1
|
Al-Husinat L, Jouryyeh B, Rawashdeh A, Robba C, Silva PL, Rocco PRM, Battaglini D. The Role of Ultrasonography in the Process of Weaning from Mechanical Ventilation in Critically Ill Patients. Diagnostics (Basel) 2024; 14:398. [PMID: 38396437 PMCID: PMC10888003 DOI: 10.3390/diagnostics14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Weaning patients from mechanical ventilation (MV) is a complex process that may result in either success or failure. The use of ultrasound at the bedside to assess organs may help to identify the underlying mechanisms that could lead to weaning failure and enable proactive measures to minimize extubation failure. Moreover, ultrasound could be used to accurately identify pulmonary diseases, which may be responsive to respiratory physiotherapy, as well as monitor the effectiveness of physiotherapists' interventions. This article provides a comprehensive review of the role of ultrasonography during the weaning process in critically ill patients.
Collapse
Affiliation(s)
- Lou’i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Basil Jouryyeh
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (A.R.)
| | - Ahlam Rawashdeh
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (A.R.)
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| |
Collapse
|
2
|
Pourfathi M, Xin Y, Rosalino M, Cereda M, Kadlecek S, Duncan I, Profka H, Hamedani H, Siddiqui S, Ruppert K, Chatterjee S, Rizi RR. Pulmonary pyruvate metabolism as an index of inflammation and injury in a rat model of acute respiratory distress syndrome. NMR IN BIOMEDICINE 2020; 33:e4380. [PMID: 32681670 DOI: 10.1002/nbm.4380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Increased pulmonary lactate production is correlated with severity of lung injury and outcome in acute respiratory distress syndrome (ARDS) patients. This study was conducted to investigate the relative contributions of inflammation and hypoxia to the lung's metabolic shift to glycolysis in an experimental animal model of ARDS using hyperpolarized (HP) 13 C MRI. Fifty-three intubated and mechanically ventilated male rats were imaged using HP 13 C MRI before, and 1, 2.5 and 4 hours after saline (sham) or hydrochloric acid (HCl; 0.5 ml/kg) instillation in the trachea, followed by protective and nonprotective mechanical ventilation (HCl-PEEP and HCl-ZEEP) or the start of moderate or severe hypoxia (Hyp90 and Hyp75 groups). Pulmonary and cardiac HP lactate-to-pyruvate ratios were compared among groups for different time points. Postmortem histology and immunofluorescence were used to assess lung injury severity and quantify the expression of innate inflammatory markers and local tissue hypoxia. HP pulmonary lactate-to-pyruvate ratio progressively increased in rats with lung injury and moderate hypoxia (HCl-ZEEP), with no significant change in pulmonary lactate-to-pyruvate ratio in noninjured but moderately hypoxic rats (Hyp90). Pulmonary lactate-to-pyruvate ratio was elevated in otherwise healthy lung tissue only in severe systemic hypoxia (Hyp75 group). ex vivo histological and immunopathological assessment further confirmed the link between elevated glycolysis and the recruitment into and presence of activated neutrophils in injured lungs. HP lactate-to-pyruvate ratio is elevated in injured lungs predominantly as a result of increased glycolysis in activated inflammatory cells, but can also increase due to severe inflammation-induced hypoxia.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Rosalino
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio Cereda
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Pourfathi M, Kadlecek SJ, Chatterjee S, Rizi RR. Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation. Front Physiol 2020; 11:937. [PMID: 32982768 PMCID: PMC7487972 DOI: 10.3389/fphys.2020.00937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary inflammation is a hallmark of several pulmonary disorders including acute lung injury and acute respiratory distress syndrome. Moreover, it has been shown that patients with hyperinflammatory phenotype have a significantly higher mortality rate. Despite this, current therapeutic approaches focus on managing the injury rather than subsiding the inflammatory burden of the lung. This is because of the lack of appropriate non-invasive biomarkers that can be used clinically to assess pulmonary inflammation. In this review, we discuss two metabolic imaging tools that can be used to non-invasively assess lung inflammation. The first method, Positron Emission Tomography (PET), is widely used in clinical oncology and quantifies flux in metabolic pathways by measuring uptake of a radiolabeled molecule into the cells. The second method, hyperpolarized 13C MRI, is an emerging tool that interrogates the branching points of the metabolic pathways to quantify the fate of metabolites. We discuss the differences and similarities between these techniques and discuss their clinical applications.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Rahim R. Rizi,
| |
Collapse
|
4
|
Quirino TDC, Ortolan LDS, Sercundes MK, Marinho CRF, Turato WM, Epiphanio S. Lung aeration in experimental malaria-associated acute respiratory distress syndrome by SPECT/CT analysis. PLoS One 2020; 15:e0233864. [PMID: 32470082 PMCID: PMC7259762 DOI: 10.1371/journal.pone.0233864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria-associated acute respiratory distress syndrome (ARDS) is an inflammatory disease causing alveolar-pulmonary barrier lesion and increased vascular permeability characterized by severe hypoxemia. Computed tomography (CT), among other imaging techniques, allows the morphological and quantitative identification of lung lesions during ARDS. This study aims to identify the onset of malaria-associated ARDS development in an experimental model by imaging diagnosis. Our results demonstrated that ARDS-developing mice presented decreased gaseous exchange and pulmonary insufficiency, as shown by the SPECT/CT technique. The pulmonary aeration disturbance in ARDS-developing mice on the 5th day post infection was characterized by aerated tissues decrease and nonaerated tissue accumulation, demonstrating increased vascular permeability and pleural effusion. The SPECT/CT technique allowed the early diagnosis in the experimental model, as well as the identification of the pulmonary aeration. Notwithstanding, despite the fact that this study contributes to better understand lung lesions during malaria-associated ARDS, further imaging studies are needed.
Collapse
Affiliation(s)
- Thatyane de Castro Quirino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| | - Luana dos Santos Ortolan
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Michelle Klein Sercundes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| | | | - Walter Miguel Turato
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- Centro de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brasil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
5
|
Spinelli E, Grieco DL, Mauri T. A personalized approach to the acute respiratory distress syndrome: recent advances and future challenges. J Thorac Dis 2019; 11:5619-5625. [PMID: 32030284 DOI: 10.21037/jtd.2019.11.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, IRCCS Foundation "Ca' Granda" "Maggiore Policlinico" Hospital, Milan, Italy
| | - Domenico L Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, IRCCS Foundation "Ca' Granda" "Maggiore Policlinico" Hospital, Milan, Italy
| |
Collapse
|
6
|
Event-triggered averaging of electrical impedance tomography (EIT) respiratory waveforms as compared to low-pass filtering for removal of cardiac related impedance changes. J Clin Monit Comput 2019; 34:553-558. [PMID: 31278546 PMCID: PMC7223993 DOI: 10.1007/s10877-019-00348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/01/2019] [Indexed: 11/08/2022]
Abstract
Electrical impedance tomography (EIT) is used for bedside ventilation monitoring; cardiac related impedance changes represent a source of noise superimposed on the ventilation signal, commonly removed by low-pass filtering (LPF). We investigated if an alternative approach, based on an event-triggered averaging (ETA) process, is more effective at preserving the actual ventilation waveform. Ten paralyzed patients undergoing volume-controlled ventilation were studied; 30 breaths for each patient were identified to compare LPF and ETA. For ETA the identified breaths were temporally aligned on the beginning of inspiration; the values of the thirty curves at each time point were averaged. The analysis was conducted on the global EIT signal and on four ventral-to-dorsal regions of interest. Global tidal variations by ETA resulted higher than LPF (average difference 139 ± 88 arbitrary units, p = 0.004). Both for global and regional waveforms, minimum and maximum EIT slopes were steeper by ETA as compared to LPF (average difference respectively − 57 ± 60 mL/s and 144 ± 96 mL/s for global signal, p < 0.05); ventilator inspiratory peak airflow correlated with maximum slope measured by ETA (r = 0.902, p < 0.001), but not LPF (p = 0.319). Beginning of inspiration identified on the ventilator waveform and on the global EIT signal by ETA occurred simultaneously, (+ 0.04 ± 0.07 s, p = 0.081), while occurred earlier by LPF (− 0.26 ± 0.1 s, p < 0.001). Removal of cardiac related impedance changes by ETA results in a ventilation signal more similar to the waveforms recorded by the ventilator, particularly regarding the slope of impedance changes and time at the minimum values as compared to LPF.
Collapse
|
7
|
Sosio S, Bellani G, Villa S, Lupieri E, Mauri T, Foti G. A Calibration Technique for the Estimation of Lung Volumes in Nonintubated Subjects by Electrical Impedance Tomography. Respiration 2019; 98:189-197. [PMID: 31195395 DOI: 10.1159/000499159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Electrical impedance tomography (EIT) is a bedside monitoring technique of the respiratory system that measures impedance changes within the thorax. The close correlation between variations in impedance (ΔZ) and lung volumes (Vt) is known. Unless Vt is measured by an external reference (e.g., spirometry), its absolute value (in milliliters) cannot be determined; however, measurement of Vt would be useful in nonintubated subjects. OBJECTIVE To validate a simplified and feasible calibration method of EIT, which allows estimation of Vt in nonintubated subjects. MATERIALS AND METHODS We performed a prospective study on 13 healthy volunteers. Subjects breathed 10 times in a nonexpandable "calibration balloon" with a known volume while wearing the EIT belt. The relationship between ΔZ and the balloon volume was calculated (ΔZ/Vt). Subsequently, subjects were connected to a mechanical ventilator by a mouthpiece under different settings. Vt was calculated from EIT measurements (VtEIT) by means of the ΔZ/Vt coefficient and compared with the value obtained from the ventilator (Vtflow). RESULTS There was a close correlation between Vtflow and VtEIT (r2 = 0.89). The fit equation was VtEIT = 0.9 × Vtflow +10.1. The highest correlation was found at positive endexpiratory pressure (PEEP) 0 (mean: VtEIT = 0.93 × Vtflow) versus PEEP 8 (mean: VtEIT = 0.8 × Vtflow), p = 0.01. No differences in the fit equation were found between pressure support ventilation (PSV) 0 and PSV 8, p = 0.50. Further analysis showed no statistically significant differences between sex, height, and BMI. CONCLUSION A simple and fast EIT calibration technique enables reliable, noninvasive monitoring of Vt in nonintubated subjects.
Collapse
Affiliation(s)
- Simone Sosio
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy, .,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy,
| | - Silvia Villa
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ermes Lupieri
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care, and Emergency, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giuseppe Foti
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy.,Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
8
|
Eichler L, Mueller J, Grensemann J, Frerichs I, Zöllner C, Kluge S. Lung aeration and ventilation after percutaneous tracheotomy measured by electrical impedance tomography in non-hypoxemic critically ill patients: a prospective observational study. Ann Intensive Care 2018; 8:110. [PMID: 30443867 PMCID: PMC6238017 DOI: 10.1186/s13613-018-0454-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
Background Percutaneous dilatational tracheotomy (PDT) may lead to transient impairment of pulmonary function due to suboptimal ventilation, loss of positive end-expiratory pressure (PEEP) and repetitive suction maneuvers during the procedure. Possible changes in regional lung aeration were investigated using electrical impedance tomography (EIT), an increasingly implied instrument for bedside monitoring of pulmonary aeration. Methods With local ethics committee approval, after obtaining written informed consent 29 patients scheduled for elective PDT under bronchoscopic control were studied during mechanical ventilation in supine position. Anesthetized patients were monitored with a 16-electrode EIT monitor for 2 min at four time points: (a) before and (b) after initiation of neuromuscular blockade (NMB), (c) after dilatational tracheostomy (PDT) and (d) after a standardized recruitment maneuver (RM) following surgery, respectively. Possible changes in lung aeration were detected by changes in end-expiratory lung impedance (Δ EELI). Global and regional ventilation was characterized by analysis of tidal impedance variation. Results While NMB had no detectable effect on EELI, PDT led to significantly reduced EELI in dorsal lung regions as compared to baseline, suggesting reduced regional aeration. This effect could be reversed by a standardized RM. Mean delta EELI from baseline (SE) was: NMB − 47 ± 62; PDT − 490 ± 180; RM − 89 ± 176, values shown as arbitrary units (a.u.). Analysis of regional tidal impedance variation, a robust measure of regional ventilation, did not show significant changes in ventilation distribution. Conclusion Though changes of EELI might suggest temporary loss of aeration in dorsal lung regions, PDT does not lead to significant changes in either regional ventilation distribution or oxygenation.
Collapse
Affiliation(s)
- Lars Eichler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Germany.
| | - Jakob Mueller
- Section of Anesthesiology, Tabea Hospital, Hamburg, Germany
| | - Jörn Grensemann
- Department of Intensive Care Medicine, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inez Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Christian Zöllner
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Mauri T, Lazzeri M, Bellani G, Zanella A, Grasselli G. Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiol Meas 2017; 38:R280-H303. [PMID: 28967868 DOI: 10.1088/1361-6579/aa9052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. SIGNIFICANCE The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy. Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | | | | | | | | |
Collapse
|
10
|
Mazzoni MB, Perri A, Plebani AM, Ferrari S, Amelio G, Rocchi A, Consonni D, Milani GP, Fossali EF. Electrical impedance tomography in children with community acquired pneumonia: preliminary data. Respir Med 2017; 130:9-12. [DOI: 10.1016/j.rmed.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/23/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022]
|
11
|
How much esophageal pressure-guided end-expiratory transpulmonary pressure is sufficient to maintain lung recruitment in lavage-induced lung injury? J Trauma Acute Care Surg 2016; 80:302-7. [PMID: 26517781 DOI: 10.1097/ta.0000000000000900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Because of limitations of the esophageal balloon technique, the value of using esophageal pressure (Pes)-guided end-expiratory transpulmonary pressure (PL-exp) to maintain lung recruitment in adult respiratory distress syndrome is controversial. This study aimed to investigate whether tailoring PL-exp to greater than 0 was enough to maintain lung recruitment. METHODS Ten pigs with severe lavage-induced lung injury were mechanically ventilated in a decremental positive end-expiratory pressure (PEEP) trial that was reduced from 20 to 6 cm H2O after full-lung recruitment. Respiratory mechanics, blood gases, hemodynamic data, and whole-lung computed tomography scans were recorded at each PEEP level. Open-lung PEEP (OL-PEEP) was determined by computed tomography, while Pes-guided PEEP (Pes-PEEP) was to maintain PL-exp greater than 0. RESULTS OL-PEEP was higher than Pes-PEEP, which induced a higher PL-exp at OL-PEEP than at Pes-PEEP (4.6 [1.6] cm H2O vs. 1.2 [0.6] cm H2O, p < 0.001). Compared with OL-PEEP, the nonaerated lung region was significantly increased at Pes-PEEP. Superimposed pressure (SP) of the lung tissue between the esophageal plane and the dorsal level was higher at Pes-PEEP than at OL-PEEP, whereas PL-exp at the dorsal level was lower at Pes-PEEP than at OL-PEEP (-1.5 [0.7] cm H2O vs. 2.5 [1.5] cm H2O, p < 0.001). The SP correlated with PL-exp at the dorsal level and the nonaerated lung region. CONCLUSION In this surfactant-depleted model, maintaining PL-exp just greater than 0 using Pes was unable to maintain lung recruitment; this was partly caused by a lack of compensation for the increased SP between the esophageal plane and the dorsal level.
Collapse
|
12
|
Pesenti A, Musch G, Lichtenstein D, Mojoli F, Amato MBP, Cinnella G, Gattinoni L, Quintel M. Imaging in acute respiratory distress syndrome. Intensive Care Med 2016; 42:686-698. [DOI: 10.1007/s00134-016-4328-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
|
13
|
Brochard L, Hedenstierna G. Ten physiologic advances that improved treatment for ARDS. Intensive Care Med 2016; 42:814-816. [PMID: 27000388 DOI: 10.1007/s00134-016-4320-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/09/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Göran Hedenstierna
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden. .,Hedenstierna Laboratory, entr 40:2, University Hospital, 75185, Uppsala, Sweden.
| |
Collapse
|
14
|
Physiological Effects of the Open Lung Approach in Patients with Early, Mild, Diffuse Acute Respiratory Distress Syndrome: An Electrical Impedance Tomography Study. Anesthesiology 2016; 123:1113-21. [PMID: 26397017 DOI: 10.1097/aln.0000000000000862] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND To test the hypothesis that in early, mild, acute respiratory distress syndrome (ARDS) patients with diffuse loss of aeration, the application of the open lung approach (OLA) would improve homogeneity in lung aeration and lung mechanics, without affecting hemodynamics. METHODS Patients were ventilated according to the ARDS Network protocol at baseline (pre-OLA). OLA consisted in a recruitment maneuver followed by a decremental positive end-expiratory pressure trial. Respiratory mechanics, gas exchange, electrical impedance tomography (EIT), cardiac index, and stroke volume variation were measured at baseline and 20 min after OLA implementation (post-OLA). Esophageal pressure was used for lung and chest wall elastance partitioning. The tomographic lung image obtained at the fifth intercostal space by EIT was divided in two ventral and two dorsal regions of interest (ROIventral and ROIDorsal). RESULTS Fifteen consecutive patients were studied. The OLA increased arterial oxygen partial pressure/inspired oxygen fraction from 216 ± 13 to 311 ± 19 mmHg (P < 0.001) and decreased elastance of the respiratory system from 29.4 ± 3 cm H2O/l to 23.6 ± 1.7 cm H2O/l (P < 0.01). The driving pressure (airway opening plateau pressure - total positive end-expiratory pressure) decreased from 17.9 ± 1.5 cm H2O pre-OLA to 15.4 ± 2.1 post-OLA (P < 0.05). The tidal volume fraction reaching the dorsal ROIs increased, and consequently the ROIVentral/Dorsal impedance tidal variation decreased from 2.01 ± 0.36 to 1.19 ± 0.1 (P < 0.01). CONCLUSIONS The OLA decreases the driving pressure and improves the oxygenation and lung mechanics in patients with early, mild, diffuse ARDS. EIT is useful to assess the impact of OLA on regional tidal volume distribution.
Collapse
|
15
|
Chagnon F, Bourgouin A, Lebel R, Bonin MA, Marsault E, Lepage M, Lesur O. Smart imaging of acute lung injury: exploration of myeloperoxidase activity using in vivo endoscopic confocal fluorescence microscopy. Am J Physiol Lung Cell Mol Physiol 2015; 309:L543-51. [PMID: 26232301 DOI: 10.1152/ajplung.00289.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB.
Collapse
Affiliation(s)
- Frédéric Chagnon
- Soins Intensifs Médicaux, Département de Médecine; Centre de Recherche Clinique du CHUS
| | - Alexandra Bourgouin
- Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| | - Réjean Lebel
- Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| | - Marc-André Bonin
- Centre de Recherche Clinique du CHUS; Laboratoire de Chimie Médicinale, Institut de Pharmacologie de Sherbrooke Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Marsault
- Centre de Recherche Clinique du CHUS; Laboratoire de Chimie Médicinale, Institut de Pharmacologie de Sherbrooke Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| | - Olivier Lesur
- Soins Intensifs Médicaux, Département de Médecine; Centre de Recherche Clinique du CHUS; Centre d'Imagerie Moléculaire de Sherbrooke; and
| |
Collapse
|
16
|
Lung inflammation persists after 27 hours of protective Acute Respiratory Distress Syndrome Network Strategy and is concentrated in the nondependent lung. Crit Care Med 2015; 43:e123-32. [PMID: 25746507 DOI: 10.1097/ccm.0000000000000926] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE PET with [18F]fluoro-2-deoxy-D-glucose can be used to image cellular metabolism, which during lung inflammation mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. We aimed at studying the location and evolution of inflammation by PET imaging, relating it to morphology (CT), during the first 27 hours of application of protective-ventilation strategy as suggested by the Acute Respiratory Distress Syndrome Network, in a porcine experimental model of acute respiratory distress syndrome. DESIGN Prospective laboratory investigation. SETTING University animal research laboratory. SUBJECTS Ten piglets submitted to an experimental model of acute respiratory distress syndrome. INTERVENTIONS Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. During 27 hours of controlled mechanical ventilation according to Acute Respiratory Distress Syndrome Network strategy, the animals were studied with dynamic PET imaging of [18F]fluoro-2-deoxy-D-glucose at two occasions with 24-hour interval between them. MEASUREMENTS AND MAIN RESULTS [18F]fluoro-2-deoxy-D-glucose uptake rate was computed for the total lung, four horizontal regions from top to bottom (nondependent to dependent regions) and for voxels grouped by similar density using standard Hounsfield units classification. The global lung uptake was elevated at 3 and 27 hours, suggesting persisting inflammation. In both PET acquisitions, nondependent regions presented the highest uptake (p = 0.002 and p = 0.006). Furthermore, from 3 to 27 hours, there was a change in the distribution of regional uptake (p = 0.003), with more pronounced concentration of inflammation in nondependent regions. Additionally, the poorly aerated tissue presented the largest uptake concentration after 27 hours. CONCLUSIONS Protective Acute Respiratory Distress Syndrome Network strategy did not attenuate global pulmonary inflammation during the first 27 hours after severe lung insult. The strategy led to a concentration of inflammatory activity in the upper lung regions and in the poorly aerated lung regions. The present findings suggest that the poorly aerated lung tissue is an important target of the perpetuation of the inflammatory process occurring during ventilation according to the Acute Respiratory Distress Syndrome Network strategy.
Collapse
|
17
|
Fu F, Li B, Dai M, Hu SJ, Li X, Xu CH, Wang B, Yang B, Tang MX, Dong XZ, Fei Z, Shi XT. Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment. PLoS One 2014; 9:e113202. [PMID: 25474474 PMCID: PMC4256286 DOI: 10.1371/journal.pone.0113202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 10/24/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Variations of conductive fluid content in brain tissue (e.g. cerebral edema) change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT), an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content. DESIGN a prospective study. SETTING In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank. PATIENTS 23 patients with brain edema. INTERVENTIONS The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes. MEASUREMENT AND MAIN RESULTS Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027). Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment. CONCLUSIONS EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients.
Collapse
Affiliation(s)
- Feng Fu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Dai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Shi-Jie Hu
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Can-Hua Xu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Bing Wang
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Xiu-Zhen Dong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
- * E-mail: (XZD); (ZF); (XTS)
| | - Zhou Fei
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (XZD); (ZF); (XTS)
| | - Xue-Tao Shi
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
- * E-mail: (XZD); (ZF); (XTS)
| |
Collapse
|
18
|
Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol 2014; 35:990-7. [PMID: 24569885 DOI: 10.1007/s00246-014-0886-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/06/2014] [Indexed: 02/05/2023]
Abstract
Electrical impedance tomography (EIT) is a noninvasive method to monitor regional lung ventilation in infants and children without using radiation. The objective of this prospective study was to determine the value of EIT as an additional monitoring tool to assess regional lung ventilation after pediatric cardiac surgery for congenital heart disease in infants and children. EIT monitoring was performed in a prospective study comprising 30 pediatric patients who were mechanically ventilated after cardiac surgery. Data were analyzed off-line with respect to regional lung ventilation in different clinical situations. EIT data were correlated with respirator settings and arterial carbon dioxide (CO2) partial pressure in the blood. In 29 of 30 patients, regional ventilation of the lung could sufficiently and reliably be monitored by means of EIT. The effects of the transition from mechanical ventilation to spontaneous breathing after extubation on regional lung ventilation were studied. After extubation, a significant decrease of relative impedance changes was evident. In addition, a negative correlation of arterial CO2 partial pressure and relative impedance changes could be shown. EIT was sufficient to discriminate differences of regional lung ventilation in children and adolescents after cardiac surgery. EIT reliably provided additional information on regional lung ventilation in children after cardiac surgery. Neither chest tubes nor pacemaker wires nor the intensive care unit environment interfered with the application of EIT. EIT therefore may be used as an additional real-time monitoring tool in pediatric cardiac intensive care because it is noninvasive.
Collapse
|
19
|
Ball L, Sutherasan Y, Pelosi P. Monitoring respiration: what the clinician needs to know. Best Pract Res Clin Anaesthesiol 2014; 27:209-23. [PMID: 24012233 DOI: 10.1016/j.bpa.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
A recent large prospective cohort study showed an unexpectedly high in-hospital mortality after major non-cardiac surgery in Europe, as well as a high incidence of postoperative pulmonary complications. The direct effect of postoperative respiratory complications on mortality is still under investigation, for intensive care unit (ICU) and in the perioperative period. Although respiratory monitoring has not been actually proven to affect in-hospital mortality, it plays an important role in patient care, leading to appropriate setting of ventilatory support as well as risk stratification. The aim of this article is to provide an overview of various respiratory monitoring techniques including the role of conventional and most recent methods in the perioperative period and in critically ill patients. The most recent techniques proposed for bedside respiratory monitoring, including lung imaging, are presented and discussed, comparing them to those actually considered as gold standards.
Collapse
Affiliation(s)
- Lorenzo Ball
- IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| | | | | |
Collapse
|
20
|
Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models. J Surg Res 2014; 189:274-84. [PMID: 24768138 DOI: 10.1016/j.jss.2014.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/17/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical pulmonary complication after esophagectomy and other thoracic surgeries (e.g., lung transplantation, pulmonary thromboendarterectomy). Direct pulmonary ischemia-reperfusion injury (PIRI) is known to play the main role in induction of ARDS in these cases. Large animal models are an appropriate choice for ARDS as well as PIRI study because of their physiological and anatomic similarities to the human body. With regard to large animal models, we reviewed different methods of inducing in situ direct PIRI and the commonly applied methods for diagnosing and monitoring ARDS or PIRI in an experimental research setting.
Collapse
|
21
|
Mauri T, Bellani G, Salerno D, Mantegazza F, Pesenti A. Regional Distribution of Air Trapping in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2013; 188:1466-7. [DOI: 10.1164/rccm.201303-0463im] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Chiumello D, Froio S, Bouhemad B, Camporota L, Coppola S. Clinical review: Lung imaging in acute respiratory distress syndrome patients--an update. Crit Care 2013; 17:243. [PMID: 24238477 PMCID: PMC4056355 DOI: 10.1186/cc13114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective.
Collapse
Affiliation(s)
- Davide Chiumello
- Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| | - Sara Froio
- Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| | - Belaïd Bouhemad
- Multidisciplinary Critical Care Unit, La Pitié-Salpêtrière Hospital, University Pierre and Marie Curie Paris, Paris, France
| | - Luigi Camporota
- Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, UK
| | - Silvia Coppola
- Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| |
Collapse
|
23
|
Topographic Distribution of Tidal Ventilation in Acute Respiratory Distress Syndrome. Crit Care Med 2013; 41:1664-73. [DOI: 10.1097/ccm.0b013e318287f6e7] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Abstract
The degree of perioperative lung injury that patients sustain results from a complex interaction between their current physiologic state, comorbidities, lifestyle choices, underlying surgical diagnosis, operative, and ultimately their cardiopulmonary interaction with a mechanical ventilator. This review addresses primarily the pathophysiology of perioperative lung injury with reference to ventilator-induced lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Kayode Adeniji
- Interdepartmental Division of Critical Care, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Goal-oriented respiratory management for critically ill patients with acute respiratory distress syndrome. Crit Care Res Pract 2012; 2012:952168. [PMID: 22957224 PMCID: PMC3432327 DOI: 10.1155/2012/952168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/19/2012] [Indexed: 02/07/2023] Open
Abstract
This paper, based on relevant literature articles and the authors' clinical experience, presents a goal-oriented respiratory management for critically ill patients with acute respiratory distress syndrome (ARDS) that can help improve clinicians' ability to care for these patients. Early recognition of ARDS modified risk factors and avoidance of aggravating factors during hospital stay such as nonprotective mechanical ventilation, multiple blood products transfusions, positive fluid balance, ventilator-associated pneumonia, and gastric aspiration can help decrease its incidence. An early extensive clinical, laboratory, and imaging evaluation of “at risk patients” allows a correct diagnosis of ARDS, assessment of comorbidities, and calculation of prognostic indices, so that a careful treatment can be planned. Rapid administration of antibiotics and resuscitative measures in case of sepsis and septic shock associated with protective ventilatory strategies and early short-term paralysis associated with differential ventilatory techniques (recruitment maneuvers with adequate positive end-expiratory pressure titration, prone position, and new extracorporeal membrane oxygenation techniques) in severe ARDS can help improve its prognosis. Revaluation of ARDS patients on the third day of evolution (Sequential Organ Failure Assessment (SOFA), biomarkers and response to infection therapy) allows changes in the initial treatment plans and can help decrease ARDS mortality.
Collapse
|
26
|
YAMAGUCHI TF, KATASHIMA M, WANG LQ, KURIKI S. Improvement of Image Reconstruction of Human Abdominal Conductivity by Impedance Tomography Considering the Bioelectrical Anisotropy. ADVANCED BIOMEDICAL ENGINEERING 2012. [DOI: 10.14326/abe.1.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tohru F. YAMAGUCHI
- Health Care Food Research Laboratories, Kao Corporation
- Graduate School of Advanced Science and Technology, Tokyo Denki University
| | | | - Li-Qun WANG
- Research Center for Advanced Technologies, Tokyo Denki University
| | - Shinya KURIKI
- Graduate School of Advanced Science and Technology, Tokyo Denki University
- Research Center for Advanced Technologies, Tokyo Denki University
| |
Collapse
|