1
|
Girault C, Artaud-Macari E, Jolly G, Carpentier D, Cuvelier A, Béduneau G. [High-flow nasal oxygen therapy and hypercapnic acute respiratory failure]. Rev Mal Respir 2024; 41:498-507. [PMID: 38926023 DOI: 10.1016/j.rmr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Humidified high-flow nasal oxygen therapy (HFNO) has, in recent years, come to assume a key role in the management of hypoxemic acute respiratory failure (ARF). While non-invasive ventilation (NIV) currently represents the first-line ventilatory strategy in patients exhibiting hypercapnic ARF, the operating principles and physiological effects of HFNO could be interesting and useful in the initial management of hypercapnic ARF and/or after extubation, particularly in acute exacerbations of chronic obstructive pulmonary disease. Under these conditions, HFNO could be used either alone continuously or in combination with NIV during breaks in spontaneous breathing, depending on the severity and etiology of the underlying hypercapnic ARF.
Collapse
Affiliation(s)
- C Girault
- Service de médecine intensive et réanimation, GRHVN UR-3830, CHU-hôpitaux de Rouen, Normandie univ, 76000 Rouen, France.
| | - E Artaud-Macari
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, GRHVN UR-3830, CHU-hôpitaux de Rouen, Normandie univ, 76000 Rouen, France
| | - G Jolly
- Service de médecine intensive et réanimation, CHU-hôpitaux de Rouen, 76000 Rouen, France
| | - D Carpentier
- Service de médecine intensive et réanimation, CHU-hôpitaux de Rouen, 76000 Rouen, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, GRHVN UR-3830, CHU-hôpitaux de Rouen, Normandie univ, 76000 Rouen, France
| | - G Béduneau
- Service de médecine intensive et réanimation, GRHVN UR-3830, CHU-hôpitaux de Rouen, Normandie univ, 76000 Rouen, France
| |
Collapse
|
2
|
Calle-Peña ST, Diaz Tavara ED, Aguirre-Milachay E, León-Figueroa DA, Valladares-Garrido MJ. Predictors of high-flow nasal cannula failure in COVID-19 patients in a northern Peruvian hospital. BMC Pulm Med 2024; 24:414. [PMID: 39198776 PMCID: PMC11351638 DOI: 10.1186/s12890-024-03241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVES To determine predictors of high-flow nasal cannula (HFNC) failure in COVID-19 patients in a hospital in northern Peru. METHODOLOGY A retrospective cohort study was conducted during the months of March and May 2021. Data collection was based on a follow-up of 156 hospitalized patients with a diagnosis of COVID-19 who were users of HFNC. Epidemiological factors and clinical outcomes of treatment were analyzed from medical records. Epidemiological, analytical, and HFNC use-related characteristics were described using measures of absolute and relative frequencies, measures of central tendency, and dispersion. A multivariate Poisson regression analysis with robust variance and a 95% confidence interval was performed. RESULTS We found that age, SpO2/FiO2, work of breathing (WOB scale) at admission, degree of involvement, type of infiltrate on CT scan, lymphocytes, c-reactive protein, and D-dimer were significantly associated with failure of HFNC (p < 0.05). In addition, the WOB scale, PaO2/FiO2, SaO2/FiO2, and ROX index were variables that presented statistical significance (p < 0.0001). In the multivariate analysis model, a risk of failure of HFNC was determined with age > = 60 years [RRa 1.39 (1.05-1.85)] and PaO2/FiO2 score less than 100 [Rra 1.65 (0.99-2.76)]. CONCLUSIONS Predictors to failure of HFNC are age older than 60 years and minimally significantly lower PaO2/FiO2 than 100.
Collapse
Affiliation(s)
| | | | | | | | - Mario J Valladares-Garrido
- Universidad Continental, Lima, 15046, Peru.
- Oficina de Inteligencia Sanitaria, Red Prestacional EsSalud Lambayeque, Chiclayo, 14008, Peru.
| |
Collapse
|
3
|
Pisciotta W, Passannante A, Arina P, Alotaibi K, Ambler G, Arulkumaran N. High-flow nasal oxygen versus conventional oxygen therapy and noninvasive ventilation in COVID-19 respiratory failure: a systematic review and network meta-analysis of randomised controlled trials. Br J Anaesth 2024; 132:936-944. [PMID: 38307776 PMCID: PMC11103093 DOI: 10.1016/j.bja.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Noninvasive methods of respiratory support, including noninvasive ventilation (NIV), continuous positive airway pressure (CPAP), and high-flow nasal oxygen (HFNO), are potential strategies to prevent progression to requirement for invasive mechanical ventilation in acute hypoxaemic respiratory failure. The COVID-19 pandemic provided an opportunity to understand the utility of noninvasive respiratory support among a homogeneous cohort of patients with contemporary management of acute respiratory distress syndrome. We performed a network meta-analysis of studies evaluating the efficacy of NIV (including CPAP) and HFNO, compared with conventional oxygen therapy (COT), in patients with COVID-19. METHODS PubMed, Embase, and the Cochrane library were searched in May 2023. Standard random-effects meta-analysis was used first to estimate all direct pairwise associations and the results from all studies were combined using frequentist network meta-analysis. Primary outcome was treatment failure, defined as discontinuation of HFNO, NIV, or COT despite progressive disease. Secondary outcome was mortality. RESULTS We included data from eight RCTs with 2302 patients, (756 [33%] assigned to COT, 371 [16%] to NIV, and 1175 [51%] to HFNO). The odds of treatment failure were similar for NIV (P=0.33) and HFNO (P=0.25), and both were similar to that for COT (reference category). The odds of mortality were similar for all three treatments (odds ratio for NIV vs COT: 1.06 [0.46-2.44] and HFNO vs COT: 0.97 [0.57-1.65]). CONCLUSIONS Noninvasive ventilation, high-flow nasal oxygen, and conventional oxygen therapy are comparable with regards to treatment failure and mortality in COVID-19-associated acute respiratory failure. PROSPERO REGISTRATION CRD42023426495.
Collapse
Affiliation(s)
- Walter Pisciotta
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Alberto Passannante
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Khalid Alotaibi
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Gareth Ambler
- Department of Statistical Science, University College London, London, UK
| | - Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| |
Collapse
|
4
|
Reinke LF, Fasolino T, Sullivan DR. Goals of care and end-of-life communication needs of persons with chronic respiratory disease. Curr Opin Support Palliat Care 2023; 17:283-289. [PMID: 37668534 DOI: 10.1097/spc.0000000000000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
PURPOSE OF THE REVIEW To highlight recent advances in effective communication among persons with chronic respiratory diseases. The authors focus on communication science related to goals of care (GOC) discussions, medical devices, and life-sustaining invasive treatments. The authors discuss important considerations when working with individuals with low literacy and rurality. Communication handoffs between respiratory clinicians and/or palliative care to hospice clinicians are summarized to ensure effective person-centered and caregiver-centered care. RECENT FINDINGS Studies suggest the following communication approaches: (1) clarify differences between palliative and end of life; (2) conduct conversations early and gradual throughout the illness trajectory; (3) distinguish types of GOC discussions as they relate to treatment preferences; (4) for patients from rural communities, include family members and spiritual leaders; (5) assess literacy and employ supportive strategies; (6) apply time-limited-trial framework for life-sustaining treatment (LST) decisions; and (7) standardize processes for communication handoffs to hospice clinicians to improve communication fidelity. SUMMARY Effective communication tools for clinicians to engage in GOC discussions for persons with chronic respiratory diseases are grounded in a patient-centered framework. A trained clinician should lead these conversations and include interdisciplinary team members throughout the disease trajectory including at the end of life. These approaches may enable patients to express their values and care preferences as they evolve over time.
Collapse
Affiliation(s)
- Lynn F Reinke
- College of Nursing, University of Utah, Salt Lake City, Utah
| | - Tracy Fasolino
- School of Nursing, College of Behavioral, Social, and Health Sciences, Clemson University, Clemson, South Carolina
| | - Donald R Sullivan
- Department of Veterans Affairs, Portland Health Care System, Health Services R&D
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Ortac Ersoy E, Erdemir B, Halacli B, Guven G, Yildirim M, Geldigitti IT, Yazdali Koylu N, Topeli A. Effect of Awake Prone Positioning on ROX Index in Critically-ill Patients With Respiratory Failure due to COVID-19. J Intensive Care Med 2023; 38:1158-1164. [PMID: 37611188 DOI: 10.1177/08850666231186956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
COVID-19 pneumonia causes acute respiratory distress syndrome (ARDS). Prone positioning (PP) is beneficial to pulmonary physiology and improves oxygenation in patients with ARDS. We aimed to investigate the effect of the PP on oxygenation, respiratory rate (RR) and ROX index in non-intubated patients with COVID-19 associated respiratory failure and to determine whether ROX index predicts intubation. Awake critically-ill patients with confirmed diagnosis of COVID-19 who underwent PP were enrolled in the retrospective, single-center study. Oxygenation parameters were recorded 1 h before PP, during PP and 1 h after return to supine position (after PP). Intubation was defined as the endpoint. Seventy-one patients with a median age of 64 [55-73] years were enrolled in the study. PaO2/FiO2 and SpO2/FiO2 improved during PP, this improvement did not persist after PP. RR improved during and after PP in both intubated and non-intubated patients (for all P < .001). ROX index improved only in non-intubated patients (P < .001) but not in intubated patients (P = .07). Area under the curve (AUC) of ROX index for intubation before PP, during PP and after PP were 0.74 [0.61-0.88] (P = .002), 0.76 [0.62-0.91] (P = .001), and 0.76 [0.64-0.89] (P = .001), respectively. ROX index >6.83 before PP had a negative predictive value (NPV) of 0.85; ROX index >8.28 during PP had a NPV of 0.88 and ROX index >7.48 after PP had a NPV of 0.85. In logistic regression adjusted for APACHE II score, ROX index ≤6.83 before PP had an odds ratio (OR) 4.47 [1.39-14.38], ROX index ≤8.28 during PP had an OR 7.96 [2.29-27.64] and ROX index ≤7.48 had an OR 3.98 [1.25-12.61] for prediction of intubation. In conclusion, awake PP improves oxygenation and decreases RR. ROX index improved only in non- intubated patients and a higher ROX index predicts lower risk of progressing to mechanical ventilation with intubation.
Collapse
Affiliation(s)
- Ebru Ortac Ersoy
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Begüm Erdemir
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burcin Halacli
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Goksel Guven
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Yildirim
- Diskapi Training and Research Hospital, Intensive Care Unit, University of Health Sciences, Ankara, Turkey
| | - Ismail Tuna Geldigitti
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nur Yazdali Koylu
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Arzu Topeli
- Department of Internal Medicine, Division of Intensive Care, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Artaud-Macari E, Le Bouar G, Maris J, Dantoing E, Vatignez T, Girault C. [Ventilatory management of SARS-CoV-2 acute respiratory failure]. Rev Mal Respir 2023; 40:751-767. [PMID: 37865564 DOI: 10.1016/j.rmr.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/19/2023] [Indexed: 10/23/2023]
Abstract
COVID-19 pneumonia presents several particularities in its clinical presentation (cytokine storm, silent hypoxemia, thrombo-embolic risk) and may lead to a number of acute respiratory distress syndrome (ARDS) phenotypes. While the optimal oxygenation strategy in cases of hypoxemic acute respiratory failure (ARF) is still under debate, ventilatory management of COVID-19-related ARF has confirmed the efficacy of high-flow oxygen therapy and restored interest in other ventilatory approaches such as continuous positive airway pressure (CPAP) and noninvasive ventilation involving a helmet, which due to patient overflow are sometimes implemented outside of critical care units. However, further studies are still needed to determine which patients should be given which oxygenation technique, and under which conditions they require invasive mechanical ventilation, given that delayed initiation potentially burdens prognosis. During invasive mechanical ventilation, ventral decubitus and extracorporeal membrane oxygenation have become increasingly prevalent. While innovative therapies such as awake prone position or lung transplantation have likewise been developed, their indications, modalities and efficacy remain to be determined.
Collapse
Affiliation(s)
- E Artaud-Macari
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France; UNIROUEN, UR-3830, Normandie université, CHU de Rouen, 76000 Rouen, France.
| | - G Le Bouar
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France
| | - J Maris
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France
| | - E Dantoing
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, 76000 Rouen, France
| | - T Vatignez
- Service de médecine intensive et réanimation, CHU de Rouen, 76000 Rouen, France
| | - C Girault
- UNIROUEN, UR-3830, Normandie université, CHU de Rouen, 76000 Rouen, France; Service de médecine intensive et réanimation, CHU de Rouen, 76000 Rouen, France
| |
Collapse
|
7
|
Grieco DL, Delle Cese L, Menga LS, Rosà T, Michi T, Lombardi G, Cesarano M, Giammatteo V, Bello G, Carelli S, Cutuli SL, Sandroni C, De Pascale G, Pesenti A, Maggiore SM, Antonelli M. Physiological effects of awake prone position in acute hypoxemic respiratory failure. Crit Care 2023; 27:315. [PMID: 37592288 PMCID: PMC10433569 DOI: 10.1186/s13054-023-04600-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Luca S. Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Gianmarco Lombardi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Simone Carelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Salvatore L. Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Claudio Sandroni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Salvatore M. Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
- University Department of Innovative Technologies in Medicine and Dentistry, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione ‘Policlinico Universitario A. Gemelli’ IRCCS, L.go F. Vito, 00168 Rome, Italy
| |
Collapse
|
8
|
Taxbro K, Hammarskjöld F, Nilsson M, Persson M, Chew MS, Sunnergren O. Factors related to COVID-19 mortality among three Swedish intensive care units-A retrospective study. Acta Anaesthesiol Scand 2023; 67:788-796. [PMID: 36915957 DOI: 10.1111/aas.14232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Mortality due to acute hypoxemic respiratory failure (AHRF) in patients with coronavirus disease-19 (COVID-19) differs across units, regions, and countries. These variations may be attributed to several factors, including comorbidities, acute physiological derangement, disease severity, treatment, ethnicity, healthcare system strain, and socioeconomic status. This study aimed to explore the features of patient characteristics, clinical management, and staffing that may be related to mortality among three intensive care units (ICUs) within the same hospital system in South Sweden. METHODS We retrospectively analyzed ICU patients with COVID-19 and AHRF in Region Jönköping County, Sweden. The primary outcome was the 90-day mortality rate. We used univariate and multivariable logistic regression analyses to investigate the relationship of predictors with outcomes. RESULTS Between March 15, 2020, and May 31, 2021, 331 patients with AHRF and COVID-19 were admitted to the three ICUs. There were differences in disease severity, treatments, process-related factors, and socioeconomic factors between the units. These factors were related to 90-day mortality. After multivariable adjustment, age, severity of acute respiratory distress syndrome, and the number of nurses per ICU-bed independently predicted 90-day mortality. CONCLUSION Age, disease severity, and nurse staffing, but not treatment or socioeconomic status, were independently associated with 90-day mortality among critically ill patients with AHRF due to COVID-19. We also identified variations in care related processes, which may be a modifiable risk factor and warrants future investigation.
Collapse
Affiliation(s)
- Knut Taxbro
- Department of Anaesthesia and Intensive Care Medicine, Ryhov County Hospital, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fredrik Hammarskjöld
- Department of Anaesthesia and Intensive Care Medicine, Ryhov County Hospital, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mats Nilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Futurum, Academy of Health and Care, Region Jönköping County, Jönköping, Sweden
| | - Magnus Persson
- Department of Anaesthesia and Intensive Care Medicine, Värnamo Hospital, Värnamo, Sweden
| | - Michelle S Chew
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Linköping University Hospital, Linköping, Sweden
| | - Ola Sunnergren
- Department of Otorhinolaryngology, Region Jönköping County, Jönköping, Sweden
| |
Collapse
|
9
|
Vetrugno L, Deana C, Castaldo N, Fantin A, Belletti A, Sozio E, De Martino M, Isola M, Palumbo D, Longhini F, Cammarota G, Spadaro S, Maggiore SM, Bassi F, Tascini C, Patruno V. Barotrauma during Noninvasive Respiratory Support in COVID-19 Pneumonia Outside ICU: The Ancillary COVIMIX-2 Study. J Clin Med 2023; 12:jcm12113675. [PMID: 37297869 DOI: 10.3390/jcm12113675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Noninvasive respiratory support (NIRS) has been extensively used during the COVID-19 surge for patients with acute respiratory failure. However, little data are available about barotrauma during NIRS in patients treated outside the intensive care unit (ICU) setting. METHODS COVIMIX-2 was an ancillary analysis of the previous COVIMIX study, a large multicenter observational work investigating the frequencies of barotrauma (i.e., pneumothorax and pneumomediastinum) in adult patients with COVID-19 interstitial pneumonia. Only patients treated with NIRS outside the ICU were considered. Baseline characteristics, clinical and radiological disease severity, type of ventilatory support used, blood tests and mortality were recorded. RESULTS In all, 179 patients were included, 60 of them with barotrauma. They were older and had lower BMI than controls (p < 0.001 and p = 0.045, respectively). Cases had higher respiratory rates and lower PaO2/FiO2 (p = 0.009 and p < 0.001). The frequency of barotrauma was 0.3% [0.1-1.3%], with older age being a risk factor for barotrauma (OR 1.06, p = 0.015). Alveolar-arterial gradient (A-a) DO2 was protective against barotrauma (OR 0.92 [0.87-0.99], p = 0.026). Barotrauma required active treatment, with drainage, in only a minority of cases. The type of NIRS was not explicitly related to the development of barotrauma. Still, an escalation of respiratory support from conventional oxygen therapy, high flow nasal cannula to noninvasive respiratory mask was predictive for in-hospital death (OR 15.51, p = 0.001). CONCLUSIONS COVIMIX-2 showed a low frequency for barotrauma, around 0.3%. The type of NIRS used seems not to increase this risk. Patients with barotrauma were older, with more severe systemic disease, and showed increased mortality.
Collapse
Affiliation(s)
- Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, 66100 Chieti, Italy
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Venezia Giulia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Nadia Castaldo
- Pulmonology Unit, Department of Cardio-Thoracic Surgery, Health Integrated Agency of Friuli Venezia Giulia, 33100 Udine, Italy
| | - Alberto Fantin
- Pulmonology Unit, Department of Cardio-Thoracic Surgery, Health Integrated Agency of Friuli Venezia Giulia, 33100 Udine, Italy
| | - Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuela Sozio
- Infectious Disease Unit, Health Integrated Agency of Friuli Venezia Giulia, 33100 Udine, Italy
| | - Maria De Martino
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Miriam Isola
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Palumbo
- Department of Radiology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater, Domini, Magna Graecia University, 88100 Catanzaro, Italy
| | - Gianmaria Cammarota
- Anesthesiology and Intensive Care, Department of Translational medicine, Faculty of Medicine and Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Savino Spadaro
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Salvatore Maurizio Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, Gabriele d'Annunzio University of Chieti Pescara, 66100 Chieti, Italy
| | - Flavio Bassi
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Venezia Giulia, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Carlo Tascini
- Infectious Disease Unit, Health Integrated Agency of Friuli Venezia Giulia, 33100 Udine, Italy
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Vincenzo Patruno
- Pulmonology Unit, Department of Cardio-Thoracic Surgery, Health Integrated Agency of Friuli Venezia Giulia, 33100 Udine, Italy
| |
Collapse
|
10
|
Menga LS, Delle Cese L, Rosà T, Cesarano M, Scarascia R, Michi T, Biasucci DG, Ruggiero E, Dell’Anna AM, Cutuli SL, Tanzarella ES, Pintaudi G, De Pascale G, Sandroni C, Maggiore SM, Grieco DL, Antonelli M. Respective Effects of Helmet Pressure Support, Continuous Positive Airway Pressure, and Nasal High-Flow in Hypoxemic Respiratory Failure: A Randomized Crossover Clinical Trial. Am J Respir Crit Care Med 2023; 207:1310-1323. [PMID: 36378814 PMCID: PMC10595442 DOI: 10.1164/rccm.202204-0629oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/15/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: The respective effects of positive end-expiratory pressure (PEEP) and pressure support delivered through the helmet interface in patients with hypoxemia need to be better understood. Objectives: To assess the respective effects of helmet pressure support (noninvasive ventilation [NIV]) and continuous positive airway pressure (CPAP) compared with high-flow nasal oxygen (HFNO) on effort to breathe, lung inflation, and gas exchange in patients with hypoxemia (PaO2/FiO2 ⩽ 200). Methods: Fifteen patients underwent 1-hour phases (constant FiO2) of HFNO (60 L/min), helmet NIV (PEEP = 14 cm H2O, pressure support = 12 cm H2O), and CPAP (PEEP = 14 cm H2O) in randomized sequence. Measurements and Main Results: Inspiratory esophageal (ΔPES) and transpulmonary pressure (ΔPL) swings were used as surrogates for inspiratory effort and lung distension, respectively. Tidal Volume (Vt) and end-expiratory lung volume were assessed with electrical impedance tomography. ΔPES was lower during NIV versus CPAP and HFNO (median [interquartile range], 5 [3-9] cm H2O vs. 13 [10-19] cm H2O vs. 10 [8-13] cm H2O; P = 0.001 and P = 0.01). ΔPL was not statistically different between treatments. PaO2/FiO2 ratio was significantly higher during NIV and CPAP versus HFNO (166 [136-215] and 175 [158-281] vs. 120 [107-149]; P = 0.002 and P = 0.001). NIV and CPAP similarly increased Vt versus HFNO (mean change, 70% [95% confidence interval (CI), 17-122%], P = 0.02; 93% [95% CI, 30-155%], P = 0.002) and end-expiratory lung volume (mean change, 198% [95% CI, 67-330%], P = 0.001; 263% [95% CI, 121-407%], P = 0.001), mostly due to increased aeration/ventilation in dorsal lung regions. During HFNO, 14 of 15 patients had pendelluft involving >10% of Vt; pendelluft was mitigated by CPAP and further by NIV. Conclusions: Compared with HFNO, helmet NIV, but not CPAP, reduced ΔPES. CPAP and NIV similarly increased oxygenation, end-expiratory lung volume, and Vt, without affecting ΔPL. NIV, and to a lesser extent CPAP, mitigated pendelluft. Clinical trial registered with clinicaltrials.gov (NCT04241861).
Collapse
Affiliation(s)
- Luca S. Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Roberta Scarascia
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Daniele G. Biasucci
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Antonio M. Dell’Anna
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Salvatore L. Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Eloisa S. Tanzarella
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gabriele Pintaudi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Claudio Sandroni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Salvatore Maurizio Maggiore
- University Department of Innovative Technologies in Medicine and Dentistry, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
| | - Domenico L. Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
11
|
Adi O, Fong CP, Keong YY, Apoo FN, Roslan NL. Helmet CPAP in the emergency department: A narrative review. Am J Emerg Med 2023; 67:112-119. [PMID: 36870251 DOI: 10.1016/j.ajem.2023.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The choice of correct interface for the right patient is crucial for the success of non-invasive ventilation (NIV) therapy. Helmet CPAP is a type of interface used to deliver NIV. Helmet CPAP improves oxygenation by keeping the airway open throughout the breathing cycle with positive end-expiratory pressure (PEEP). OBJECTIVE This narrative review describes the technical aspects and clinical indications of helmet continuous positive airway pressure (CPAP). In addition, we explore the advantages and challenges faced using this device at the Emergency Department (ED). DISCUSSION Helmet CPAP is tolerable than other NIV interfaces, provides a good seal and has good airway stability. During Covid-19 pandemic, there are evidences it reduced the risk of aerosolization. The potential clinical benefit of helmet CPAP is demonstrated in acute cardiogenic pulmonary oedema (ACPO), Covid-19 pneumonia, immunocompromised patient, acute chest trauma and palliative patient. Compare to conventional oxygen therapy, helmet CPAP had been shown to reduce intubation rate and decrease mortality. CONCLUSION Helmet CPAP is one of the potential NIV interface in patients with acute respiratory failure presenting to the emergency department. It is better tolerated for prolonged usage, reduced intubation rate, improved respiratory parameters, and offers protection against aerosolization in infectious diseases.
Collapse
Affiliation(s)
- Osman Adi
- Resuscitation & Emergency Critical Care Unit (RECCU), Trauma & Emergency Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia.
| | - Chan Pei Fong
- Resuscitation & Emergency Critical Care Unit (RECCU), Trauma & Emergency Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | - Yip Yat Keong
- Resuscitation & Emergency Critical Care Unit (RECCU), Trauma & Emergency Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | - Farah Nuradhwa Apoo
- Resuscitation & Emergency Critical Care Unit (RECCU), Trauma & Emergency Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | - Nurul Liana Roslan
- Resuscitation & Emergency Critical Care Unit (RECCU), Trauma & Emergency Department, Hospital Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Colaianni-Alfonso N, Montiel GC, Vega ML, Mazzinari G, Alonso-Íñigo JM, Grieco DL. Helmet vs Facemask CPAP in COVID-19 Respiratory Failure: A Prospective Cohort Study. Chest 2023; 163:341-344. [PMID: 36049548 PMCID: PMC9423869 DOI: 10.1016/j.chest.2022.08.2221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Nicolás Colaianni-Alfonso
- Respiratory Intermediate Care Unit, Hospital General de Agudos Dr Juan A. Fernández, Buenos Aires, Argentina
| | - Guillermo Cesar Montiel
- Respiratory Intermediate Care Unit, Hospital General de Agudos Dr Juan A. Fernández, Buenos Aires, Argentina
| | - María Laura Vega
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera-Universitaria, Division of Respiratory and Critical Care, Sant'Orsola Hospital, Bologna, Bologna, Italy
| | - Guido Mazzinari
- Research Group in Perioperative Medicine, Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - José Miguel Alonso-Íñigo
- Research Group in Perioperative Medicine, Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
13
|
Branson RD, Rodriquez D. COVID-19 Lessons Learned: Response to the Anticipated Ventilator Shortage. Respir Care 2023; 68:129-150. [PMID: 36566030 PMCID: PMC9993519 DOI: 10.4187/respcare.10676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early in the COVID-19 pandemic predictions of a worldwide ventilator shortage prompted a worldwide search for solutions. The impetus for the scramble for ventilators was spurred on by inaccurate and often unrealistic predictions of ventilator requirements. Initial efforts looked simply at acquiring as many ventilators as possible from national and international sources. Ventilators from the Strategic National Stockpile were distributed to early hotspots in the Northeast and Northwest United States. In a triumph of emotion over logic, well-intended experts from other industries turned their time, talent, and treasure toward making a ventilator for the first time. Interest in shared ventilation (more than one patient per ventilator) was ignited by an ill-advised video on social media that ignored the principles of gas delivery in deference to social media notoriety. With shared ventilation, a number of groups mistook a physiologic problem for a plumbing problem. The United States government invoked the Defense Production Act to push automotive manufacturers to partner with existing ventilator manufacturers to speed production. The FDA granted emergency use authorization for "splitters" to allow shared ventilation as well as for ventilators and ancillary equipment. Rationing of ventilators was discussed in the lay press and medical literature but was never necessary in the US. Finally, planners realized that staff with expertise in providing mechanical ventilation were the most important shortage. Over 200,000 ventilators were purchased by the United States government, states, cities, health systems, and individuals. Most had little value in caring for patients with COVID-19 ARDS. This paper attempts to look at where miscalculations were made, with an eye toward what we can do better in the future.
Collapse
Affiliation(s)
- Richard D Branson
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| | - Dario Rodriquez
- Division of Trauma/Critical Care, Department of Surgery, University of Cincinnati, Cincinnati, Ohio; and Airman Biosciences Division, Airman Systems Directorate, Wright-Patterson Air Force Base, Dayton, Ohio
| |
Collapse
|
14
|
[Not Available]. REVUE DES MALADIES RESPIRATOIRES ACTUALITES 2022; 14:2S483-2S491. [PMID: 36536952 PMCID: PMC9752049 DOI: 10.1016/s1877-1203(22)00785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Munshi L, Mancebo J, Brochard LJ. Noninvasive Respiratory Support for Adults with Acute Respiratory Failure. N Engl J Med 2022; 387:1688-1698. [PMID: 36322846 DOI: 10.1056/nejmra2204556] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Laveena Munshi
- From the Interdepartmental Division of Critical Care, University of Toronto (L.M., L.J.B.), the Critical Care Department Sinai Health System (L.M.), and Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto (L.J.B.) - all in Toronto; and the Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona (J.M.)
| | - Jordi Mancebo
- From the Interdepartmental Division of Critical Care, University of Toronto (L.M., L.J.B.), the Critical Care Department Sinai Health System (L.M.), and Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto (L.J.B.) - all in Toronto; and the Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona (J.M.)
| | - Laurent J Brochard
- From the Interdepartmental Division of Critical Care, University of Toronto (L.M., L.J.B.), the Critical Care Department Sinai Health System (L.M.), and Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto (L.J.B.) - all in Toronto; and the Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona (J.M.)
| |
Collapse
|
16
|
Rosà T, Menga LS, Tejpal A, Cesarano M, Michi T, Sklar MC, Grieco DL. Non-invasive ventilation for acute hypoxemic respiratory failure, including COVID-19. JOURNAL OF INTENSIVE MEDICINE 2022; 3:11-19. [PMID: 36785582 PMCID: PMC9596174 DOI: 10.1016/j.jointm.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022]
Abstract
Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoidance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with intense respiratory effort may increase risks of patients' self-inflicted lung injury, leading to delayed intubation and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventilation. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based overview of this highly relevant topic.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Salvatore Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Ambika Tejpal
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Michael C. Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto ON M5S 1A1, Canada,Department of Anesthesia and Pain Medicine, St. Michael's Hospital – Unity Health Toronto, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy,Corresponding author: Domenico L. Grieco, Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart. Fondazione ‘Policlinico Universitario Agostino Gemelli’ IRCCS, L.go F. Vito, Rome 00168, Italy.
| |
Collapse
|
17
|
The optimal management of the patient with COVID‐19 pneumonia: HFNC, NIV/CPAP or mechanical ventilation? Afr J Thorac Crit Care Med 2022; 28. [DOI: 10.7196/ajtccm.2022.v28i3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
The recent pandemic has seen unprecedented demand for respiratory support of patients with COVID‐19 pneumonia, stretching services and clinicians. Yet despite the global numbers of patients treated, guidance is not clear on the correct choice of modality or the timing of escalation of therapy for an individual patient.This narrative review assesses the available literature on the best use of different modalities of respiratory support for an individual patient, and discusses benefits and risks of each, coupled with practical advice to improve outcomes.
On current data, in an ideal context, it appears that as disease severity worsens, conventional oxygen therapy is not sufficient alone. In more severe disease, i.e. PaO2/FiO2 ratios below approximately 200, helmet‐CPAP (continuous positive airway pressure) (although not widely available) may be superior to high‐flow nasal cannula (HFNC) therapy or facemask non‐invasive ventilation (NIV)/CPAP, and that facemask NIV/CPAP may be superior to HFNC, but with noted important complications, including risk of pneumothoraces.
In an ideal context, invasive mechanical ventilation should not be delayed where indicated and available. Vitally, the choice of respiratory support should not be prescriptive but contextualised to each setting, as supply and demand of resources vary markedly between institutions. Over time, institutions should develop clear policies to guide clinicians before demand exceeds supply, and should frequently review best practice as evidence matures.
Collapse
|
18
|
Zablockis R, Šlekytė G, Mereškevičienė R, Kėvelaitienė K, Zablockienė B, Danila E. Predictors of Noninvasive Respiratory Support Failure in COVID-19 Patients: A Prospective Observational Study. Medicina (B Aires) 2022; 58:medicina58060769. [PMID: 35744032 PMCID: PMC9227320 DOI: 10.3390/medicina58060769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/08/2023] Open
Abstract
Background and Objective: Respiratory assistance tactic that is best for COVID-19-associated acute hypoxemic respiratory failure (AHRF) individuals has yet to be determined. Patients with AHRF may benefit from the use of a high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV). The goals of this prospective observational research were to estimate predictive factors for HFNC and NIV failure in COVID-19-related AHRF subjects. Materials and Methods: The research enlisted the participation of 124 patients. A stepwise treatment approach was used. HFNC and NIV were used on 124 (100%) and 64 (51.6%) patients, respectively. Thirty (24.2%) of 124 patients were intubated and received invasive mechanical ventilation. Results: 85 (68.5%) patients were managed successfully. Patients who required NIV exhibited a higher prevalence of treatment failure (70.3% vs. 51.6%, p = 0.019) and had higher mortality (59.4% vs. 31.5%, p = 0.001) than patients who received HFNC. Using logistic regression, the respiratory rate oxygenation (ROX) index at 24 h (odds ratio (OR) = 0.74, p = 0.018) and the Charlson Comorbidity Index (CCI) (OR = 1.60, p = 0.003) were found to be predictors of HFNC efficacy. It was the ROX index at 24 h and the CCI optimum cut-off values for HFNC outcome that were 6.1 (area under the curve (AUC) = 0.73) and 2.5 (AUC = 0.68), respectively. Serum ferritin level (OR = 0.23, p = 0.041) and lymphocyte count (OR = 1.03, p = 0.01) were confirmed as predictors of NIV failure. Serum ferritin level at a cut-off value of 456.2 ng/mL (AUC = 0.67) and lymphocyte count lower than 0.70 per mm3, (AUC = 0.70) were associated with NIV failure with 70.5% sensitivity, 68.7% specificity and sensitivity of 84.1%, specificity of 56.2%, respectively. Conclusion: The ROX index at 24 h, CCI, as well as serum ferritin level, and lymphocyte count can be used as markers for HFNC and NIV failure, respectively, in SARS-CoV-2-induced AHRF patients.
Collapse
Affiliation(s)
- Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, M.K. Ciurlionio 21, 03101 Vilnius, Lithuania; (G.Š.); (K.K.); (E.D.)
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, 08661 Vilnius, Lithuania;
- Correspondence:
| | - Goda Šlekytė
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, M.K. Ciurlionio 21, 03101 Vilnius, Lithuania; (G.Š.); (K.K.); (E.D.)
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, 08661 Vilnius, Lithuania;
| | - Rūta Mereškevičienė
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, 08661 Vilnius, Lithuania;
| | - Karolina Kėvelaitienė
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, M.K. Ciurlionio 21, 03101 Vilnius, Lithuania; (G.Š.); (K.K.); (E.D.)
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, 08661 Vilnius, Lithuania;
| | - Birutė Zablockienė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Vilnius University, M.K. Ciurlionio 21, 03101 Vilnius, Lithuania;
- Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, 08661 Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology, Institute of Clinical Medicine, Vilnius University, M.K. Ciurlionio 21, 03101 Vilnius, Lithuania; (G.Š.); (K.K.); (E.D.)
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, 08661 Vilnius, Lithuania;
| |
Collapse
|
19
|
Helmy MA, Hasanin A, Milad LM, Mostafa M, Fathy S. Parasternal intercostal muscle thickening as a predictor of non-invasive ventilation failure in patients with COVID-19. Anaesth Crit Care Pain Med 2022; 41:101063. [PMID: 35487407 PMCID: PMC9040441 DOI: 10.1016/j.accpm.2022.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Mina Adlof Helmy
- Department of Anaesthesia and Critical Care Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Hasanin
- Department of Anaesthesia and Critical Care Medicine, Cairo University, Cairo, Egypt.
| | - Lydia Magdy Milad
- Department of Anaesthesia and Critical Care Medicine, Cairo University, Cairo, Egypt
| | - Maha Mostafa
- Department of Anaesthesia and Critical Care Medicine, Cairo University, Cairo, Egypt
| | - Shaimaa Fathy
- Department of Anaesthesia and Critical Care Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Brioni M, Meli A, Grasselli G. Mechanical Ventilation for COVID-19 Patients. Semin Respir Crit Care Med 2022; 43:405-416. [PMID: 35439831 DOI: 10.1055/s-0042-1744305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-invasive ventilation (NIV) or invasive mechanical ventilation (MV) is frequently needed in patients with acute hypoxemic respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. While NIV can be delivered in hospital wards and nonintensive care environments, intubated patients require intensive care unit (ICU) admission and support. Thus, the lack of ICU beds generated by the pandemic has often forced the use of NIV in severely hypoxemic patients treated outside the ICU. In this context, awake prone positioning has been widely adopted to ameliorate oxygenation during noninvasive respiratory support. Still, the incidence of NIV failure and the role of patient self-induced lung injury on hospital outcomes of COVID-19 subjects need to be elucidated. On the other hand, endotracheal intubation is indicated when gas exchange deterioration, muscular exhaustion, and/or neurological impairment ensue. Yet, the best timing for intubation in COVID-19 is still widely debated, as it is the safest use of neuromuscular blocking agents. Not differently from other types of acute respiratory distress syndrome, the aim of MV during COVID-19 is to provide adequate gas exchange while avoiding ventilator-induced lung injury. At the same time, the use of rescue therapies is advocated when standard care is unable to guarantee sufficient organ support. Nevertheless, the general shortage of health care resources experienced during SARS-CoV-2 pandemic might affect the utilization of high-cost, highly specialized, and long-term supports. In this article, we describe the state-of-the-art of NIV and MV setting and their usage for acute hypoxemic respiratory failure of COVID-19 patients.
Collapse
Affiliation(s)
- Matteo Brioni
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Meli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Affiliation(s)
- Fernando G Zampieri
- Brazilian Research in Intensive Care Network, São Paulo, Brazil
- HCor Research Institute, São Paulo, Brazil
| | - Juliana C Ferreira
- Brazilian Research in Intensive Care Network, São Paulo, Brazil
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Intensive Care Unit, AC Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|