1
|
Xia D, Lu Z, Li S, Fang P, Yang C, He X, You Q, Sun G. Development of an Intelligent Reactive Oxygen Species-Responsive Dual-Drug Delivery Nanoplatform for Enhanced Precise Therapy of Acute Lung Injury. Int J Nanomedicine 2024; 19:2179-2197. [PMID: 38476280 PMCID: PMC10929269 DOI: 10.2147/ijn.s442727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) are commonly occurring devastating conditions that seriously threaten the respiratory system in critically ill patients. The current treatments improve oxygenation in patients with ALI/ARDS in the short term, but do not relieve the clinical mortality of patients with ARDS. Purpose To develop the novel drug delivery systems that can enhance the therapeutic efficacy of ALI/ARDS and impede adverse effects of drugs. Methods Based on the key pathophysiological process of ARDS that is the disruption of the pulmonary endothelial barrier, bilirubin (Br) and atorvastatin (As) were encapsulated into an intelligent reactive oxygen species (ROS)-responsive nanocarrier DSPE-TK-PEG (DPTP) to form nanoparticles (BA@DPTP) in which the thioketal bonds could be triggered by high ROS levels in the ALI tissues. Results BA@DPTP could accumulate in inflammatory pulmonary sites through passive targeting strategy and intelligently release Br and As only in the inflammatory tissue via ROS-responsive bond, thereby enhancing the drugs effectiveness and markedly reducing side effects. BA@DPTP effectively inhibited NF-κB signaling and NLRP3/caspase-1/GSDMD-dependent pyroptosis in mouse pulmonary microvascular endothelial cells. BA@DPTP not only protected mice with lipopolysaccharide-induced ALI and retained the integrity of the pulmonary structure, but also reduced ALI-related mortality. Conclusion This study combined existing drugs with nano-targeting strategies to develop a novel drug-targeting platform for the efficient treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Dunling Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zongqing Lu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chun Yang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
2
|
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, Wu Y, Fang J, Yu W. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm 2023; 644:123321. [PMID: 37591476 DOI: 10.1016/j.ijpharm.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and critical diseases in clinics and have no effective treatment to date. With the concept of "precision medicine", research into the precise drug delivery of therapeutic and diagnostic drugs has become a frontier in nanomedicine research and has entered the era of design of precise nanodrug delivery systems (NDDSs) with cell-specific targeting. Owing to the distinctive characteristics of ALI/ARDS, designing NDDSs for specific focal sites is an important strategy for changing drug distribution in the body and specifically increasing drug concentration at target sites while decreasing drug concentration at non-target sites. This strategy enhances drug efficacy, reduces adverse reactions, and ensures accurate nano-targeted treatment. On the basis of the characteristics of pathological ALI/ARDS microenvironments, this paper reviews NDDSs targeting vascular endothelial cells, neutrophils, alveolar macrophages, and alveolar epithelial cells to provide reference for designing accurate NDDSs for ALI/ARDS and novel insights into targeted treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Yueguo Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
3
|
Worku ET, Yeung F, Anstey C, Shekar K. The impact of reduction in intensity of mechanical ventilation upon venovenous ECMO initiation on radiographically assessed lung edema scores: A retrospective observational study. Front Med (Lausanne) 2022; 9:1005192. [PMID: 36203770 PMCID: PMC9531725 DOI: 10.3389/fmed.2022.1005192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Patients with severe acute respiratory distress syndrome (ARDS) typically receive ultra-protective ventilation after extracorporeal membrane oxygenation (ECMO) is initiated. While the benefit of ECMO appears to derive from supporting “lung rest”, reductions in the intensity of mechanical ventilation, principally tidal volume limitation, may manifest radiologically. This study evaluated the relative changes in radiographic assessment of lung edema (RALE) score upon venovenous ECMO initiation in patients with severe ARDS. Methods Digital chest x-rays (CXR) performed at baseline immediately before initiation of ECMO, and at intervals post (median 1.1, 2.1, and 9.6 days) were reviewed in 39 Adult ARDS patients. One hundred fifty-six digital images were scored by two independent, blinded radiologists according to the RALE (Radiographic Assessment of Lung Edema) scoring criteria. Ventilatory data, ECMO parameters and fluid balance were recorded at corresponding time points. Multivariable analysis was performed analyzing the change in RALE score over time relative to baseline. Results The RALE score demonstrated excellent inter-rater agreement in this novel application in an ECMO cohort. Mean RALE scores increased from 28 (22–37) at baseline to 35 (26–42) (p < 0.001) on D1 of ECMO; increasing RALE was associated with higher baseline APACHE III scores [ß value +0.19 (0.08, 0.30) p = 0.001], and greater reductions in tidal volume [ß value −2.08 (−3.07, −1.10) p < 0.001] after ECMO initiation. Duration of mechanical ventilation, and ECMO support did not differ between survivors and non-survivors. Conclusions The magnitude of reductions in delivered tidal volumes correlated with increasing RALE scores (radiographic worsening) in ARDS patients receiving ECMO. Implications for patient centered outcomes remain unclear. There is a need to define appropriate ventilator settings on venovenous ECMO, counterbalancing the risks vs. benefits of optimal “lung rest” against potential atelectrauma.
Collapse
Affiliation(s)
- Elliott T. Worku
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Elliott T. Worku
| | - Francis Yeung
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Chris Anstey
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- School of Medicine, Griffith University, Sunshine Coast Campus, Birtinya, QLD, Australia
| | - Kiran Shekar
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Somhorst P, van der Zee P, Endeman H, Gommers D. PEEP-FiO2 table versus EIT to titrate PEEP in mechanically ventilated patients with COVID-19-related ARDS. Crit Care 2022; 26:272. [PMID: 36096837 PMCID: PMC9465137 DOI: 10.1186/s13054-022-04135-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Rationale It is unknown how to titrate positive end-expiratory pressure (PEEP) in patients with COVID-19-related acute respiratory distress syndrome (ARDS). Guidelines recommend the one-size-fits-all PEEP-FiO2 table. In this retrospective cohort study, an electrical impedance tomography (EIT)-guided PEEP trial was used to titrate PEEP. Objectives To compare baseline PEEP according to the high PEEP-FiO2 table and personalized PEEP following an EIT-guided PEEP trial. Methods We performed an EIT-guided decremental PEEP trial in patients with moderate-to-severe COVID-19-related ARDS upon intensive care unit admission. PEEP was set at the lowest PEEP above the intersection of curves representing relative alveolar overdistention and collapse. Baseline PEEP was compared with PEEP set according to EIT. We identified patients in whom the EIT-guided PEEP trial resulted in a decrease or increase in PEEP of ≥ 2 cmH2O. Measurements and main results We performed a PEEP trial in 75 patients. In 23 (31%) patients, PEEP was decreased ≥ 2 cmH2O, and in 24 (32%) patients, PEEP was increased ≥ 2 cmH2O. Patients in whom PEEP was decreased had improved respiratory mechanics and more overdistention in the non-dependent lung region at higher PEEP levels. These patients also had a lower BMI, longer time between onset of symptoms and intubation, and higher incidence of pulmonary embolism. Oxygenation improved in patients in whom PEEP was increased. Conclusions An EIT-guided PEEP trial resulted in a relevant change in PEEP in 63% of patients. These results support the hypothesis that PEEP should be personalized in patients with ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04135-5.
Collapse
|
5
|
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11:3060-3091. [PMID: 33977080 PMCID: PMC8102084 DOI: 10.1016/j.apsb.2021.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AEC II, alveolar type II epithelial cells
- AM, alveolar macrophages
- ARDS, acute respiratory distress syndrome
- Acute lung injury
- Acute respiratory distress syndrome
- Anti-inflammatory therapy
- BALF, bronchoalveolar lavage fluid
- BSA, bovine serum albumin
- CD, cyclodextrin
- CLP, cecal ligation and perforation
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, phosphatidylethanolamine
- DOTAP, 1-diolefin-3-trimethylaminopropane
- DOX, doxorubicin
- DPPC, dipalmitoylphosphatidylcholine
- Drug delivery
- ECM, extracellular matrix
- ELVIS, extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration
- EPCs, endothelial progenitor cells
- EPR, enhanced permeability and retention
- EVs, extracellular vesicles
- EphA2, ephrin type-A receptor 2
- Esbp, E-selectin-binding peptide
- FcgR, Fcγ receptor
- GNP, peptide-gold nanoparticle
- H2O2, hydrogen peroxide
- HO-1, heme oxygenase-1
- ICAM-1, intercellular adhesion molecule-1
- IKK, IκB kinase
- IL, interleukin
- LPS, lipopolysaccharide
- MERS, Middle East respiratory syndrome
- MPMVECs, mouse pulmonary microvascular endothelial cells
- MPO, myeloperoxidase
- MSC, mesenchymal stem cells
- NAC, N-acetylcysteine
- NE, neutrophil elastase
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor-κB
- Nanomedicine
- PC, phosphatidylcholine
- PCB, poly(carboxybetaine)
- PDA, polydopamine
- PDE4, phosphodiesterase 4
- PECAM-1, platelet-endothelial cell adhesion molecule
- PEG, poly(ethylene glycol)
- PEI, polyetherimide
- PEVs, platelet-derived extracellular vesicles
- PLGA, poly(lactic-co-glycolic acid)
- PS-PEG, poly(styrene-b-ethylene glycol)
- Pathophysiologic feature
- RBC, red blood cells
- RBD, receptor-binding domains
- ROS, reactive oxygen species
- S1PLyase, sphingosine-1-phosphate lyase
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC1, syndecan-1
- SORT, selective organ targeting
- SP, surfactant protein
- Se, selenium
- Siglec, sialic acid-binding immunoglobulin-like lectin
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- TPP, triphenylphosphonium cation
- Targeting strategy
- YSA, YSAYPDSVPMMS
- cRGD, cyclic arginine glycine-d-aspartic acid
- iNOS, inducible nitric oxide synthase
- rSPANb, anti-rat SP-A nanobody
- scFv, single chain variable fragments
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Beitler JR, Walkey AJ. The Staying Power of Pressure- and Volume-limited Ventilation in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2021; 204:247-249. [PMID: 33891827 PMCID: PMC8513579 DOI: 10.1164/rccm.202104-0839ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jeremy R Beitler
- Center for Acute Respiratory Failure and.,Division of Pulmonary and Critical Care Medicine Columbia University and New York-Presbyterian Hospital New York, New York
| | - Allan J Walkey
- Department of Medicine Boston University School of Medicine Boston, Massachusetts
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The present review examines how targeted approaches to care, based on individual variability in patient characteristics, could be applied in the perioperative setting. Such an approach would enhance individualized risk assessment and allow for targeted preventive and therapeutic decision-making in patients at increased risk for adverse perioperative events. RECENT FINDINGS Prior and current studies highlight valuable lessons on how future investigations attempting to link specific patient-related characteristics or treatment modalities with outcomes and adverse drug responses might be designed in the perioperative setting. SUMMARY Our review highlights the past, present, and future directions of perioperative precision medicine. Current evidence provides important lessons on how a specific patient and disease tailored approach can help perioperative physicians in delivering the most appropriate and safest perioperative care.
Collapse
|