1
|
McDaniel MS, Sumpter NA, Lindgren NR, Billiot CE, Swords WE. Comparative genomics of clinical Stenotrophomonas maltophilia isolates reveals genetic diversity which correlates with colonization and persistence in vivo. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001408. [PMID: 37942787 PMCID: PMC10710838 DOI: 10.1099/mic.0.001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often present in people with respiratory diseases such as cystic fibrosis (CF). People with CF (pwCF) experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that Pseudomonas aeruginosa promotes persistence of S. maltophilia in mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct nearly complete genomes of 10 clinical isolates. The genomes of these isolates were then compared with all publicly available S. maltophilia genome assemblies, and each isolate was then evaluated for colonization/persistence in vivo, both alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent between strains, there was considerable variability in both genome structure and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in experimental mouse respiratory infections in the presence or absence of P. aeruginosa. Ultimately, this study gives us a greater understanding of the genomic diversity of clinical S. maltophilia isolates, and how this genomic diversity relates to both interactions with other pulmonary pathogens and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Melissa S. McDaniel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - Nicholas A. Sumpter
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Birmingham, AL, US
| | - Natalie R. Lindgren
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - Caitlin E. Billiot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - W. Edward Swords
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| |
Collapse
|
2
|
Kesthely CA, Rogers RR, El Hafi B, Jean-Pierre F, O’Toole GA. Transcriptional profiling and genetic analysis of a cystic fibrosis airway-relevant model shows asymmetric responses to growth in a polymicrobial community. Microbiol Spectr 2023; 11:e0220123. [PMID: 37772884 PMCID: PMC10580927 DOI: 10.1128/spectrum.02201-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Bacterial infections in the lungs of persons with cystic fibrosis are typically composed of multispecies biofilm-like communities, which modulate clinically relevant phenotypes that cannot be explained in the context of a single species culture. Most analyses to date provide a picture of the transcriptional responses of individual pathogens; however, there is relatively little data describing the transcriptional landscape of clinically relevant multispecies communities. Harnessing a previously described cystic fibrosis-relevant, polymicrobial community model consisting of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica, we performed an RNA-Seq analysis on the biofilm population to elucidate the transcriptional profiles of the community grown in artificial sputum medium (ASM) as compared to growth in monoculture, without mucin, and in fresh medium supplemented with tobramycin. We provide evidence that, although the transcriptional profile of P. aeruginosa is community agnostic, the transcriptomes of S. aureus and S. sanguinis are community aware. Furthermore, P. aeruginosa and P. melaninogenica are transcriptionally sensitive to the presence of mucin in ASM, whereas S. aureus and S. sanguinis largely do not alter their transcriptional profiles in the presence of mucin when grown in a community. Only P. aeruginosa shows a robust response to tobramycin. Genetic studies of mutants altered in community-specific growth provide complementary data regarding how these microbes adapt to a community context. IMPORTANCE Polymicrobial infections constitute the majority of infections in the cystic fibrosis (CF) airway, but their study has largely been neglected in a laboratory setting. Our lab previously reported a polymicrobial community that can help explain clinical outcomes in the lungs of persons with CF. Here, we obtained transcriptional profiles of the community versus monocultures to provide transcriptional information about how this model community responds to CF-related growth conditions and perturbations. Genetic studies provide complementary functional outputs to assess how the microbes adapt to life in a community.
Collapse
Affiliation(s)
- Christopher A. Kesthely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rendi R. Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
McDaniel MS, Sumpter NA, Lindgren NR, Billiot CE, Swords WE. Comparative genomics of clinical Stenotrophomonas maltophilia isolates reveals regions of diversity which correlate with colonization and persistence in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549068. [PMID: 37503051 PMCID: PMC10369963 DOI: 10.1101/2023.07.14.549068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often found in respiratory diseases such as cystic fibrosis (CF). Patients with CF experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that P. aeruginosa promotes persistence of S. maltophilia mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct complete genomes of 10 clinical isolates which were then compared with the larger phylogeny of S. maltophilia genomic sequence data, and compared colonization/persistence in vivo, alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent, there was considerable variability in arrangement and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in vivo in experimental mouse respiratory infection. Ultimately, this study gives us a greater understanding of the genomic diversity of S. maltophilia isolated from patients, and how this genomic diversity relates to interactions with other pulmonary pathogens, and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Melissa S. McDaniel
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| | - Nicholas A. Sumpter
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham
| | - Natalie R. Lindgren
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| | - Caitlin E. Billiot
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| | - W. Edward Swords
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| |
Collapse
|
4
|
Kesthely CA, Rogers RR, Hafi BE, Jean-Pierre F, O'Toole GA. Transcriptional Profiling and Genetic Analysis of a Cystic Fibrosis Airway-Relevant Model Shows Asymmetric Responses to Growth in a Polymicrobial Community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542191. [PMID: 37293107 PMCID: PMC10245937 DOI: 10.1101/2023.05.24.542191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infections in the lungs of persons with cystic fibrosis are typically composed of multispecies biofilm-like communities, which modulate clinically relevant phenotypes that cannot be explained in the context of a single species culture. Most analyses to-date provide a picture of the transcriptional responses of individual pathogens, however, there is relatively little data describing the transcriptional landscape of clinically-relevant multispecies communities. Harnessing a previously described cystic fibrosis-relevant, polymicrobial community model consisting of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis and Prevotella melaninogenica , we performed an RNA-Seq analysis to elucidate the transcriptional profiles of the community grown in artificial sputum medium (ASM) as compared to growth in monoculture, without mucin, and in fresh medium supplemented with tobramycin. We provide evidence that, although the transcriptional profile of P. aeruginosa is community agnostic, the transcriptomes of S. aureus and S. sanguinis are community aware. Furthermore, P. aeruginosa and P. melaninogenica are transcriptionally sensitive to the presence of mucin in ASM, whereas S. aureus and S. sanguinis largely do not alter their transcriptional profiles in the presence of mucin when grown in a community. Only P. aeruginosa shows a robust response to tobramycin. Genetic studies of mutants altered in community-specific growth provide complementary data regarding how these microbes adapt to a community context. Importance Polymicrobial infections constitute the majority of infections in the cystic fibrosis (CF) airway, but their study has largely been neglected in a laboratory setting. Our lab previously reported a polymicrobial community that can explain clinical outcomes in the lungs of persons with CF. Here we obtain transcriptional profiles of the community versus monocultures to provide transcriptional information about how this model community responds to CF-related growth conditions and perturbations. Genetic studies provide complementary functional outputs to assess how the microbes adapt to life in a community.
Collapse
Affiliation(s)
| | - Rendi R Rogers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - Bassam El Hafi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| |
Collapse
|
5
|
Sosinski LM, H CM, Neugebauer KA, Ghuneim LAJ, Guzior DV, Castillo-Bahena A, Mielke J, Thomas R, McClelland M, Conrad D, Quinn RA. A restructuring of microbiome niche space is associated with Elexacaftor-Tezacaftor-Ivacaftor therapy in the cystic fibrosis lung. J Cyst Fibros 2022; 21:996-1005. [PMID: 34824018 PMCID: PMC9124239 DOI: 10.1016/j.jcf.2021.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Elexacaftor-Tezacaftor-Ivacaftor (ETI) therapy is showing promising efficacy for treatment of cystic fibrosis (CF) and is becoming more widely available since recent FDA approval. However, little is known about how these drugs will affect lung infections, which are the leading cause of morbidity and mortality among people with CF (pwCF). METHODS We analyzed sputum microbiome and metabolome data from pwCF (n=24) before and after ETI therapy using 16S rRNA gene sequencing and untargeted metabolomics. RESULTS The sputum microbiome diversity, particularly its evenness, was increased (p=0.036) and the microbiome profiles were different between individuals before and after therapy (PERMANOVA F=1.92, p=0.044). Despite these changes, the microbiomes remained more similar within an individual than across the sampled population. No specific microbial taxa differed in relative abundance before and after therapy, but the collective log-ratio of classic CF pathogens to anaerobes significantly decreased (p=0.013). The sputum metabolome also showed changes associated with ETI (PERMANOVA F=4.22, p=0.002) and was characterized by greater variation across subjects while on treatment. Changes in the metabolome were driven by a decrease in peptides, amino acids, and metabolites from the kynurenine pathway, which were associated with a decrease in CF pathogens. Metabolism of the three small molecules that make up ETI was extensive, including previously uncharacterized structural modifications. CONCLUSIONS ETI therapy is associated with a changing microbiome and metabolome in airway mucus. This effect was stronger on sputum biochemistry, which may reflect changing niche space for microbial residency in lung mucus as the drug's effects take hold. FUNDING This project was funded by a National Institute of Allergy and Infectious Disease Grant R01AI145925.
Collapse
Affiliation(s)
- Lo M Sosinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Kerri A Neugebauer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lydia-Ann J Ghuneim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Jenna Mielke
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ryan Thomas
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | | | - Doug Conrad
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
7
|
Sandri A, Haagensen JAJ, Veschetti L, Johansen HK, Molin S, Malerba G, Signoretto C, Boaretti M, Lleo MM. Adaptive Interactions of Achromobacter spp. with Pseudomonas aeruginosa in Cystic Fibrosis Chronic Lung Co-Infection. Pathogens 2021; 10:978. [PMID: 34451442 PMCID: PMC8400197 DOI: 10.3390/pathogens10080978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In the lungs of patients with cystic fibrosis (CF), the main pathogen Pseudomonas aeruginosa is often co-isolated with other microbes, likely engaging in inter-species interactions. In the case of chronic co-infections, this cohabitation can last for a long time and evolve over time, potentially contributing to the clinical outcome. Interactions involving the emerging pathogens Achromobacter spp. have only rarely been studied, reporting inhibition of P. aeruginosa biofilm formation. To evaluate the possible evolution of such interplay, we assessed the ability of Achromobacter spp. isolates to affect the biofilm formation of co-isolated P. aeruginosa strains during long-term chronic co-infections. We observed both competition and cohabitation. An Achromobacter sp. isolate secreted exoproducts interfering with the adhesion ability of a co-isolated P. aeruginosa strain and affected its biofilm formation. Conversely, a clonal Achromobacter sp. strain later isolated from the same patient, as well as two longitudinal strains from another patient, did not show similar competitive behavior against its P. aeruginosa co-isolates. Genetic variants supporting the higher virulence of the competitive Achromobacter sp. isolate were found in its genome. Our results confirm that both inter-species competition and cohabitation are represented during chronic co-infections in CF airways, and evolution of these interplays can happen even at the late stages of chronic infection.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Janus Anders Juul Haagensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (J.A.J.H.); (S.M.)
| | - Laura Veschetti
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (G.M.)
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (J.A.J.H.); (S.M.)
| | - Giovanni Malerba
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (G.M.)
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Maria M. Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| |
Collapse
|
8
|
Linnane B, Walsh AM, Walsh CJ, Crispie F, O’Sullivan O, Cotter PD, McDermott M, Renwick J, McNally P. The Lung Microbiome in Young Children with Cystic Fibrosis: A Prospective Cohort Study. Microorganisms 2021; 9:microorganisms9030492. [PMID: 33652802 PMCID: PMC7996874 DOI: 10.3390/microorganisms9030492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
The cystic fibrosis (CF) lung harbours a diverse microbiome and reduced diversity in the CF lung has been associated with advancing age, increased inflammation and poorer lung function. Data suggest that the window for intervention is early in CF, yet there is a paucity of studies on the lung microbiome in children with CF. The objective of this study was to thoroughly characterise the lower airway microbiome in pre-school children with CF. Bronchoalveolar lavage (BAL) samples were collected annually from children attending the three clinical centres. Clinical and demographic data were collated on all subjects alongside BAL inflammatory markers. 16S rRNA gene sequencing was performed on the Illumina MiSeq platform. Bioinformatics and data analysis were performed using Qiime and R project software. Data on 292 sequenced BALs from 101 children with CF and 51 without CF show the CF lung microbiome, while broadly similar to that in non-CF children, is distinct. Alpha diversity between the two cohorts was indistinguishable at this early age. The CF diagnosis explained only 1.1% of the variation between the cohort microbiomes. However, several key genera were significantly differentially abundant between the groups. While the non-CF lung microbiome diversity increased with age, diversity reduced in CF with age. Pseudomonas and Staphylococcus were more abundant with age, while genera such as Streptococcus, Porphyromonas and Veillonella were less abundant with age. There was a negative correlation between alpha diversity and interleukin-8 and neutrophil elastase in the CF population. Neither current flucloxacillin or azithromycin prophylaxis, nor previous oral or IV antibiotic exposure, was correlated with microbiome diversity. Consecutive annual BAL samples over 5 years from a subgroup of children demonstrated diverse patterns of development in the first years of life.
Collapse
Affiliation(s)
- Barry Linnane
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick V94 T9PX, Ireland;
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
| | - Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Michael McDermott
- Pathology Department, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
| | - Julie Renwick
- Department of Clinical Microbiology, Trinity College Dublin, Trinity Centre for Health Science, Tallaght University Hospital, Dublin 24, Ireland
- Correspondence: ; Tel.: +353-1-896-3791
| | - Paul McNally
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
- Department of Paediatrics, Royal College of Surgeons in Ireland, Our Lady’s Children’s Hospital Crumlin, Dublin D12 N512, Ireland
| |
Collapse
|
9
|
Influence of relevant cystic fibrosis bacteria on Scedosporium apiospermum and Scedosporium boydii growth and viability. Braz J Microbiol 2021; 52:185-193. [PMID: 33442865 DOI: 10.1007/s42770-020-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
Cystic fibrosis (CF) causes a variety of symptoms in different organs, but the majority of the morbidity and mortality of CF is related with pulmonary conditions. Primary infections are usually bacterial, and when treated with antibiotics, yeast infections appear or become more evident. Studies show that different microorganisms can co-inhabit the same environment and the interactions could be synergistic or antagonistic. Using techniques including viable and non-viable cell-to-cell interactions, mixed culture in liquid, and solid media sharing or not the supernatant, this study has evaluated interactions between the fungal species Scedosporium apiospermum and Scedosporium boydii with the bacterial species Staphylococcus aureus, Pseudomonas aeruginosa, and Burkholderia cepacia. Cell-to-cell interactions in liquid medium showed that P. aeruginosa and B. cepacia were able to reduce fungal viability but only in the presence of alive bacteria. Interactions without cell contact using a semi-permeable membrane showed that all bacteria were able to inhibit both fungal growths/viabilities. Cell-free supernatants from bacterial growth reduced fungal viability in planktonic fungal cells as well as in some conditions for preformed fungal biomass. According to the chemical analysis of the bacterial supernatants, the predominant component is protein. In this work, we verified that bacterial cells and their metabolites, present in the supernatants, can play anti-S. apiospermum and anti-S. boydii roles on fungal growth and viability.
Collapse
|
10
|
Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020; 2:100031. [PMID: 33447816 PMCID: PMC7798459 DOI: 10.1016/j.bioflm.2020.100031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Mette Burmølle
- Department of Microbiology, University of Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
11
|
Selective pressures during chronic infection drive microbial competition and cooperation. NPJ Biofilms Microbiomes 2019; 5:16. [PMID: 31263568 PMCID: PMC6555799 DOI: 10.1038/s41522-019-0089-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic infections often contain complex mixtures of pathogenic and commensal microorganisms ranging from aerobic and anaerobic bacteria to fungi and viruses. The microbial communities present in infected tissues are not passively co-existing but rather actively interacting with each other via a spectrum of competitive and/or cooperative mechanisms. Competition versus cooperation in these microbial interactions can be driven by both the composition of the microbial community as well as the presence of host defense strategies. These interactions are typically mediated via the production of secreted molecules. In this review, we will explore the possibility that microorganisms competing for nutrients at the host–pathogen interface can evolve seemingly cooperative mechanisms by controlling the production of subsets of secreted virulence factors. We will also address interspecies versus intraspecies utilization of community resources and discuss the impact that this phenomenon might have on co-evolution at the host–pathogen interface.
Collapse
|
12
|
Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 2019; 5:4. [PMID: 30675371 PMCID: PMC6341074 DOI: 10.1038/s41522-018-0077-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Over 90% of cystic fibrosis (CF) patients die due to chronic lung infections leading to respiratory failure. The decline in CF lung function is greatly accelerated by intermittent and progressively severe acute pulmonary exacerbations (PEs). Despite their clinical impact, surprisingly few microbiological signals associated with PEs have been identified. Here we introduce an unsupervised, systems-oriented approach to identify key members of the microbiota. We used two CF sputum microbiome data sets that were longitudinally collected through periods spanning baseline health and PEs. Key taxa were defined based on three strategies: overall relative abundance, prevalence, and co-occurrence network interconnectedness. We measured the association between changes in the abundance of the key taxa and changes in patient clinical status over time via change-point detection, and found that taxa with the highest level of network interconnectedness tracked changes in patient health significantly better than taxa with the highest abundance or prevalence. We also cross-sectionally stratified all samples into the clinical states and identified key taxa associated with each state. We found that network interconnectedness most strongly delineated the taxa among clinical states, and that anaerobic bacteria were over-represented during PEs. Many of these anaerobes are oropharyngeal bacteria that have been previously isolated from the respiratory tract, and/or have been studied for their role in CF. The observed shift in community structure, and the association of anaerobic taxa and PEs lends further support to the growing consensus that anoxic conditions and the subsequent growth of anaerobic microbes are important predictors of PEs. Episodes of significant worsening of cystic fibrosis symptoms, known as pulmonary exacerbations (PEs), are associated with oxygen-deficient (anoxic) conditions and increased activity of ‘anaerobic’ bacteria, which thrive in the absence of oxygen. Researchers in Canada, led by David Guttman at the University of Toronto, compared genetic data on microbial populations in sputum samples collected during PEs and at times of better health. The study revealed a strong correlation between the activity and interactions among anaerobic bacteria and the onset of PEs. Investigating the significance of these changes in the lung environment and its microbial populations may help design treatment strategies to reduce the frequency of PEs and their potentially fatal consequences. The authors suggest that antibiotics that specifically target anaerobic bacteria may prove beneficial, as may hyperbaric oxygen therapy, which oxygenates the lung tissue.
Collapse
|
13
|
Lu D, Yao X, Abulimiti A, Cai L, Zhou L, Hong J, Li N. Profiling of lung microbiota in the patients with obstructive sleep apnea. Medicine (Baltimore) 2018; 97:e11175. [PMID: 29952967 PMCID: PMC6039595 DOI: 10.1097/md.0000000000011175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lung microbiota may affect innate immunity and treatment consequence in the obstructive sleep apnea (OSA) patients. Bronchoalveolar lavage fluid (BALF) was obtained from 11 OSA patients and 8 patients with other lung diseases as control, and used for lung microbiota profiling by PCR amplification and sequencing of the microbial samples. It was demonstrated that phyla of Firmicutes, Fusobacteria, and Bacteriodetes were relatively abundant in the lung microbiota. Alpha-diversity comparison between OSA and control group revealed that Proteobacteria and Fusobacteria were significantly higher in OSA patients (0.3863 ± 0.0631 and 0.0682 ± 0.0159, respectively) than that in control group (0.119 ± 0.074 and 0.0006 ± 0.0187, respectively, P < .05 for both phyla). In contrast, Firmicutes was significantly less in OSA patients (0.1371 ± 0.0394) compared with that in the control group (0.384 ± 0.046, P < .05). Comparison within a group (ß-diversity) indicated that the top 5 phyla in the OSA lung were Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Acidobacteria, while the top 5 phyla in the control group were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Acidobacteria. These findings indicated that lung microbiota in OSA is distinct from that of non-OSA patients. Manipulation of the microbiota may be an alternative strategy to augment airway immunity and to reduce susceptibility to airway infection.
Collapse
Affiliation(s)
- Dongmei Lu
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
- Pulmonary and Critical Care Medicine Department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiaoguang Yao
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
| | - Ayinigeer Abulimiti
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
| | - Li Cai
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
| | - Ling Zhou
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
| | - Jing Hong
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
| | - Nanfang Li
- The Center of Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region, The Center of Diagnosis, Treatment and Research of Hypertension in Xinjiang
| |
Collapse
|
14
|
Samuelson DR, Burnham EL, Maffei VJ, Vandivier RW, Blanchard EE, Shellito JE, Luo M, Taylor CM, Welsh DA. The respiratory tract microbial biogeography in alcohol use disorder. Am J Physiol Lung Cell Mol Physiol 2018; 314:L107-L117. [PMID: 28860145 PMCID: PMC5866426 DOI: 10.1152/ajplung.00277.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022] Open
Abstract
Individuals with alcohol use disorders (AUDs) are at an increased risk of pneumonia and acute respiratory distress syndrome. Data of the lung microbiome in the setting of AUDs are lacking. The objective of this study was to determine the microbial biogeography of the upper and lower respiratory tract in individuals with AUDs compared with non-AUD subjects. Gargle, protected bronchial brush, and bronchoalveolar lavage specimens were collected during research bronchoscopies. Bacterial 16S gene sequencing and phylogenetic analysis was performed, and the alterations to the respiratory tract microbiota and changes in microbial biogeography were determined. The microbial structure of the upper and lower respiratory tract was significantly altered in subjects with AUDs compared with controls. Subjects with AUD have greater microbial diversity [ P < 0.0001, effect size = 16 ± 1.7 observed taxa] and changes in microbial species relative abundances. Furthermore, microbial communities in the upper and lower respiratory tract displayed greater similarity in subjects with AUDs. Alcohol use is associated with an altered composition of the respiratory tract microbiota. Subjects with AUDs demonstrate convergence of the microbial phylogeny and taxonomic communities between distinct biogeographical sites within the respiratory tract. These results support a mechanistic pathway potentially explaining the increased incidence of pneumonia and lung diseases in patients with AUDs.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Ellen L. Burnham
- Department of Medicine, Division of Pulmonary Sciences & Critical Care, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Vincent J. Maffei
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - R. William Vandivier
- Department of Medicine, Division of Pulmonary Sciences & Critical Care, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Eugene E. Blanchard
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judd E. Shellito
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - David A. Welsh
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
15
|
Vandeplassche E, Coenye T, Crabbé A. Developing selective media for quantification of multispecies biofilms following antibiotic treatment. PLoS One 2017; 12:e0187540. [PMID: 29121069 PMCID: PMC5679531 DOI: 10.1371/journal.pone.0187540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are chronically colonized by a polymicrobial biofilm community, leading to difficult-to-treat infections. To combat these infections, CF patients are commonly treated with a variety of antibiotics. Understanding the dynamics of polymicrobial community composition in response to antibiotic therapy is essential in the search for novel therapies. Culture-dependent quantification of individual bacteria from defined multispecies biofilms is frequently carried out by plating on selective media. However, the influence of the selective agents in these media on quantitative recovery before or after antibiotic treatment is often unknown. In the present study we developed selective media for six bacterial species that are frequently co-isolated from the CF lung, i.e. Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans. We show that certain supplementations to selective media strongly influence quantitative recovery of (un)treated biofilms. Hence, the developed media were optimized for selectivity and quantitative recovery before or after treatment with antibiotics of four major classes, i.e. ceftazidime, ciprofloxacin, colistin, or tobramycin. Finally, in a proof of concept experiment the novel selective media were applied to determine the community composition of multispecies biofilms before and after treatment with tobramycin.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
|
17
|
Davies EV, James CE, Brockhurst MA, Winstanley C. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiol 2017; 17:3. [PMID: 28056789 PMCID: PMC5216580 DOI: 10.1186/s12866-016-0916-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Background During chronic lung infections of cystic fibrosis patients Pseudomonas aeruginosa populations undergo extensive evolutionary diversification. However, the selective drivers of this evolutionary process are poorly understood. To test the effects of temperate phages on diversification in P. aeruginosa biofilms we experimentally evolved populations of P. aeruginosa for approximately 240 generations in artificial sputum medium with or without a community of three temperate phages. Results Analysis of end-point populations using a suite of phenotypic tests revealed extensive phenotypic diversification within populations, but no significant differences between the populations evolved with or without phages. The most common phenotypic variant observed was loss of all three types of motility (swimming, swarming and twitching) and resistance to all three phages. Despite the absence of selective pressure, some members of the population evolved antibiotic resistance. The frequency of antibiotic resistant isolates varied according to population and the antibiotic tested. However, resistance to ceftazidime and tazobactam-piperacillin was observed more frequently than resistance to other antibiotics, and was associated with higher prevelence of isolates exhibiting a hypermutable phenotype and increased beta-lactamase production. Conclusions We observed considerable within-population phenotypic diversity in P. aeruginosa populations evolving in the artificial sputum medium biofilm model. Replicate populations evolved both in the presence and absence of phages converged upon similar sets of phenotypes. The evolved phenotypes, including antimicrobial resistance, were similar to those observed amongst clinical isolates from cystic fibrosis infections. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0916-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily V Davies
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Chloe E James
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.,School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | | | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.
| |
Collapse
|
18
|
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med 2016; 16:174. [PMID: 27919253 PMCID: PMC5139081 DOI: 10.1186/s12890-016-0339-5] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The airways of patients with cystic fibrosis (CF) are highly complex, subject to various environmental conditions as well as a distinct microbiota. Pseudomonas aeruginosa is recognized as one of the most important pulmonary pathogens and the predominant cause of morbidity and mortality in CF. A multifarious interplay between the host, pathogens, microbiota, and the environment shapes the course of the disease. There have been several excellent reviews detailing CF pathology, Pseudomonas and the role of environment in CF but only a few reviews connect these entities with regards to influence on the overall course of the disease. A holistic understanding of contributing factors is pertinent to inform new research and therapeutics. Discussion In this article, we discuss the deterministic alterations in lung physiology as a result of CF. We also revisit the impact of those changes on the microbiota, with special emphasis on P. aeruginosa and the influence of other non-genetic factors on CF. Substantial past and current research on various genetic and non-genetic aspects of cystic fibrosis has been reviewed to assess the effect of different factors on CF pulmonary infection. A thorough review of contributing factors in CF and the alterations in lung physiology indicate that CF lung infection is multi-factorial with no isolated cause that should be solely targeted to control disease progression. A combinatorial approach may be required to ensure better disease outcomes. Conclusion CF lung infection is a complex disease and requires a broad multidisciplinary approach to improve CF disease outcomes. A holistic understanding of the underlying mechanisms and non-genetic contributing factors in CF is central to development of new and targeted therapeutic strategies.
Collapse
|
19
|
Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F, Widder S. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2016; 2:4. [PMID: 28649398 PMCID: PMC5460249 DOI: 10.1038/s41522-016-0002-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
In the context of a polymicrobial infection, treating a specific pathogen poses challenges because of unknown consequences on other members of the community. The presence of ecological interactions between microbes can change their physiology and response to treatment. For example, in the cystic fibrosis lung polymicrobial infection, antimicrobial susceptibility testing on clinical isolates is often not predictive of antibiotic efficacy. Novel approaches are needed to identify the interrelationships within the microbial community to better predict treatment outcomes. Here we used an ecological networking approach on the cystic fibrosis lung microbiome characterized using 16S rRNA gene sequencing and metagenomics. This analysis showed that the community is separated into three interaction groups: Gram-positive anaerobes, Pseudomonas aeruginosa, and Staphylococcus aureus. The P. aeruginosa and S. aureus groups both anti-correlate with the anaerobic group, indicating a functional antagonism. When patients are clinically stable, these major groupings were also stable, however, during exacerbation, these communities fragment. Co-occurrence networking of functional modules annotated from metagenomics data supports that the underlying taxonomic structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease with more predictable outcomes.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093 USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697 USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Jiangchao Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Douglas Conrad
- Department of Medicine, University of California at San Diego, La Jolla, CA 92037 USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Stefanie Widder
- CUBE, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr.14 A-1090, Vienna, Austria
- CeMM - Research Center, for Molecular Medicine of the Austrian Academy of Sciences, Lazarettg, 14, A-1090 Vienna, Austria
| |
Collapse
|
20
|
Li J, Hao C, Ren L, Xiao Y, Wang J, Qin X. Data Mining of Lung Microbiota in Cystic Fibrosis Patients. PLoS One 2016; 11:e0164510. [PMID: 27741283 PMCID: PMC5065158 DOI: 10.1371/journal.pone.0164510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
The major therapeutic strategy used to treat exacerbated cystic fibrosis (CF) is antibiotic treatment. As this approach easily generates antibiotic-resistant strains of opportunistic bacteria, optimized antibiotic therapies are required to effectively control chronic and recurrent bacterial infections in CF patients. A promising future for the proper use of antibiotics is the management of lung microbiota. However, the impact of antibiotic treatments on CF microbiota and vice versa is not fully understood. This study analyzed 718 sputum samples from 18 previous studies to identify differences between CF and uninfected lung microbiota and to evaluate the effects of antibiotic treatments on exacerbated CF microbiota. A reference-based OTU (operational taxonomic unit) picking method was used to combine analyses of data generated using different protocols and platforms. Findings show that CF microbiota had greater richness and lower diversity in the community structure than uninfected control (NIC) microbiota. Specifically, CF microbiota showed higher levels of opportunistic bacteria and dramatically lower levels of commensal bacteria. Antibiotic treatment affected exacerbated CF microbiota notably but only transiently during the treatment period. Limited decrease of the dominant opportunistic bacteria and a dramatic decrease of commensal bacteria were observed during the antibiotic treatment for CF exacerbation. Simultaneously, low abundance opportunistic bacteria were thriving after the antibiotic treatment. The inefficiency of the current antibiotic treatment against major opportunistic bacteria and the detrimental effects on commensal bacteria indicate that the current empiric antibiotic treatment on CF exacerbation should be reevaluated and optimized.
Collapse
Affiliation(s)
- Jianguo Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Chunyan Hao
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, China
| | - Lili Ren
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan Xiao
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
21
|
Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, Downer VS, Fliege J, Hazle LA, Jain M, Marshall BC, O’Malley C, Pattee SR, Potter-Bynoe G, Reid S, Robinson KA, Sabadosa KA, Schmidt HJ, Tullis E, Webber J, Weber DJ. Infection Prevention and Control Guideline for Cystic Fibrosis: 2013 Update. Infect Control Hosp Epidemiol 2016; 35 Suppl 1:S1-S67. [DOI: 10.1086/676882] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 2013 Infection Prevention and Control (IP&C) Guideline for Cystic Fibrosis (CF) was commissioned by the CF Foundation as an update of the 2003 Infection Control Guideline for CF. During the past decade, new knowledge and new challenges provided the following rationale to develop updated IP&C strategies for this unique population:1.The need to integrate relevant recommendations from evidence-based guidelines published since 2003 into IP&C practices for CF. These included guidelines from the Centers for Disease Control and Prevention (CDC)/Healthcare Infection Control Practices Advisory Committee (HICPAC), the World Health Organization (WHO), and key professional societies, including the Infectious Diseases Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA). During the past decade, new evidence has led to a renewed emphasis on source containment of potential pathogens and the role played by the contaminated healthcare environment in the transmission of infectious agents. Furthermore, an increased understanding of the importance of the application of implementation science, monitoring adherence, and feedback principles has been shown to increase the effectiveness of IP&C guideline recommendations.2.Experience with emerging pathogens in the non-CF population has expanded our understanding of droplet transmission of respiratory pathogens and can inform IP&C strategies for CF. These pathogens include severe acute respiratory syndrome coronavirus and the 2009 influenza A H1N1. Lessons learned about preventing transmission of methicillin-resistantStaphylococcus aureus(MRSA) and multidrug-resistant gram-negative pathogens in non-CF patient populations also can inform IP&C strategies for CF.
Collapse
|
22
|
Pittman JE. Assessment and Detection of Early Lung Disease in Cystic Fibrosis. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2015; 28:212-219. [DOI: 10.1089/ped.2015.0568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jessica E. Pittman
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
23
|
Abstract
The versatile chemistry of nitrogen is important to pulmonary physiology. Indeed, almost all redox forms of nitrogen are relevant to pulmonary physiology and to pathophysiology. Here we review the relevance to pulmonary biology of (a) elemental nitrogen; (b) reduced forms of nitrogen such as amines, ammonia, and hydroxylamine; and (c) oxidized forms of nitrogen such as the nitroxyl anion, the nitric oxide free radical, and S-nitrosothiols. Our focus is on oxidized nitrogen in the form of S-nitrosothiol bond-containing species, which are now appreciated to be important to every type of cell-signaling process in the lung. We also review potential clinical applications of nitrogen oxide biochemistry. These principles are being translated into clinical practice as diagnostic techniques and therapies for a range of pulmonary diseases including asthma, cystic fibrosis, adult respiratory distress syndrome, primary ciliary dyskinesia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Nadzeya V Marozkina
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio 44106; ,
| | | |
Collapse
|
24
|
Abstract
Cystic fibrosis (CF) is the most common life-limiting inherited illness of whites. Most of the morbidity and mortality in CF stems from impaired mucociliary clearance leading to chronic, progressive airways obstruction and damage. Significant progress has been made in the care of patients with CF, with advances focused on improving mucociliary clearance, minimizing inflammatory damage, and managing infections; these advances include new antimicrobial therapies, mucolytic and osmotic agents, and antiinflammatory treatments. More recently, researchers have targeted disease-causing mutations using therapies to promote gene transcription and improve channel function, which has led to impressive physiologic changes in some patients. As we develop more advanced, allele-directed therapies for the management of CF, it will become increasingly important to understand the specific genetic and environmental interactions that cause the significant heterogeneity of lung disease seen in the CF population. This understanding of CF endotypes will allow for more targeted, personalized therapies for future patients. This article reviews the genetic and molecular basis of CF lung disease, the treatments currently available, and novel therapies that are in development.
Collapse
Affiliation(s)
| | - Thomas W Ferkol
- Department of Pediatrics; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
25
|
Thornton CS, Grinwis ME, Sibley CD, Parkins MD, Rabin HR, Surette MG. Antibiotic susceptibility and molecular mechanisms of macrolide resistance in streptococci isolated from adult cystic fibrosis patients. J Med Microbiol 2015; 64:1375-1386. [PMID: 26408040 DOI: 10.1099/jmm.0.000172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( < 2%)], and higher rates of resistance to tetracycline (∼34%) and sulfamethoxazole/trimethoprim (∼45%). The highest rate of antibiotic resistance was to the macrolides [azithromycin (56.4%) and erythromycin (51.6%)]. We also investigated the molecular mechanisms of macrolide resistance and found that only half of our macrolide-resistant streptococci isolates contained the mef (efflux pump) or erm (methylation of 23S ribosomal target site) genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit - a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Margot E Grinwis
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Christopher D Sibley
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Michael D Parkins
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Adult Cystic Fibrosis Clinic, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Harvey R Rabin
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Adult Cystic Fibrosis Clinic, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
26
|
Rodrigues Hoffmann A, Proctor LM, Surette MG, Suchodolski JS. The Microbiome: The Trillions of Microorganisms That Maintain Health and Cause Disease in Humans and Companion Animals. Vet Pathol 2015. [PMID: 26220947 DOI: 10.1177/0300985815595517] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The microbiome is the complex collection of microorganisms, their genes, and their metabolites, colonizing the human and animal mucosal surfaces, digestive tract, and skin. It is now well known that the microbiome interacts with its host, assisting in digestion and detoxification, supporting immunity, protecting against pathogens, and maintaining health. Studies published to date have demonstrated that healthy individuals are often colonized with different microbiomes than those with disease involving various organ systems. This review covers a brief history of the development of the microbiome field, the main objectives of the Human Microbiome Project, and the most common microbiomes inhabiting the human respiratory tract, companion animal digestive tract, and skin in humans and companion animals. The main changes in the microbiomes in patients with pulmonary, gastrointestinal, and cutaneous lesions are described.
Collapse
Affiliation(s)
- A Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - L M Proctor
- National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
| | - M G Surette
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - J S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
27
|
Quinn RA, Whiteson K, Lim YW, Salamon P, Bailey B, Mienardi S, Sanchez SE, Blake D, Conrad D, Rohwer F. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. THE ISME JOURNAL 2015; 9:1024-38. [PMID: 25514533 PMCID: PMC4817692 DOI: 10.1038/ismej.2014.234] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
There is a poor understanding of how the physiology of polymicrobial communities in cystic fibrosis (CF) lungs contributes to pulmonary exacerbations and lung function decline. In this study, a microbial culture system based on the principles of the Winogradsky column (WinCF system) was developed to study the physiology of CF microbes. The system used glass capillary tubes filled with artificial sputum medium to mimic a clogged airway bronchiole. Chemical indicators were added to observe microbial physiology within the tubes. Characterization of sputum samples from seven patients showed variation in pH, respiration, biofilm formation and gas production, indicating that the physiology of CF microbial communities varied among patients. Incubation of homogenized tissues from an explant CF lung mirrored responses of a Pseudomonas aeruginosa pure culture, supporting evidence that end-stage lungs are dominated by this pathogen. Longitudinal sputum samples taken through two exacerbation events in a single patient showed that a two-unit drop in pH and a 30% increase in gas production occurred in the tubes prior to exacerbation, which was reversed with antibiotic treatment. Microbial community profiles obtained through amplification and sequencing of the 16S rRNA gene showed that fermentative anaerobes became more abundant during exacerbation and were then reduced during treatment where P. aeruginosa became the dominant bacterium. Results from the WinCF experiments support the model where two functionally different CF microbial communities exist, the persistent Climax Community and the acute Attack Community. Fermentative anaerobes are hypothesized to be the core members of the Attack Community and production of acidic and gaseous products from fermentation may drive developing exacerbations. Treatment targeting the Attack Community may better resolve exacerbations and resulting lung damage.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Katrine Whiteson
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Yan-Wei Lim
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
| | - Simone Mienardi
- Department of Chemistry, University of California, Irvine, CA, USA
| | | | - Don Blake
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Doug Conrad
- Department of Medicine, University of California, San Diego, CA, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
28
|
Chalermwatanachai T, Velásquez LC, Bachert C. The microbiome of the upper airways: focus on chronic rhinosinusitis. World Allergy Organ J 2015; 8:3. [PMID: 25624972 PMCID: PMC4306241 DOI: 10.1186/s40413-014-0048-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/20/2014] [Indexed: 01/27/2023] Open
Abstract
Upper airway diseases including allergic rhinitis, chronic rhinosinusitis with or without polyps, and cystic fibrosis are characterized by substantially different inflammatory profiles. Traditionally, studies on the association of specific bacterial patterns with inflammatory profiles of diseases had been dependent on bacterial culturing. In the past 30 years, molecular biology methods have allowed bacterial culture free studies of microbial communities, revealing microbiota much more diverse than previously recognized including those found in the upper airway. At presence, the study of the pathophysiology of upper airway diseases is necessary to establish the relationship between the microbiome and inflammatory patterns to find their clinical reflections and also their possible causal relationships. Such investigations may elucidate the path to therapeutic approaches in correcting an imbalanced microbiome. In the review we summarized techniques used and the current knowledge on the microbiome of upper airway diseases, the limitations and pitfalls, and identified areas of interest for further research.
Collapse
Affiliation(s)
- Thanit Chalermwatanachai
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Department of Otolaryngology, Phramongkutklao Hospital and College of Medicine, Royal Thai Army, Bangkok, 10400 Thailand
| | - Leydi Carolina Velásquez
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Basic Biomedical Sciences Department, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claus Bachert
- Department of Oto-Rhino-Laryngology, The Upper Airways Research Laboratory (URL), Ghent University Hospital, Ghent, 9000 Belgium ; Division of ENT Diseases, Clintec, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Cystic fibrosis: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 2015; 11 Suppl 3:S161-8. [PMID: 24754825 DOI: 10.1513/annalsats.201312-444ld] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting, monogenic disorder characterized by chronic sinopulmonary and gastrointestinal involvement. Progressive pulmonary disease leads to death in the majority of patients. Despite its well-defined molecular basis related to defects in the cystic fibrosis transmembrane conductance regulator anion transport channel, there are large gaps in our understanding of the origin of CF lung disease. Disease has been shown to be present in infancy, and there is mounting evidence that abnormalities begin in utero. Heterogeneity of clinical presentations and severity suggest that many factors involved in lung disease have yet to be fully elucidated. Although new advances in therapeutic treatments have shown promise in delaying disease progression, the prevention of pulmonary disease at its origin (primary prevention) should be a key goal of CF care. The objective of this workshop was to (1) review our understanding of the origins of CF lung disease, (2) determine gaps in the knowledge base that are most significant and most likely to enable prevention of CF lung disease, and (3) prioritize new research questions that will promote pulmonary health in both CF and other childhood lung diseases. The goal of this report is to provide recommendations for future research that will improve our understanding of pulmonary development in health and disease, improve outcome measures and biomarkers for early lung disease, and determine therapeutic targets and strategies to prevent the development of lung disease in children with CF.
Collapse
|
30
|
Dalhoff A. Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients. Clin Microbiol Rev 2014; 27:753-82. [PMID: 25278574 PMCID: PMC4187638 DOI: 10.1128/cmr.00022-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced.
Collapse
Affiliation(s)
- Axel Dalhoff
- University Medical Center Schleswig-Holstein, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
31
|
Whiteson KL, Bailey B, Bergkessel M, Conrad D, Delhaes L, Felts B, Harris JK, Hunter R, Lim YW, Maughan H, Quinn R, Salamon P, Sullivan J, Wagner BD, Rainey PB. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med 2014; 189:1309-15. [PMID: 24702670 DOI: 10.1164/rccm.201312-2129pp] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A continuously mixed series of microbial communities inhabits various points of the respiratory tract, with community composition determined by distance from colonization sources, colonization rates, and extinction rates. Ecology and evolution theory developed in the context of biogeography is relevant to clinical microbiology and could reframe the interpretation of recent studies comparing communities from lung explant samples, sputum samples, and oropharyngeal swabs. We propose an island biogeography model of the microbial communities inhabiting different niches in human airways. Island biogeography as applied to communities separated by time and space is a useful parallel for exploring microbial colonization of healthy and diseased lungs, with the potential to inform our understanding of microbial community dynamics and the relevance of microbes detected in different sample types. In this perspective, we focus on the intermixed microbial communities inhabiting different regions of the airways of patients with cystic fibrosis.
Collapse
|
32
|
Sun X, Olivier AK, Liang B, Yi Y, Sui H, Evans TIA, Zhang Y, Zhou W, Tyler SR, Fisher JT, Keiser NW, Liu X, Yan Z, Song Y, Goeken JA, Kinyon JM, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Stewart ZA, Pope RM, Frana T, Meyerholz DK, Parekh K, Engelhardt JF. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 2014; 50:502-12. [PMID: 24074402 DOI: 10.1165/rcmb.2013-0261oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.
Collapse
|
33
|
Rieber N, Hector A, Carevic M, Hartl D. Current concepts of immune dysregulation in cystic fibrosis. Int J Biochem Cell Biol 2014; 52:108-12. [PMID: 24495876 DOI: 10.1016/j.biocel.2014.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF) lung disease is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene and is characterized by a perpetuated feedback loop of bacterial infection and inflammation. Both intrinsic (CFTR-dependent) and extrinsic (CFTR-independent) mechanisms contribute to the inflammatory phenotype of CF lung disease. Innate immune cells, initially recruited to combat bacterial pathogens, are acting in a dysregulated and non-resolving fashion in CF airways and cause harm to the host by releasing proteases and oxidants. Targeting harmful immune pathways, while preserving protective ones, remains the challenge for the future. This review highlights current concepts of innate immune dysregulation in CF lung disease.
Collapse
Affiliation(s)
- N Rieber
- CF Research Group, Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - A Hector
- CF Research Group, Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - M Carevic
- CF Research Group, Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - D Hartl
- CF Research Group, Department of Pediatrics I, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
|
35
|
Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation. PLoS One 2013; 8:e82432. [PMID: 24358183 PMCID: PMC3866110 DOI: 10.1371/journal.pone.0082432] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023] Open
Abstract
Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF) patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.
Collapse
|
36
|
|
37
|
|