1
|
Lee D, Smith LEH. Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases. Life (Basel) 2024; 14:1566. [PMID: 39768274 PMCID: PMC11676320 DOI: 10.3390/life14121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Amino acids are basic building blocks of structural proteins and enzymes. They also act as signaling molecules and as fuel. They are characterized as essential if sufficient quantities must be supplied exogenously or as non-essential if they can be endogenously synthesized. Appropriate intake of amino acids not only prevents the development of metabolic diseases but also can reduce the progression of some disease states. Amino acids are strongly associated with retinal metabolism in physiology and pathology. Nonetheless, there is a lack of robust clinical studies supporting the benefits of amino acid supplementation in retinopathy. In this review, we summarize preclinical evidence concerning the potential of supplementing the amino acids taurine and histidine to provide protection against diabetic retinopathy, glaucoma, and age-related macular degeneration. We suggest further directions for studying amino acid-based therapeutic interventions for eye diseases.
Collapse
Affiliation(s)
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
2
|
GPRC6A Mediates Glucose and Amino Acid Homeostasis in Mice. Metabolites 2022; 12:metabo12080740. [PMID: 36005612 PMCID: PMC9415337 DOI: 10.3390/metabo12080740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
GPRC6A, an important member of the G-protein-coupled receptor superfamily, has been widely studied in body health maintenance and related diseases. However, it is still controversial whether GPRC6A plays a vital role in glucose homeostasis, and the role of GPRC6A on amino acid homeostasis has not been reported. In this study, GPRC6A was knocked out in C57BL6 mice, and we found that GPRC6A plays an important role in the glucose metabolism, mainly affecting the glucose clearance capacity and gluconeogenesis in mice. GPRC6A plays an important role in maintaining amino acid homeostasis under dietary restrictions, and this may be realized by participating in the regulation of autophagy. Since a large amount of amino acid is lost from urine in aged GPRC6A−/− mice, it is possible that GPRC6A regulates amino acid homeostasis by affecting the integrity of tissue structure. GPRC6A is involved in the regulation of mTORC1 activation but is not necessary for mTORC1 activation under sufficient nutritional supply. In the absence of exogenous amino acids, the loss of GPRC6A induces the GCN2 pathway activation and excessive autophagy of cells, leading to the overactivation of mTORC1, which may be detrimental to body health and cell survival. In summary, this study provides a theoretical and experimental basis for the metabolic process of GPRC6A in body growth and health.
Collapse
|
3
|
Wu Z, Cheng W, Wang Z, Feng S, Zou H, Tan X, Yang Y, Wang Y, Zhang H, Dong M, Xiao Y, Tao S, Wei H. Intestinal Microbiota and Serum Metabolic Profile Responded to Two Nutritional Different Diets in Mice. Front Nutr 2022; 8:813757. [PMID: 35071302 PMCID: PMC8766985 DOI: 10.3389/fnut.2021.813757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
There is an interaction and bidirectional selection between dietary intake and gut microbiota due to the different efficiency of nutrients in the gut. The nutritional composition of germ-free (GF) diets differs significantly from specific pathogen-free (SPF) diets. There is, however, no data revealing how SPF animals from the same microbial background respond to them and if they affect the host. We examined the growth of SPF mice on the GF diet and found that it reduced body weight, intestinal length and intestinal morphology. Interestingly, the GF diet increased the level of pro-inflammatory bacteria in the gut of SPF mice, including Proteobacteria, Burkholderiaceae, Alloprevotella and Parasutterella. Furthermore, GF diets caused significant increases in malondialdehyde (MDA), IL-1β, IL-6, and D-lactate levels in the serum of SPF mice and significantly altered their serum metabolic profile, especially amino acid metabolism. In conclusion, GF diets are not suitable for the growth and development of SPF mice. These findings, based on the role of gut microbiota in diet selection, provide new insights into the scientific and rational use of experimental animal diets.
Collapse
Affiliation(s)
- Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuaifei Feng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Sriwi D, Alabdaljabar MS, Jacob M, Mujamammi AH, Gu X, Sabi EM, Li L, Hussein MH, Dasouki M, Abdel Rahman AM. Metabolomics Profiling of Cystic Renal Disease towards Biomarker Discovery. BIOLOGY 2021; 10:biology10080770. [PMID: 34440002 PMCID: PMC8389671 DOI: 10.3390/biology10080770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Cystic renal disease (CRD) is a group of diseases characterized by abnormal sacs, or cysts, in the kidneys. CRD can be detected using certain imaging modalities (i.e., ultrasound). Patients with CRD might be symptoms-free, while others can show symptoms long after cysts development. Although these cysts represent structural changes, we hypothesized that they have an underlying biochemical alteration. If so, this would open the floor for potential biomarker discovery, which would aid in CRD diagnosis and, possibly, treatment. On that basis, this study focuses on identifying biomarkers for CRD. To achieve that, we employed a metabolomics-based approach to identify intermediate molecules inside the cells that are byproducts of biochemical reactions. We used dry blood spots and serum samples of CRD patients and healthy controls to study the differences in their metabolomic profile. Our results suggest that certain metabolites, including uridine diphosphate, cystine-5-diphosphate, and morpholine, are potential biomarkers for CRD. The affected biochemical pathways in CRD include aminoacyl-tRNA biosynthesis, purine, pyrimidine, glutathione, TCA cycle, and some amino acid metabolism. These preliminary results could be the starting point for possible diagnostic and therapeutic approaches for CRD in the future. Abstract Cystic renal disease (CRD) comprises a heterogeneous group of genetic and acquired disorders. The cystic lesions are detected through imaging, either incidentally or after symptoms develop, due to an underlying disease process. In this study, we aim to study the metabolomic profiles of CRD patients for potential disease-specific biomarkers using unlabeled and labeled metabolomics using low and high-resolution mass spectrometry (MS), respectively. Dried-blood spot (DBS) and serum samples, collected from CRD patients and healthy controls, were analyzed using the unlabeled and labeled method. The metabolomics profiles for both sets of samples and groups were collected, and their data were processed using the lab’s standard protocol. The univariate analysis showed (FDR p < 0.05 and fold change 2) was significant to show a group of potential biomarkers for CRD discovery, including uridine diphosphate, cystine-5-diphosphate, and morpholine. Several pathways were involved in CRD patients based on the metabolic profile, including aminoacyl-tRNA biosynthesis, purine and pyrimidine, glutathione, TCA cycle, and some amino acid metabolism (alanine, aspartate and glutamate, arginine and tryptophan), which have the most impact. In conclusion, early CRD detection and treatment is possible using a metabolomics approach that targets alanine, aspartate, and glutamate pathway metabolites.
Collapse
Affiliation(s)
- Dalia Sriwi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (D.S.); (M.S.A.)
| | - Mohamad S. Alabdaljabar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (D.S.); (M.S.A.)
| | - Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (M.J.); (M.D.)
| | - Ahmed H. Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.H.M.); (E.M.S.)
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (X.G.); (L.L.)
| | - Essa M. Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.H.M.); (E.M.S.)
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (X.G.); (L.L.)
| | - Maged H. Hussein
- Department of Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Majed Dasouki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (M.J.); (M.D.)
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (D.S.); (M.S.A.)
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia; (M.J.); (M.D.)
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: ; Tel.: +966-11-464-7272 (ext. 36481)
| |
Collapse
|
5
|
Mahbub MH, Yamaguchi N, Hase R, Takahashi H, Ishimaru Y, Watanabe R, Saito H, Shimokawa J, Yamamoto H, Kikuchi S, Tanabe T. Plasma Branched-Chain and Aromatic Amino Acids in Relation to Hypertension. Nutrients 2020; 12:nu12123791. [PMID: 33322015 PMCID: PMC7764357 DOI: 10.3390/nu12123791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Findings of the available studies regarding the roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in hypertension are inconsistent, conflicting and inconclusive. The purpose of this study was to explore and clarify the existence of any relationships of individual BCAAs and AAAs with hypertension with adjustments for potential relevant confounders. A total of 2805 healthy controls and 2736 hypertensive patients were included in the current analysis. The associations between individual amino acids and hypertension were explored by logistic regression analyses adjusted for potential confounding variables. Among the investigated amino acids, only the BCAAs showed consistently significant positive associations with hypertension in the adjusted models (p-trend < 0.05 to 0.001). However, compared with the corresponding lowest quartile of individual BCAAs, the positive association with hypertension remained significant only in the highest quartile (p < 0.01 to 0.001). We confirmed in a relatively large cohort of subjects that BCAAs, not AAAs, demonstrated consistent positive associations with hypertension. The results display the promising potential for the use of BCAAs as relevant and accessible biomarkers, and provide perspectives on interventions directed towards the reduction in plasma BCAA levels in the prevention and management of hypertension.
Collapse
Affiliation(s)
- M. H. Mahbub
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
- Correspondence: ; Tel.: +81-836-22-2231
| | - Natsu Yamaguchi
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Ryosuke Hase
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Hidekazu Takahashi
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan;
| | - Yasutaka Ishimaru
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Rie Watanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Hiroyuki Saito
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Junki Shimokawa
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| | - Hiroshi Yamamoto
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Kanagawa 210-8681, Japan; (H.Y.); (S.K.)
| | - Shinya Kikuchi
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki, Kanagawa 210-8681, Japan; (H.Y.); (S.K.)
| | - Tsuyoshi Tanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan; (N.Y.); (R.H.); (Y.I.); (R.W.); (H.S.); (J.S.); (T.T.)
| |
Collapse
|
6
|
Geng C, Guo Y, Wang C, Cui C, Han W, Liao D, Jiang P. Comprehensive Evaluation of Lipopolysaccharide-Induced Changes in Rats Based on Metabolomics. J Inflamm Res 2020; 13:477-486. [PMID: 32904659 PMCID: PMC7457572 DOI: 10.2147/jir.s266012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Substantial evidence indicates that lipopolysaccharide (LPS) exposure can lead to systemic inflammatory response syndrome (SIRS) and multiple organ failure. Previous metabolomic studies have mainly focused on LPS-induced depression or hepatic and renal effects. However, no comprehensive metabolomics-based analysis of the serum, liver, kidney, hippocampus, and heart following exposure to LPS has been undertaken to date. Material and Methods Male Sprague-Dawley rats were randomly allocated to a control and a LPS-treated group (n=8). LPS for 2 weeks (0.5 mg/kg every other day) was given via intraperitoneal injection. Gas chromatography-mass spectrometry (GC-MS) was used for metabolite determination, while multivariate statistical analysis was performed to identify differentially expressed metabolites between the two groups. Results Our study revealed that 24, 13, 12, 7, and 12 metabolites were differentially expressed between the LPS treatment group and the control group in the serum, liver, kidney, hippocampus, and heart, respectively. We further identified that these metabolic changes were mainly involved with aminoacyl-tRNA biosynthesis; glutathione metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; arginine biosynthesis; bile acid biosynthesis; and glycerolipid metabolism. Conclusion We have systematically elucidated the metabolic changes underlying LPS-induced SIRS, thereby providing insight into the mechanisms associated with these alterations.
Collapse
Affiliation(s)
- Chunmei Geng
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Yujin Guo
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Changshui Wang
- Department of Clinical Translational Medicine, Jining Life Science Center, Jining 272000, People's Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, People's Republic of China
| | - Wenxiu Han
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Pei Jiang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| |
Collapse
|
7
|
Daly A, Evans S, Pinto A, Jackson R, Ashmore C, Rocha JC, MacDonald A. Preliminary Investigation to Review If a Glycomacropeptide Compared to L-Amino Acid Protein Substitute Alters the Pre- and Postprandial Amino Acid Profile in Children with Phenylketonuria. Nutrients 2020; 12:E2443. [PMID: 32823853 PMCID: PMC7468934 DOI: 10.3390/nu12082443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
In Phenylketonuria (PKU), the peptide structure of the protein substitute (PS), casein glycomacropeptide (CGMP), is supplemented with amino acids (CGMP-AA). CGMP may slow the rate of amino acid (AA) absorption compared with traditional phenylalanine-free amino acids (Phe-free AA), which may improve nitrogen utilization, decrease urea production, and alter insulin response. AIM In children with PKU, to compare pre and postprandial AA concentrations when taking one of three PS's: Phe-free AA, CGMP-AA 1 or 2. METHODS 43 children (24 boys, 19 girls), median age 9 years (range 5-16 years) were studied; 11 took CGMP-AA1, 18 CGMP-AA2, and 14 Phe-free AA. Early morning fasting pre and 2 h postprandial blood samples were collected for quantitative AA on one occasion. A breakfast with allocated 20 g protein equivalent from PS was given post fasting blood sample. RESULTS There was a significant increase in postprandial AA for all individual AAs with all three PS. Postprandial AA histidine (p < 0.001), leucine (p < 0.001), and tyrosine (p < 0.001) were higher in CGMP-AA2 than CGMP-AA1, and leucine (p < 0.001), threonine (p < 0.001), and tyrosine (p = 0.003) higher in GCMP-AA2 than Phe-free AA. This was reflective of the AA composition of the three different PS's. CONCLUSIONS In PKU, the AA composition of CGMP-AA influences 2 h postprandial AA composition, suggesting that a PS derived from CGMP-AA may be absorbed similarly to Phe-free AA, but this requires further investigation.
Collapse
Affiliation(s)
- Anne Daly
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Sharon Evans
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Alex Pinto
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Richard Jackson
- Liverpool Clinical Trials Centre, University of Liverpool, Brownlow Hill, Liverpool L69 3GL, UK;
| | - Catherine Ashmore
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | - Júlio César Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Centre for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
| | - Anita MacDonald
- Dietetic Department, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| |
Collapse
|
8
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev 2019; 177:186-200. [PMID: 30044947 PMCID: PMC6333505 DOI: 10.1016/j.mad.2018.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although the beneficial effects of calorie restriction (CR) on health and aging were first observed a century ago, the specific macronutrients and molecular processes that mediate the effect of CR have been heavily debated. Recently, it has become clear that dietary protein plays a key role in regulating both metabolic health and longevity, and that both the quantity and quality - the specific amino acid composition - of dietary protein mediates metabolic health. Here, we discuss recent findings in model organisms ranging from yeast to mice and humans regarding the influence of dietary protein as well as specific amino acids on metabolic health, and the physiological and molecular mechanisms which may mediate these effects. We then discuss recent findings which suggest that the restriction of specific dietary amino acids may be a potent therapy to treat or prevent metabolic syndrome. Finally, we discuss the potential for dietary restriction of specific amino acids - or pharmaceuticals which harness these same mechanisms - to promote healthy aging.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
10
|
Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome. Sci Rep 2017; 7:17616. [PMID: 29247200 PMCID: PMC5732272 DOI: 10.1038/s41598-017-17710-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Previous studies demonstrated independent contributions of plasma free amino acids (PFAAs) and high uric acid (UA) concentrations to increased risks of lifestyle-related diseases (LSRDs), but the important associations between these factors and LSRDs remain unknown. We quantified PFAAs and UA amongst Japanese subjects without LSRDs (no-LSRD, n = 2805), and with diabetes mellitus (DM, n = 415), dyslipidemia (n = 3207), hypertension (n = 2736) and metabolic syndrome (MetS, n = 717). The concentrations of most amino acids differed significantly between the subjects with and without hyperuricemia (HU) and also between the no-LSRD and LSRD groups (p < 0.05 to 0.001). After adjustment, the logistic regression analyses revealed that lysine in DM, alanine, proline and tyrosine in dyslipidemia, histidine, lysine and ornithine in hypertension, and lysine and tyrosine in MetS demonstrated significant positive associations with HU among the patients with LSRDs only (p < 0.05 to 0.005). By contrast, arginine, asparagine and threonine showed significant inverse associations with HU in the no-LSRD group only (p < 0.05 to 0.01). For the first time, we provide evidence for distinct patterns of association between PFAAs and HU in LSRDs, and postulate the possibility of interplay between PFAAs and UA in their pathophysiology.
Collapse
|
11
|
A rapid and ultrasensitive SERRS assay for histidine and tyrosine based on azo coupling. Talanta 2016; 159:208-214. [DOI: 10.1016/j.talanta.2016.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/20/2023]
|
12
|
Andreas NJ, Hyde MJ, Gomez-Romero M, Lopez-Gonzalvez MA, Villaseñor A, Wijeyesekera A, Barbas C, Modi N, Holmes E, Garcia-Perez I. Multiplatform characterization of dynamic changes in breast milk during lactation. Electrophoresis 2015; 36:2269-2285. [PMID: 25959062 PMCID: PMC4744768 DOI: 10.1002/elps.201500011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 11/11/2022]
Abstract
The multicomponent analysis of human breast milk (BM) by metabolic profiling is a new area of study applied to determining milk composition, and is capable of associating BM composition with maternal characteristics, and subsequent infant health outcomes. A multiplatform approach combining HPLC‐MS and ultra‐performance LC‐MS, GC‐MS, CE‐MS, and 1H NMR spectroscopy was used to comprehensively characterize metabolic profiles from seventy BM samples. A total of 710 metabolites spanning multiple molecular classes were defined. The utility of the individual and combined analytical platforms was explored in relation to numbers of metabolites identified, as well as the reproducibility of the methods. The greatest number of metabolites was identified by the single phase HPLC‐MS method, while CE‐MS uniquely profiled amino acids in detail and NMR was the most reproducible, whereas GC‐MS targeted volatile compounds and short chain fatty acids. Dynamic changes in BM composition were characterized over the first 3 months of lactation. Metabolites identified as altering in abundance over lactation included fucose, di‐ and triacylglycerols, and short chain fatty acids, known to be important for infant immunological, neurological, and gastrointestinal development, as well as being an important source of energy. This extensive metabolic coverage of the dynamic BM metabolome provides a baseline for investigating the impact of maternal characteristics, as well as establishing the impact of environmental and dietary factors on the composition of BM, with a focus on the downstream health consequences this may have for infants.
Collapse
Affiliation(s)
- Nicholas J Andreas
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, London, UK
| | - Matthew J Hyde
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, London, UK
| | - Maria Gomez-Romero
- Section of Computational and Systems Medicine, Division of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Madrid, Spain
| | - Anisha Wijeyesekera
- Section of Computational and Systems Medicine, Division of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Madrid, Spain
| | - Neena Modi
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, London, UK
| | - Elaine Holmes
- Section of Computational and Systems Medicine, Division of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Isabel Garcia-Perez
- Section of Computational and Systems Medicine, Division of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.,Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
13
|
Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 2015; 16:8. [PMID: 25643626 PMCID: PMC4328591 DOI: 10.1186/s12863-015-0167-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans. In addition, leucine strongly activates the TOR signaling pathway, which when inhibited increases lifespan. RESULTS Therefore each of the 20 proteogenic amino acids was individually supplemented to C. elegans and the effects on lifespan were determined. All amino acids except phenylalanine and aspartate extended lifespan at least to a small extent at one or more of the 3 concentrations tested with serine and proline showing the largest effects. 11 of the amino acids were less potent at higher doses, while 5 even decreased lifespan. Serine, proline, or histidine-mediated lifespan extension was greatly inhibited in eat-2 worms, a model of dietary restriction, in daf-16/FOXO, sir-2.1, rsks-1 (ribosomal S6 kinase), gcn-2, and aak-2 (AMPK) longevity pathway mutants, and in bec-1 autophagy-defective knockdown worms. 8 of 10 longevity-promoting amino acids tested activated a SKN-1/Nrf2 reporter strain, while serine and histidine were the only amino acids from those to activate a hypoxia-inducible factor (HIF-1) reporter strain. Thermotolerance was increased by proline or tryptophan supplementation, while tryptophan-mediated lifespan extension was independent of DAF-16/FOXO and SKN-1/Nrf2 signaling, but tryptophan and several related pyridine-containing compounds induced the mitochondrial unfolded protein response and an ER stress response. High glucose levels or mutations affecting electron transport chain (ETC) function inhibited amino acid-mediated lifespan extension suggesting that metabolism plays an important role. Providing many other cellular metabolites to C. elegans also increased longevity suggesting that anaplerosis of tricarboxylic acid (TCA) cycle substrates likely plays a role in lifespan extension. CONCLUSIONS Supplementation of C. elegans with 18 of the 20 individual amino acids extended lifespan, but lifespan often decreased with increasing concentration suggesting hormesis. Lifespan extension appears to be caused by altered mitochondrial TCA cycle metabolism and respiratory substrate utilization resulting in the activation of the DAF-16/FOXO and SKN-1/Nrf2 stress response pathways.
Collapse
Affiliation(s)
- Clare Edwards
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - John Canfield
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Neil Copes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Andres Brito
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Muhammad Rehan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - David Lipps
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Jessica Brunquell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Patrick C Bradshaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
14
|
Yang J, He J, Cao H, Zhao X, Fu S, Lu H, Chen Y, Pan X, Li L. Correlation between plasma amino acid profiles and the various stages of hepatitis B infection. Eur J Clin Microbiol Infect Dis 2012; 31:2045-52. [PMID: 22294098 DOI: 10.1007/s10096-011-1538-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/21/2011] [Indexed: 01/05/2023]
Abstract
The amino acid metabolism in patients with hepatitis B virus (HBV) infection is significantly changed. In this study, we analyzed the relationship between the amino acid profiles and varying clinical stages of HBV infection, and investigated their significance. The plasma amino acid concentrations in 115 patients with HBV infection and 32 healthy donors were detected and analyzed, and the main indicators of liver function were measured. Correlation analysis was performed between the amino acid profiles (Fischer's ratio, branched-chain amino acid to tyrosine ratio [BTR]) and the key indicators of liver function in patients with HBV infection. Fisher's ratio and the BTR of patients with HBV infection was found to differ from that of the healthy controls, and was also found to significantly correlate with the stage of HBV infection. Changes in the BTR were closely related to the level of key indicators of liver function, and a significant relationship was detected between the Fischer's ratio and the BTR (r=0.928, p<0.001). These results suggest that Fischer's ratio and the BTR can indirectly reflect the degree of liver cell injury. Determining and tracking the plasma amino acid profiles could, therefore, be used for the diagnosis, treatment selection, and prognosis of patients with varying stages of HBV infection.
Collapse
Affiliation(s)
- J Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|