1
|
Shi R, Chen X, Lin H, Shen W, Xu X, Zhu B, Xu X, Ding Y, He N. Interaction of sex and HIV infection on renal impairment: baseline evidence from the CHART cohort. Int J Infect Dis 2022; 116:182-188. [PMID: 35017104 DOI: 10.1016/j.ijid.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Females are more vulnerable to renal impairment (RI) in people living with HIV (PLWH), but few studies have examined sex disparity in the association of HIV serostatus with RI. METHODS In total, 2,101 PLWH on antiretroviral treatment (ART) and 4,202 HIV-negative people were selected and frequency matched in 1:2 ratio by sex and age categories. RI was defined as estimated glomerular filtration rate (eGFR) <90 mL/min/1.73 m2. The interaction effect of sex with HIV serostatus and correlates of RI were assessed by logistic regression models. RESULTS In total, 78.2% of participants were males with median age 43.7 (IQR: 32.5-54.4) years. The prevalence of RI was comparable for PLWH and HIV-negative people overall (30.4% vs 30.1%) but significantly higher for HIV-positive females (37.1%) than HIV-negative females (30.1%). Multiple logistic regression identified an interaction between sex and HIV serostatus on RI (adjusted odds ratio [aOR] of the interaction term: 1.66, 95% CI: 1.23-2.26). HIV infection was significantly associated with RI in females (aOR: 1.55, 95% CI: 1.17-2.06) but not in males. Central obesity and nadir CD4 count were significantly associated with RI in HIV-infected females but not in HIV-infected males. CONCLUSIONS Sex seems to modify the association between HIV infection and RI, suggesting a sex-specific mechanistic pathogenesis of RI in PLWH, which warrants further investigation and intervention.
Collapse
Affiliation(s)
- Ruizi Shi
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoxiao Chen
- Taizhou City Center for Disease Control and Prevention, Zhejiang Province, China
| | - Haijiang Lin
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Taizhou City Center for Disease Control and Prevention, Zhejiang Province, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Zhejiang Province, China
| | - Xiaohui Xu
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Bowen Zhu
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoyi Xu
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yingying Ding
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Na He
- School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China; Yi-Wu Research Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Lo Curto A, Taverna S, Costa MA, Passantino R, Augello G, Adamo G, Aiello A, Colomba P, Zizzo C, Zora M, Accardi G, Candore G, Francofonte D, Di Chiara T, Alessandro R, Caruso C, Duro G, Cammarata G. Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease. Cells 2021; 10:356. [PMID: 33572275 PMCID: PMC7915347 DOI: 10.3390/cells10020356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) "young" and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.
Collapse
Affiliation(s)
- Alessia Lo Curto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Simona Taverna
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Maria Assunta Costa
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Rosa Passantino
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Giuseppa Augello
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Paolo Colomba
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Carmela Zizzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Marco Zora
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Daniele Francofonte
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Tiziana Di Chiara
- Department PROMISE, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Alessandro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-Section of Biology and Genetics, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giuseppe Cammarata
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| |
Collapse
|
3
|
Khairallah P, Nickolas TL. The young, the uremic and the broken. Nephrol Dial Transplant 2020; 35:1649-1651. [PMID: 32594126 DOI: 10.1093/ndt/gfaa068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pascale Khairallah
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas L Nickolas
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Petersen N, Knudsen AD, Mocroft A, Kirkegaard-Klitbo D, Arici E, Lundgren J, Benfield T, Oturai P, Nordestgaard BG, Feldt-Rasmussen B, Nielsen SD, Ryom L. Prevalence of impaired renal function in virologically suppressed people living with HIV compared with controls: the Copenhagen Comorbidity in HIV Infection (COCOMO) study. HIV Med 2019; 20:639-647. [PMID: 31359592 DOI: 10.1111/hiv.12778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES While renal impairment is reported more frequently in people living with HIV (PLWH) than in the general population, the PLWH samples in previous studies have generally been dominated by those at high renal risk. METHODS Caucasian PLWH who were virologically suppressed on antiretroviral treatment and did not have injecting drug use or hepatitis C were recruited from the Copenhagen Comorbidity in HIV Infection (COCOMO) study. Sex- and age-matched controls were recruited 1:4 from the Copenhagen General Population Study up to November 2016. We defined renal impairment as one measurement of estimated glomerular filtration rate ≤ 60 mL/min/1.73 m2 , and assessed associated factors using adjusted logistic regression models. The impact of HIV-related factors was explored in a subanalysis. RESULTS Among 598 PLWH and 2598 controls, the prevalence of renal impairment was 3.7% [95% confidence interval (CI) 2.3-5.5%] and 1.7% (95% CI 1.2-2.2%; P = 0.0014), respectively. After adjustment, HIV status was independently associated with renal impairment [odds ratio (OR) 3.4; 95% CI 1.8-6.3]. In addition, older age [OR 5.4 (95% CI 3.9-7.5) per 10 years], female sex [OR 5.0 (95% CI 2.6-9.8)] and diabetes [OR 2.9 (95% CI 1.3-6.7)] were strongly associated with renal impairment. The association between HIV status and renal impairment became stronger with older age (P = 0.02 for interaction). Current and nadir CD4 counts, duration of HIV infection and previous AIDS-defining diagnosis were not associated with renal impairment among virologically suppressed PLWH. CONCLUSIONS The prevalence of renal impairment is low among low-risk virologically suppressed Caucasian PLWH, but remains significantly higher than in controls. Renal impairment therefore remains a concern in all PLWH and requires ongoing attention.
Collapse
Affiliation(s)
- N Petersen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - A D Knudsen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - A Mocroft
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK
| | | | - E Arici
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - J Lundgren
- Department of Infectious Diseases, CHIP, Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Benfield
- Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Oturai
- Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - B G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - B Feldt-Rasmussen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - S D Nielsen
- Department of Infectious Diseases, Viro-immunology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - L Ryom
- Department of Infectious Diseases, CHIP, Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Dai L, Qureshi AR, Witasp A, Lindholm B, Stenvinkel P. Early Vascular Ageing and Cellular Senescence in Chronic Kidney Disease. Comput Struct Biotechnol J 2019; 17:721-729. [PMID: 31303976 PMCID: PMC6603301 DOI: 10.1016/j.csbj.2019.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical model of premature ageing characterized by progressive vascular disease, systemic inflammation, muscle wasting and frailty. The predominant early vascular ageing (EVA) process mediated by medial vascular calcification (VC) results in a marked discrepancy between chronological and biological vascular age in CKD. Though the exact underlying mechanisms of VC and EVA are not fully elucidated, accumulating evidence indicates that cellular senescence - and subsequent chronic inflammation through the senescence-associated secretary phenotype (SASP) - plays a fundamental role in its initiation and progression. In this review, we discuss the pathophysiological links between senescence and the EVA process in CKD, with focus on cellular senescence and media VC, and potential anti-ageing therapeutic strategies of senolytic drugs targeting cellular senescence and EVA in CKD.
Collapse
Affiliation(s)
| | | | | | | | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| |
Collapse
|
6
|
Panagiotou N, Neytchev O, Selman C, Shiels PG. Extracellular Vesicles, Ageing, and Therapeutic Interventions. Cells 2018; 7:cells7080110. [PMID: 30126173 PMCID: PMC6115766 DOI: 10.3390/cells7080110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
A more comprehensive understanding of the human ageing process is required to help mitigate the increasing burden of age-related morbidities in a rapidly growing global demographic of elderly individuals. One exciting novel strategy that has emerged to intervene involves the use of extracellular vesicles to engender tissue regeneration. Specifically, this employs their molecular payloads to confer changes in the epigenetic landscape of ageing cells and ameliorate the loss of functional capacity. Understanding the biology of extracellular vesicles and the specific roles they play during normative ageing will allow for the development of novel cell-free therapeutic interventions. Hence, the purpose of this review is to summarise the current understanding of the mechanisms that drive ageing, critically explore how extracellular vesicles affect ageing processes and discuss their therapeutic potential to mitigate the effects of age-associated morbidities and improve the human health span.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Ognian Neytchev
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Colin Selman
- College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr, Glasgow G12 8QQ, UK.
| | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
7
|
Abstract
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Collapse
|
8
|
Shiels PG, Stenvinkel P, Kooman JP, McGuinness D. Circulating markers of ageing and allostatic load: A slow train coming. Pract Lab Med 2017; 7:49-54. [PMID: 28856219 PMCID: PMC5574864 DOI: 10.1016/j.plabm.2016.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Dealing with the growing burden of age-related morbidities is one of the greatest challenges facing modern society. How we age across the lifecourse and how psychosocial and lifestyle factors interplay with the biology of ageing remains to be fully elucidated. Sensitive and specific biomarkers with which to interrogate the biology of the ageing process are sparse. Recent evidence suggests that non-coding RNAs are key determinants of such processes and that these can be used as potential circulatory bio-markers of ageing. They may also provide a mechanism which mediates the spread of allostatic load across the body over time, ultimately reflecting the immunological health and physiological status of tissues and organs. The interplay between exosomal microRNAs and ageing processes is still relatively unexplored, although circulating microRNAs have been linked to the regulation of a range of physiological and pathological processes and offer insight into mechanistic determinants of healthspan.
Collapse
Affiliation(s)
- Paul G. Shiels
- University of Glasgow, Institute of Cancer Sciences, Wolfson-Wohl Translational Cancer Research Centre, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Huddinge, Sweden
| | - Jeroen P. Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Dagmara McGuinness
- University of Glasgow, Institute of Cancer Sciences, Wolfson-Wohl Translational Cancer Research Centre, Glasgow, UK
| |
Collapse
|
9
|
Khojah SM, Payne AP, McGuinness D, Shiels PG. Segmental Aging Underlies the Development of a Parkinson Phenotype in the AS/AGU Rat. Cells 2016; 5:E38. [PMID: 27763519 PMCID: PMC5187522 DOI: 10.3390/cells5040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022] Open
Abstract
There is a paucity of information on the molecular biology of aging processes in the brain. We have used biomarkers of aging (SA β-Gal, p16Ink4a, Sirt5, Sirt6, and Sirt7) to demonstrate the presence of an accelerated aging phenotype across different brain regions in the AS/AGU rat, a spontaneous Parkinsonian mutant of PKCγ derived from a parental AS strain. P16INK4a expression was significantly higher in AS/AGU animals compared to age-matched AS controls (p < 0.001) and displayed segmental expression across various brain regions. The age-related expression of sirtuins similarly showed differences between strains and between brain regions. Our data clearly show segmental aging processes within the rat brain, and that these are accelerated in the AS/AGU mutant. The accelerated aging, Parkinsonian phenotype, and disruption to dopamine signalling in the basal ganglia in AS/AGU rats, suggests that this rat strain represents a useful model for studies of development and progression of Parkinson's disease in the context of biological aging and may offer unique mechanistic insights into the biology of aging.
Collapse
Affiliation(s)
- Sohair M Khojah
- School of Life Sciences, Pharmacology Research Theme, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Anthony P Payne
- School of Life Sciences, Pharmacology Research Theme, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Dagmara McGuinness
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|