1
|
Marchetti GB, Milani D, Pisciotta L, Pezzoli L, Marchisio P, Rinaldi B, Iascone M. The Phenotype-Based Approach Can Solve Cold Cases: The Paradigm of Mosaic Mutations of the CREBBP Gene. Genes (Basel) 2024; 15:654. [PMID: 38927590 PMCID: PMC11202993 DOI: 10.3390/genes15060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a rare genetic disorder characterized by intellectual disability, facial dysmorphisms, and enlarged thumbs and halluces. Approximately 55% of RTS cases result from pathogenic variants in the CREBBP gene, with an additional 8% linked to the EP300 gene. Given the close relationship between these two genes and their involvement in epigenomic modulation, RTS is grouped into chromatinopathies. The extensive clinical heterogeneity observed in RTS, coupled with the growing number of disorders involving the epigenetic machinery, poses a challenge to a phenotype-based diagnostic approach for these conditions. Here, we describe the first case of a patient clinically diagnosed with RTS with a CREBBP truncating variant in mosaic form. We also review previously described cases of mosaicism in CREBBP and apply clinical diagnostic guidelines to these patients, confirming the good specificity of the consensus. Nonetheless, these reports raise questions about the potential underdiagnosis of milder cases of RTS. The application of a targeted phenotype-based approach, coupled with high-depth NGS, may enhance the diagnostic yield of whole-exome sequencing (WES) in mild and mosaic conditions.
Collapse
Affiliation(s)
| | - Donatella Milani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milano, Italy
| | - Livia Pisciotta
- Università degli Studi di Milano Statale, 20122 Milano, Italy; (G.B.M.); (L.P.); (P.M.)
- Child Neuropsychiatry Unit, ASST Fatebenefratelli Sacco, 20100 Milano, Italy
| | - Laura Pezzoli
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (M.I.)
| | - Paola Marchisio
- Università degli Studi di Milano Statale, 20122 Milano, Italy; (G.B.M.); (L.P.); (P.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milano, Italy
| | - Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (L.P.); (M.I.)
| |
Collapse
|
3
|
Latorre-Pellicer A, Gil-Salvador M, Parenti I, Lucia-Campos C, Trujillano L, Marcos-Alcalde I, Arnedo M, Ascaso Á, Ayerza-Casas A, Antoñanzas-Pérez R, Gervasini C, Piccione M, Mariani M, Weber A, Kanber D, Kuechler A, Munteanu M, Khuller K, Bueno-Lozano G, Puisac B, Gómez-Puertas P, Selicorni A, Kaiser FJ, Ramos FJ, Pié J. Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood. Sci Rep 2021; 11:15459. [PMID: 34326454 PMCID: PMC8322329 DOI: 10.1038/s41598-021-94958-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families.
Collapse
Affiliation(s)
- Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Marta Gil-Salvador
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Cristina Lucia-Campos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Laura Trujillano
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Iñigo Marcos-Alcalde
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28049, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Arnedo
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ángela Ascaso
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ariadna Ayerza-Casas
- Unit of Paediatric Cardiology, Service of Paediatrics, Hospital Universitario Miguel Servet, 50009, Zaragoza, Spain
| | - Rebeca Antoñanzas-Pérez
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Milena Mariani
- Centro Fondazione Mariani per il Bambino Fragile, Department of Pediatrics, ASST-Lariana Sant'Anna Hospital, San Fermo della Battaglia (Como), Italy
| | - Axel Weber
- Institute of Human Genetics, Justus-Liebig-University, Giessen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katharina Khuller
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gloria Bueno-Lozano
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28049, Madrid, Spain
| | - Angelo Selicorni
- Centro Fondazione Mariani per il Bambino Fragile, Department of Pediatrics, ASST-Lariana Sant'Anna Hospital, San Fermo della Battaglia (Como), Italy
| | - Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Universitätsklinikum Essen, Essen, Germany
| | - Feliciano J Ramos
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain.
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain.
| |
Collapse
|
4
|
Van Gils J, Magdinier F, Fergelot P, Lacombe D. Rubinstein-Taybi Syndrome: A Model of Epigenetic Disorder. Genes (Basel) 2021; 12:968. [PMID: 34202860 PMCID: PMC8303114 DOI: 10.3390/genes12070968] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
The Rubinstein-Taybi syndrome (RSTS) is a rare congenital developmental disorder characterized by a typical facial dysmorphism, distal limb abnormalities, intellectual disability, and many additional phenotypical features. It occurs at between 1/100,000 and 1/125,000 births. Two genes are currently known to cause RSTS, CREBBP and EP300, mutated in around 55% and 8% of clinically diagnosed cases, respectively. To date, 500 pathogenic variants have been reported for the CREBBP gene and 118 for EP300. These two genes encode paralogs acting as lysine acetyltransferase involved in transcriptional regulation and chromatin remodeling with a key role in neuronal plasticity and cognition. Because of the clinical heterogeneity of this syndrome ranging from the typical clinical diagnosis to features overlapping with other Mendelian disorders of the epigenetic machinery, phenotype/genotype correlations remain difficult to establish. In this context, the deciphering of the patho-physiological process underlying these diseases and the definition of a specific episignature will likely improve the diagnostic efficiency but also open novel therapeutic perspectives. This review summarizes the current clinical and molecular knowledge and highlights the epigenetic regulation of RSTS as a model of chromatinopathy.
Collapse
Affiliation(s)
- Julien Van Gils
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| | - Frederique Magdinier
- Marseille Medical Genetics, INSERM U 1251, MMG, Aix Marseille University, 13385 Marseille, France;
| | - Patricia Fergelot
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| | - Didier Lacombe
- Reference Center AD SOOR, AnDDI-RARE, INSERM U 1211, Medical Genetics Department, Bordeaux University, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France; (P.F.); (D.L.)
| |
Collapse
|