1
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
2
|
Lefevre C, Bindels LB. Role of the Gut Microbiome in Skeletal Muscle Physiology and Pathophysiology. Curr Osteoporos Rep 2022; 20:422-432. [PMID: 36121571 DOI: 10.1007/s11914-022-00752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the recent findings about the contribution of the gut microbiome to muscle pathophysiology and discuss molecular pathways that may be involved in such process. Related findings in the context of cancer cachexia are outlined. RECENT FINDINGS Many bacterial metabolites have been reported to exert a beneficial or detrimental impact on muscle physiology. Most of the evidence concentrates on short-chain fatty acids (SCFAs), with an emerging role for bile acids, bacterial amino acid metabolites (bAAms), and bacterial polyphenol metabolites. Other molecular players worth considering include cytokines, hormones, lipopolysaccharides, and quorum sensing molecules. The current literature clearly establishes the ability for the gut microbiome to modulate muscle function and mass. The understanding of the mechanisms underlying this gut-muscle axis may lead to the delivery of novel therapeutic tools to tackle muscle wasting in cancer cachexia, chronic kidney disease, liver fibrosis, and age-related sarcopenia.
Collapse
Affiliation(s)
- Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Avenue Pasteur 6, 1300, Wavre, Belgium.
| |
Collapse
|
3
|
Ni Y, Lohinai Z, Heshiki Y, Dome B, Moldvay J, Dulka E, Galffy G, Berta J, Weiss GJ, Sommer MOA, Panagiotou G. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. THE ISME JOURNAL 2021; 15:3207-3220. [PMID: 34002024 PMCID: PMC8528809 DOI: 10.1038/s41396-021-00998-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.
Collapse
Affiliation(s)
- Yueqiong Ni
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Yoshitaro Heshiki
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Hong Kong, China
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Moldvay
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Denmark
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Serum Metabolomic Analysis of Feline Mammary Carcinomas based on LC-MS and MRM Techniques. J Vet Res 2020; 64:581-588. [PMID: 33367148 PMCID: PMC7734693 DOI: 10.2478/jvetres-2020-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction To date, there have been no panoramic studies of the serum metabolome in feline mammary carcinoma. As the first such study, metabolomics techniques were used to analyse the serum of cats with these tumours. Three important metabolic pathways of screened differential metabolites closely related to feline mammary carcinomas were analysed to lay a theoretical basis for further study of the pathogenesis of these carcinomas. Material and Methods Blood in a 5-8 mL volume was sampled from twelve cats of the same breed and similar age (close to nine years on average). Six were feline mammary carcinoma patients and six were healthy. L glutamate, L alanine, succinate, adenine, hypoxanthine, and inosine were screened as were alanine, aspartate, and glutamate metabolism, the tricarboxylid acid (TCA) cycle, and purine metabolism. Data were acquired with LC-MS non-target metabolomics, multiple reaction monitoring target metabolomics, and multivariate statistical and bioinformatic analysis. Results Expression of five of the metabolites was upregulated and only inosine expression was downregulated. Up- and downregulation of metabolites related to glycometabolism, potentiation of the TCA cycle, greater content of lipid mobilisation metabolites, and abnormality of amino acid metabolism were closely related to the occurrence of the carcinomas. Conclusion These findings provide a new direction for further study of the mechanisms associated with cat mammary neoplasms.
Collapse
|
5
|
Delzenne NM, Mullin GE. Benefits and risk management of functional foods in the context of chronic diseases. Curr Opin Clin Nutr Metab Care 2018; 21:449-450. [PMID: 30188386 DOI: 10.1097/mco.0000000000000517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Gerard E Mullin
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|