality rate. CONCLUSION Although synbiotic supplementation (500 mg twice daily for 14 days) could reduce serum endotoxin and inflammatory markers, it had no effects on the clinical outcomes of the patients.
Collapse
Affiliation(s)
- Najmeh Seifi
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sedaghat
- Department of Anesthesiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Nematy
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shirazinezhad
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Safarian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Yang XJ, Liu D, Ren HY, Zhang XY, Zhang J, Yang XJ. Effects of sepsis and its treatment measures on intestinal flora structure in critical care patients. World J Gastroenterol 2021; 27:2376-2393. [PMID: 34040329 PMCID: PMC8130038 DOI: 10.3748/wjg.v27.i19.2376] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis is a common disease in intensive care units, with high morbidity and mortality. Intestinal microecology plays a vital part in the development and progression of this disease, possibly because sepsis and its treatment cause specific changes in the composition of the intestinal flora.
AIM To investigate the characteristics of intestinal flora disturbance in sepsis patients treated with antibiotics.
METHODS In this prospective comparative study, we enrolled ten patients with sepsis (sepsis group), hospitalized in the Department of Critical Care Medicine of the General Hospital, Ningxia Medical University, China (a class IIIa general hospital) from February 2017 to June 2017; ten patients without sepsis hospitalized in the same period (non-sepsis group) and ten healthy individuals (control group) were also enrolled. Fecal samples collected from the three groups were subjected to 16S rRNA gene sequencing and the intestinal flora diversity, structure, and composition were determined. Additionally, the dynamics of the intestinal flora diversity, structure, and composition in sepsis patients were investigated via 16S rRNA gene sequencing of samples collected 0 d, 3 d, and 7 d after admittance to the intensive care unit. Correlations between the serum levels of procalcitonin, endotoxin, diamine oxidase, and D-lactic acid and the intestinal flora composition of sepsis patients were also investigated.
RESULTS Compared with the healthy control group, sepsis and non-sepsis patients showed reduced intestinal flora α-diversity and a distinct flora structure, with Firmicutes as the dominant phylum, and significantly decreased proportions of Bacteroidetes, as well as Prevotella and Lachnospira, among other genera. Of note, the proportion of Enterococcus was significantly increased in the intestinal tract of sepsis patients. Interestingly, the α-diversity in the sepsis group decreased gradually, from days 1 to 7 of treatment. However, pairwise comparisons showed that both the diversity and structure of the intestinal flora were not significantly different considering the three different time points studied. Curiously, the serum levels of procalcitonin, endotoxin, diamine oxidase, and D-lactic acid in sepsis patients correlated with the prevalence of various bacterial genera. For example, the prevalence of Ruminococcus was positively correlated with serum procalcitonin, endotoxins, and diamine oxidase; similarly, the prevalence of Roseburia was positively correlated with serum procalcitonin, endotoxins, and D-lactic acid.
CONCLUSION Sepsis patients in intensive care units show dysbiosis, lasting for at least 1 wk.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Dan Liu
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Shanghai 201318, China
| | - Xiao-Ya Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jun Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Jun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
13
|
Integrative Transkingdom Analysis of the Gut Microbiome in Antibiotic Perturbation and Critical Illness. mSystems 2021; 6:6/2/e01148-20. [PMID: 33727397 PMCID: PMC8546997 DOI: 10.1128/msystems.01148-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next-generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome. IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).
Collapse
|
14
|
Chernevskaya E, Klimenko N, Pautova A, Buyakova I, Tyakht A, Beloborodova N. Host-Microbiome Interactions Mediated by Phenolic Metabolites in Chronically Critically Ill Patients. Metabolites 2021; 11:metabo11020122. [PMID: 33672777 PMCID: PMC7924600 DOI: 10.3390/metabo11020122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The community structure and metabolic potential of gut microbiome is not well investigated, especially in chronically critically ill patients with prolonged dependence on support systems after severe brain disorders. Microbial phenolic metabolites can target the brain function by the direct and indirect modulation of inflammation. The aim of this study was to investigate the features of the gut microbiota and profile of certain metabolites in the progression and reversibility of neurological disorders in chronically critically ill patients. Fecal samples were collected in dynamics from such patients (n = 44) and analyzed using 16S rRNA sequencing. Serum microbial and mitochondrial metabolites were measured by GC-MS and compared with the biomarkers and clinical neurological scores. The identified associations between specific bacterial taxa in fecal samples, neurological status and serum levels of metabolites suggest that impacts on specific members of the gut microbiota and their metabolism might be a promising tool for regulating brain function in future.
Collapse
Affiliation(s)
- Ekaterina Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia; (A.P.); (I.B.); (N.B.)
- Correspondence: ; Tel.: +7-906-792-7041
| | - Natalia Klimenko
- Atlas Biomed Group—Knomics LLC, 31 Malaya Nikitskaya Str., 121069 Moscow, Russia; (N.K.); (A.T.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Str., 119334 Moscow, Russia
| | - Alisa Pautova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia; (A.P.); (I.B.); (N.B.)
| | - Irina Buyakova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia; (A.P.); (I.B.); (N.B.)
| | - Alexander Tyakht
- Atlas Biomed Group—Knomics LLC, 31 Malaya Nikitskaya Str., 121069 Moscow, Russia; (N.K.); (A.T.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Str., 119334 Moscow, Russia
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia; (A.P.); (I.B.); (N.B.)
| |
Collapse
|
15
|
Agudelo-Ochoa GM, Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, Giraldo-Villa A, Acevedo-Castaño I, Yepes-Molina MA, Barbosa-Barbosa J, Benítez-Paéz A. Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis. Gut Microbes 2020; 12:1707610. [PMID: 31924126 PMCID: PMC7524144 DOI: 10.1080/19490976.2019.1707610] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Critically ill patients are physiologically unstable and recent studies indicate that the intestinal microbiota could be involved in the health decline of such patients during ICU stays. This study aims to assess the intestinal microbiota in critically ill patients with and without sepsis and to determine its impact on outcome variables, such as medical complications, ICU stay time, and mortality. A multi-center study was conducted with a total of 250 peri-rectal swabs obtained from 155 patients upon admission and during ICU stays. Intestinal microbiota was assessed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Linear mixed models were used to integrate microbiota data with more than 40 clinical and demographic variables to detect covariates and minimize the effect of confounding factors. We found that the microbiota of ICU patients with sepsis has an increased abundance of microbes tightly associated with inflammation, such as Parabacteroides, Fusobacterium and Bilophila species. Female sex and aging would represent an increased risk for sepsis possibly because of some of their microbiota features. We also evidenced a remarkable loss of microbial diversity, during the ICU stay. Concomitantly, we detected that the abundance of pathogenic species, such as Enterococcus spp., was differentially increased in sepsis patients who died, indicating these species as potential biomarkers for monitoring during ICU stay. We concluded that particular intestinal microbiota signatures could predict sepsis development in ICU patients. We propose potential biomarkers for evaluation in the clinical management of ICU patients.
Collapse
Affiliation(s)
- Gloria M. Agudelo-Ochoa
- Food and Human Nutrition Research Group, Universidad de Antioquia (UdeA), Medellín, Colombia,Gloria M. Agudelo-Ochoa Carrera, 75 No. 65-87, Medellín, Colombia
| | - Beatriz E. Valdés-Duque
- Biosciences Research Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | | | | | | | | | | | | | - Alfonso Benítez-Paéz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology. Spanish National Research Council (IATA-CSIC), Paterna-Valencia, Spain,CONTACT Alfonso Benítez-Paéz C/Catedràtic Agustín Escardino Benlloch, 7. 46980 Paterna, Valencia, Spain
| |
Collapse
|
16
|
Jung CY, Bae JM. Pathophysiology and protective approaches of gut injury in critical illness. Yeungnam Univ J Med 2020; 38:27-33. [PMID: 33022904 PMCID: PMC7787898 DOI: 10.12701/yujm.2020.00703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.
Collapse
Affiliation(s)
- Chang Yeon Jung
- Department of Surgery, Yeungnam University Hospital, Daegu, Korea
| | - Jung Min Bae
- Department of Surgery, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
17
|
Knackstedt R, Knackstedt T, Gatherwright J. The role of topical probiotics on wound healing: A review of animal and human studies. Int Wound J 2020; 17:1687-1694. [PMID: 32869480 DOI: 10.1111/iwj.13451] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogenic, opportunistic, and commensal bacterial coexist in the intestinal tract, and imbalances among these strains have been linked to systemic inflammation and a variety of disease states. Similarly, human skin plays an important role as an interface between the body and the environment with an estimated 1 billion microbes per square centimetres. Skin microbiome fluctuations that cause increases in pathologic bacteria, either because of individual and/or environmental factors, can lead to disease states at the skin level ranging from inflammatory conditions to infections. As wounds are inherently associated with perturbations in the local microflora due to injury and activation of the immune responses, the addition of topical probiotics could be a means to prevent infection, regulate inflammation, and potentially augment healing. The goal of this review is to analyse the impact the skin microbiome has on cutaneous wound healing with a focus on developing proposed treatment algorithms and support for their therapeutic potential.
Collapse
|
18
|
Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020; 324:104-123. [DOI: 10.1016/j.jconrel.2020.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
19
|
Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 2020; 74:i6-i15. [PMID: 30690540 PMCID: PMC6382031 DOI: 10.1093/jac/dky530] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gut microbiome is now considered an organ unto itself and plays an important role in health maintenance and recovery from critical illness. The commensal organisms responsible for the framework of the gut microbiome are valuable in protection against disease and various physiological tasks. Critical illness and the associated interventions have a detrimental impact on the microbiome. While antimicrobials are one of the fundamental and often life-saving modalities in septic patients, they can also pave the way for subsequent harm because of the resulting damage to the gut microbiome. Contributing to many of the non-specific signs and symptoms of sepsis, the balance between the overuse of antimicrobials and the clinical need in these situations is often difficult to delineate. Given the potency of antimicrobials utilized to treat septic patients, the effects on the gut microbiome are often rapid and long-lasting, in which case full recovery may never be observed. The overgrowth of opportunistic pathogens is of significant concern as they can lead to infections that become increasingly difficult to treat. Continued research to understand the disturbances within the gut microbiome of critically ill patients and their outcomes is essential to help develop future therapies to circumvent damage to, or restore, the microbiome. In this review, we discuss the impact of the antimicrobials often used for the treatment of sepsis on the gut microbiota.
Collapse
Affiliation(s)
- Amira A Bhalodi
- Accelerate Diagnostics, Inc., Scientific Affairs, Tucson, AZ, USA
| | - Tjitske S R van Engelen
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Medicine, Division of Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Chernevskaya E, Beloborodova N, Klimenko N, Pautova A, Shilkin D, Gusarov V, Tyakht A. Serum and fecal profiles of aromatic microbial metabolites reflect gut microbiota disruption in critically ill patients: a prospective observational pilot study. Crit Care 2020; 24:312. [PMID: 32513224 PMCID: PMC7278238 DOI: 10.1186/s13054-020-03031-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND High serum levels of certain aromatic microbial metabolites (AMM) are associated with severity and mortality in critically ill patients. Omics-based studies suggest gut dysbiosis and reduced microbiome diversity in critical conditions. However, the landscape of gut microbial metabolites is still to be outlined, not to mention the interplay correlation between the metabolome and gut microbiome in critically ill patients. The aim of this study was to analyze the association between serum and fecal levels of AMM and compare them with the composition of gut microbiota in critically ill patients in the acute and chronic stages. METHODS In this prospective observational pilot study, we analyzed the temporal dynamics of the gut microbiome and the AMM spectrum across two distinct subgroups-acute critical ill (ACI) patients with nosocomial pneumonia and chronically critically ill (CCI) patients (9 subjects each group)-as well as performed comparison with 23 healthy volunteers. The AMM levels for each patient were measured using GC-MS in simultaneously taken serum and fecal samples (SFS). These parameters were compared with 16S rRNA fecal microbiome profiles. RESULTS The observed proportions of bacterial taxa suggest a significant gut dysbiosis in the ACI and the CCI patients. Stronger imbalance in microbiome composition and dynamics observed in the ACI patients compared to the CCI ones resonates with a higher severity in the former group. The total levels of AMM in serum samples were higher for the ACI patients than for the CCI patients (3.7 (1.4-6.3) and 1.1 (1.0-1.6) μM, respectively; p = 0.0003). The qualitative composition of the SFS was also altered. We discovered significant associations between gut microbial taxa levels and metabolite concentrations in blood serum as well as in feces in each of the ACI and the CCI patients. CONCLUSIONS Aromatic microbial metabolite profiles in the gut and the serum are interlinked and reflect a disruption of the gut microbial community in critically ill patients.
Collapse
Affiliation(s)
- Ekaterina Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka str., Moscow, Russia, 107031.
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka str., Moscow, Russia, 107031
| | - Natalia Klimenko
- Atlas Biomed Group - Knomics LLC, 31 Malaya Nikitskaya str., Moscow, Russia, 121069
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova str., Moscow, Russia, 119334
| | - Alisa Pautova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka str., Moscow, Russia, 107031
| | - Dmitrii Shilkin
- N. Pirogov National Medical Surgical Center, 70 Nizhnyaya Pervomayskaya str., Moscow, Russia, 105203
| | - Vitaliy Gusarov
- N. Pirogov National Medical Surgical Center, 70 Nizhnyaya Pervomayskaya str., Moscow, Russia, 105203
| | - Alexander Tyakht
- Atlas Biomed Group - Knomics LLC, 31 Malaya Nikitskaya str., Moscow, Russia, 121069
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova str., Moscow, Russia, 119334
| |
Collapse
|
21
|
Nakov R, Segal JP, Settanni CR, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Microbiome: what intensivists should know. Minerva Anestesiol 2020; 86:777-785. [PMID: 32368882 DOI: 10.23736/s0375-9393.20.14278-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The standard conditions of critical illness (including sepsis, acute respiratory distress syndrome, and multiorgan failure) cause enormous global mortality and a growing economic burden. Increasing evidence suggests that critical illness may be associated with loss of commensal microbes and overgrowth of potentially pathogenic and inflammatory bacteria. This state could be associated with poor outcomes. Therefore, microbiota-targeted interventions are potentially attractive novel treatment options. Although the precise mechanisms of microbiome-directed treatments such as prebiotics, probiotics, and fecal microbiota transplantation remain to be determined, they can be utilized in the Intensive Care Unit (ICU) setting. The current review aims to offer intensivists an evidenced-based approach on what we currently know about the role of the microbiome in critical illness and how the microbiome could be targeted in the clinical practice to improve ICU-related outcomes.
Collapse
Affiliation(s)
- Radislav Nakov
- Department of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | | | - Carlo R Settanni
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
22
|
Abstract
Metabolomics is an emerging field of research interest in sepsis. Metabolomics provides new ways of exploring the diagnosis, mechanism, and prognosis of sepsis. Advancements in technologies have enabled significant improvements in identifying novel biomarkers associated with the disease progress of sepsis. The use of metabolomics in the critically ill may provide new approaches to enable precision medicine. Furthermore, the dynamic interactions of the host and its microbiome can lead to further progression of sepsis. Understanding these interactions and the changes in the host's genomics and the microbiome can provide novel preventive and therapeutic strategies against sepsis.
Collapse
Affiliation(s)
- Jisoo Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, The Warren Alpert School of Medicine at Brown University, Providence, RI, USA; Division of Pulmonary, Critical Care & Sleep Medicine, Rhode Island Hospital, POB Suite 224, 595 Eddy Street, Providence, RI 02903, USA.
| | - Debasree Banerjee
- Division of Pulmonary, Critical Care and Sleep Medicine, The Warren Alpert School of Medicine at Brown University, Providence, RI, USA; Division of Pulmonary, Critical Care & Sleep Medicine, Rhode Island Hospital, POB Suite 224, 595 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
23
|
The Evolving Microbiome from Pregnancy to Early Infancy: A Comprehensive Review. Nutrients 2020; 12:nu12010133. [PMID: 31906588 PMCID: PMC7019214 DOI: 10.3390/nu12010133] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Pregnancy induces a number of immunological, hormonal, and metabolic changes that are necessary for the mother to adapt her body to this new physiological situation. The microbiome of the mother, the placenta and the fetus influence the fetus growth and undoubtedly plays a major role in the adequate development of the newborn infant. Hence, the microbiome modulates the inflammatory mechanisms related to physiological and pathological processes that are involved in the perinatal progress through different mechanisms. The present review summarizes the actual knowledge related to physiological changes in the microbiota occurring in the mother, the fetus, and the child, both during neonatal period and beyond. In addition, we approach some specific pathological situations during the perinatal periods, as well as the influence of the type of delivery and feeding.
Collapse
|
24
|
Moron R, Galvez J, Colmenero M, Anderson P, Cabeza J, Rodriguez-Cabezas ME. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 2019; 11:E3002. [PMID: 31817895 PMCID: PMC6950228 DOI: 10.3390/nu11123002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Critically ill patients have an alteration in the microbiome in which it becomes a disease-promoting pathobiome. It is characterized by lower bacterial diversity, loss of commensal phyla, like Firmicutes and Bacteroidetes, and a domination of pathogens belonging to the Proteobacteria phylum. Although these alterations are multicausal, many of the treatments administered to these patients, like antibiotics, play a significant role. Critically ill patients also have a hyperpermeable gut barrier and dysregulation of the inflammatory response that favor the development of the pathobiome, translocation of pathogens, and facilitate the emergence of sepsis. In order to restore the homeostasis of the microbiome, several nutritional strategies have been evaluated with the aim to improve the management of critically ill patients. Importantly, enteral nutrition has proven to be more efficient in promoting the homeostasis of the gut microbiome compared to parenteral nutrition. Several nutritional therapies, including prebiotics, probiotics, synbiotics, and fecal microbiota transplantation, are currently being used, showing variable results, possibly due to the unevenness of clinical trial conditions and the fact that the beneficial effects of probiotics are specific to particular species or even strains. Thus, it is of great importance to better understand the mechanisms by which nutrition and supplement therapies can heal the microbiome in critically ill patients in order to finally implement them in clinical practice with optimal safety and efficacy.
Collapse
Affiliation(s)
- Rocio Moron
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Julio Galvez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Manuel Colmenero
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Medicina Intensiva, Hospital Universitaro Clinico San Cecilio, 18016 Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Análisis Clínicos e Inmunologia, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Cabeza
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| |
Collapse
|
25
|
Knackstedt R, Knackstedt T, Gatherwright J. The role of topical probiotics in skin conditions: A systematic review of animal and human studies and implications for future therapies. Exp Dermatol 2019; 29:15-21. [DOI: 10.1111/exd.14032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
26
|
Ravi A, Halstead FD, Bamford A, Casey A, Thomson NM, van Schaik W, Snelson C, Goulden R, Foster-Nyarko E, Savva GM, Whitehouse T, Pallen MJ, Oppenheim BA. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microb Genom 2019; 5. [PMID: 31526447 PMCID: PMC6807385 DOI: 10.1099/mgen.0.000293] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
Collapse
Affiliation(s)
- Anuradha Ravi
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Fenella D Halstead
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Amy Bamford
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Snelson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | | | | | - George M Savva
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Tony Whitehouse
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Mark J Pallen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK.,School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK
| | - Beryl A Oppenheim
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| |
Collapse
|
27
|
Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol 2019; 10:1873. [PMID: 31456801 PMCID: PMC6698791 DOI: 10.3389/fimmu.2019.01873] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived infection is among the most common complications in patients who underwent severe trauma, serious burn, major surgery, hemorrhagic shock or severe acute pancreatitis (SAP). It could cause sepsis and multiple organ dysfunction syndrome (MODS), which are regarded as a leading cause of mortality in these cases. Gut-derived infection is commonly caused by pathological translocation of intestinal bacteria or endotoxins, resulting from the dysfunction of the gut barrier. In the last decades, the studies regarding to the pathogenesis of gut-derived infection mainly focused on the breakdown of intestinal epithelial tight junction and increased permeability. Limited information is available on the roles of intestinal microbial barrier in the development of gut-derived infection. Recently, advances of next-generation DNA sequencing techniques and its utilization has revolutionized the gut microecology, leading to novel views into the composition of the intestinal microbiota and its connections with multiple diseases. Here, we reviewed the recent progress in the research field of intestinal barrier disruption and gut-derived infection, mainly through the perspectives of the dysbiosis of intestinal microbiota and its interaction with intestinal mucosal immune cells. This review presents novel insights into how the gut microbiota collaborates with mucosal immune cells to involve the development of pathological bacterial translocation. The data might have important implication to better understand the mechanism underlying pathological bacterial translocation, contributing us to develop new strategies for prevention and treatment of gut-derived sepsis.
Collapse
Affiliation(s)
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
|
29
|
Abstract
Radical changes in the composition, diversity and metabolic activity of gut microbiome in critically ill patients most probably affect adversely the outcome of treatment. Microbiota dysfunction may be a predictor and presumably the main cause of infectious complications and sepsis. Clinicists use objective scales for evaluation of patient condition severity including specific parameters of disorders of organs and systems; however, microbiota function is not considered specific and, hence, not evaluated. Technical capabilities of the recent decade have allowed characterizing the intestinal microbiota and that helped understanding the ongoing processes. The authors have analyzed data about the role of intestinal microbiota as a metabolic 'reactor' during critical states, possible complications related to misbalance of 'harmful' and 'beneficial' bacteria, and examined potential of a targeted therapy aimed directly at correction of intestinal microbiota. Search for papers was carried out using Scopus and Web of Science databases 2001 to 2018 years: (Gut Microbiota) AND (Critically ill OR Intensive care unit), key words taken for the search were: intestinal microbiota, metabolism, sepsis, antibiotics, critically ill patients, multiple organ failure. A number of questions in understanding of the interaction between gut microbiome and host remain open. It is necessary to take into account interference of microbial metabolism while assessing metabolome of patients with sepsis. Among low-molecular compounds found in blood of sepsis patients, special attention should be paid to molecules that can be classified as ‘common metabolites’ of humans and bacteria, for example, degradation products of aromatic compounds, which many-fold rise in blood of septic patients. It is necessary to take into consideration and experimentally model changes in the human internal environment, which occur during radical transformation of microbiome in critically ill patients. Such approach brings in new prospects for objective monitoring of diseases by evaluating metabolic profile at a particular moment of time based on integral indices reflecting the status of microbiome/metabolome system, which will supply new targets for therapeutic intervention in future.
Collapse
Affiliation(s)
- E. A. Chernevskaya
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - N. V. Beloborodova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| |
Collapse
|
30
|
Haak BW, Prescott HC, Wiersinga WJ. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Front Immunol 2018; 9:2042. [PMID: 30250472 PMCID: PMC6139316 DOI: 10.3389/fimmu.2018.02042] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Alongside advances in understanding the pathophysiology of sepsis, there have been tremendous strides in understanding the pervasive role of the gut microbiota in systemic host resistance. In pre-clinical models, a diverse and balanced gut microbiota enhances host immunity to both enteric and systemic pathogens. Disturbance of this balance increases susceptibility to sepsis and sepsis-related organ dysfunction, while restoration of the gut microbiome is protective. Patients with sepsis have a profoundly distorted composition of the intestinal microbiota, but the impact and therapeutic potential of the microbiome is not well-established in human sepsis. Modulation of the microbiota consists of either resupplying the pool of beneficial microbes by administration of probiotics, improving the intestinal microenvironment to enhance the growth of beneficial species by dietary interventions and prebiotics, or by totally recolonizing the gut with a fecal microbiota transplantation (FMT). We propose that there are three potential opportunities to utilize these treatment modalities over the course of sepsis: to decrease sepsis incidence, to improve sepsis outcome, and to decrease late mortality after sepsis. Exploring these three avenues will provide insight into how disturbances of the microbiota can predispose to, or even perpetuate the dysregulated immune response associated with this syndrome, which in turn could be associated with improved sepsis management.
Collapse
Affiliation(s)
- Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States.,VA Center for Clinical Management Research, Ann Arbor, MI, United States
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Ruppé É, Lisboa T, Barbier F. The gut microbiota of critically ill patients: first steps in an unexplored world. Intensive Care Med 2018; 44:1561-1564. [PMID: 30008112 DOI: 10.1007/s00134-018-5309-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Étienne Ruppé
- INSERM, IAME-UMR 1137, Université Paris Diderot-Sorbonne Paris Cité, Paris, France.,Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thiago Lisboa
- Critical Care Department and Infection Control Committee, Hospital de Clinicas de Porto Alegre-PPG Ciencias Pneumologias, UFRGS, Porto Alegre, Brazil.,Rede Institucional de Pesquisa e Inovação em Medicina Intensiva, Complexo Hospitalar Santa Casa, Porto Alegre, Brazil
| | - François Barbier
- Service de Médecine Intensive et Réanimation, Hôpital de la Source, Centre Hospitalier Régional d'Orléans, Orléans, France.
| |
Collapse
|
32
|
Rectal and Naris Swabs: Practical and Informative Samples for Analyzing the Microbiota of Critically Ill Patients. mSphere 2018; 3:3/3/e00219-18. [PMID: 29898981 PMCID: PMC6001609 DOI: 10.1128/msphere.00219-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
Commensal microbiota are immunomodulatory, and their pathological perturbation can affect the risk and outcomes of infectious and inflammatory diseases. Consequently, the human microbiota is an emerging diagnostic and therapeutic target in critical illness. In this study, we compared four sample types-rectal, naris, and antecubital swabs and stool samples-for 16S rRNA gene microbiota sequencing in intensive care unit (ICU) patients. Stool samples were obtained in only 31% of daily attempts, while swabs were reliably obtained (≥97% of attempts). Swabs were compositionally distinct by anatomical site, and rectal swabs identified within-patient temporal trends in microbiota composition. Rectal swabs from ICU patients demonstrated differences from healthy stool similar to those observed in comparing stool samples from ICU patients to those from the same healthy controls. Rectal swabs are a useful complement to other sample types for analysis of the intestinal microbiota in critical illness, particularly when obtaining stool may not be feasible or practical.IMPORTANCE Perturbation of the microbiome has been correlated with various infectious and inflammatory diseases and is common in critically ill patients. Stool is typically used to sample the microbiota in human observational studies; however, it is often unavailable for collection from critically ill patients, reducing its utility as a sample type to study this population. Our research identified alternatives to stool for sampling the microbiota during critical illness. Rectal and naris swabs were practical alternatives for use in these patients, as they were observed to be more reliably obtained than stool, were suitable for culture-independent analysis, and successfully captured within- and between-patient microbiota differences.
Collapse
|
33
|
Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Cell Rep 2018; 21:417-430. [PMID: 29020628 DOI: 10.1016/j.celrep.2017.09.049] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial utilization of complex polysaccharides is a major driving force in shaping the composition of the human gut microbiota. There is a growing appreciation that finely tuned polysaccharide utilization loci enable ubiquitous gut Bacteroidetes to thrive on the plethora of complex polysaccharides that constitute "dietary fiber." Mixed-linkage β(1,3)/β(1,4)-glucans (MLGs) are a key family of plant cell wall polysaccharides with recognized health benefits but whose mechanism of utilization has remained unclear. Here, we provide molecular insight into the function of an archetypal MLG utilization locus (MLGUL) through a combination of biochemistry, enzymology, structural biology, and microbiology. Comparative genomics coupled with growth studies demonstrated further that syntenic MLGULs serve as genetic markers for MLG catabolism across commensal gut bacteria. In turn, we surveyed human gut metagenomes to reveal that MLGULs are ubiquitous in human populations globally, which underscores the importance of gut microbial metabolism of MLG as a common cereal polysaccharide.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The review aims to discuss emerging evidence in the field of microbiome-dependent roles in host defense during critical illness with a focus on lung, kidney, and brain inflammation. RECENT FINDINGS The gut microbiota of critical ill patients is characterized by lower diversity, lower abundances of key commensal genera, and in some cases overgrowth by one bacterial genera, a state otherwise known as dysbiosis. Increasing evidence suggests that microbiota-derived components can reach the circulatory system from the gut and modulate immune homeostasis. Dysbiosis might have greater consequences for the critically ill than previously imagined and could contribute to poor outcome. Preclinical studies suggest that impaired communication across the gut - organ axes is associated with brain, lung - and kidney failure. SUMMARY In health, a diverse microbiome might enhance host defense, while during critical illness, the dysbiotic microbiome might contribute to comorbidity and organ dysfunction. Future research should be aimed at further establishing the causes and consequences of dysbiosis seen in the critically ill, which will provide perspective for developing new strategies of intervention.
Collapse
|
35
|
Wolff NS, Hugenholtz F, Wiersinga WJ. The emerging role of the microbiota in the ICU. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:78. [PMID: 29559006 PMCID: PMC5861706 DOI: 10.1186/s13054-018-1999-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2018. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2018. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Nora Suzanne Wolff
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, Netherlands. .,Department of Medicine, Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
36
|
Mathews KA. Emergency and Critical Care Medicine: An Essential Component of All Specialties and Practices. Front Vet Sci 2017; 4:165. [PMID: 29075634 PMCID: PMC5642140 DOI: 10.3389/fvets.2017.00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/21/2017] [Indexed: 01/30/2023] Open
|