1
|
Koca RO, Gormus ZIS, Solak H, Celik FS, Kurar E, Kutlu S. Are the promnestic effects of neurokinin 3 receptor mediated by hippocampal neurogenesis in a Aβ-induced rat model of Alzheimer's disease? Int J Dev Neurosci 2024. [PMID: 39010691 DOI: 10.1002/jdn.10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterised by cognitive dysfunction, memory loss and mood changes. Hippocampal neurogenesis has been suggested to play a role in learning and memory. Neurokinin 3 receptor (NK3R) has been shown to be prevalent in the hippocampus region. The aim of the project was to investigate the role of hippocampal neurogenesis in the promnestic effects of NK3R agonist administration in an amyloid beta-induced AD rat model. Wistar albino rats were divided into control, Alzheimer, NK3R agonist and Alzheimer + NK3R agonist groups. The open field (OF) test and Morris water maze (MWM) test were performed for locomotor activity and memory analysis. Peptide gene expression levels (Nestin, DCX, Neuritin, MASH1, Neun, BDNF) were analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR). In the OF test, the group-time relationship was found to be statistically different in the parameters of distance travelled and percentage of movement (p < 0.05). In MWM, the time to reach the platform and the time spent in the target quadrant were statistically significant between the groups (p < 0.05). Statistically significant differences were observed in gene expression levels (Nestin, DCX, Neuritin, MASH1) in the hippocampal tissue of rats between the groups (p < 0.05). NK3 receptor agonism favourably affected hippocampal neurogenesis in AD model rats. It was concluded that NK3 receptor agonism in the hippocampus, which is the first affected region in the physiopathology of AD, may be effective in both the formation of neural precursor cells and the reduction of neuronal degeneration. The positive effect of NK3R on cognitive functions may be mediated by hippocampal neurogenesis.
Collapse
Affiliation(s)
- Raviye Ozen Koca
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Z Isık Solak Gormus
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Hatice Solak
- Department of Physiology, Faculty of Medicine, Kütahya Health Sciences University, Kutahya, Turkey
| | - Fatma Secer Celik
- Department of Medical Biology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Selim Kutlu
- Department of Physiology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
2
|
Li Y, Wang D, Guo R, Ma B, Miao L, Sun M, He L, Lin L, Pan Y, Ren J, Liu J. Neuroprotective effect of Astragali Radix on cerebral infarction based on proteomics. Front Pharmacol 2023; 14:1162134. [PMID: 37361203 PMCID: PMC10289882 DOI: 10.3389/fphar.2023.1162134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Objective: Astragali Radix (AR, Huangqi in Chinese) has a neuroprotective effect on cerebral infarction (CI). In order to explore the biological basis and therapeutic mechanism of AR in CI, a double-blind randomized controlled trial was established in this study, and proteomics analysis was carried out on serum samples of patients. Methods: The patients were divided into the AR group (n = 35) and the control group (n = 30). The curative effect was evaluated by the traditional Chinese medicine (TCM) syndrome score and clinical indicators, and the serum of the two groups was analyzed by proteomics. Based on bioinformatics analysis methods, the changes in differential proteins between two groups of samples were explored, and the key proteins were validated through enzyme-linked immunosorbent assay (ELISA). Results: The results of this study showed that the scores of deficiency of vital energy (DVE), blood stasis (BS), and NIH Stroke Scale (NIHSS) decreased significantly (p < 0.05), while the scores of the Barthel Index (BI) increased, indicating that AR could significantly improve the symptoms of CI patients. In addition, we found that compared with the control group, AR upregulated 43 proteins and downregulated 20 proteins, especially focusing on anti-atherosclerosis and neuroprotective effects. Moreover, ELISA indicated the levels of IL-6, TNF-α, VCAM-1, MCP-1, and ICAM-1 were significantly decreased in the serum of the AR group (p < 0.05, p < 0.01). Conclusion: This study found that AR can significantly recover the clinical symptoms of CI. Serum proteomics research results show that AR may act on IL-6, TNF-α, VCAM-1, MCP-1, and ICAM-1, and play anti-atherosclerosis and neuroprotective roles. Clinical Trial Registration: [clinicaltrials.gov], identifier [NCT02846207].
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongjuan Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lan Miao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingqian Sun
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijuan He
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Lin
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng L, Meng L, Liang H, Yang J. Sanhua decoction: Current understanding of a traditional herbal recipe for stroke. Front Neurosci 2023; 17:1149833. [PMID: 37123364 PMCID: PMC10133510 DOI: 10.3389/fnins.2023.1149833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Both thrombolytic and endovascular therapies are optimal treatment options for patients with acute ischemic stroke, but only less than half of these patients can benefit from these treatments. Traditional Chinese medicine has a long history of successfully managing ischemic stroke using both herbal and physical therapeutics. Among herbal recipes, Sanhua decoction (SHD) is one of the classical prescriptions for ischemic stroke. The present review aimed to summarize evidence from both clinical and basic research to demonstrate its efficacy in managing ischemic stroke and the potential mechanisms underlying its therapeutic effects, which will provide evidence on the therapeutic effect of this herbal recipe and guide future studies on this recipe. SHD is composed of four herbs, Rheum palmatum L. [Polygonaceae], Magnolia officinalis Rehder & E.H.Wilson [Magnoliaceae], Citrus × aurantium L. [Rutaceae], Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov [Apiaceae]. We found that the majority of clinical studies on SHD are case reports and they showed positive therapeutic effect of SHD on both acute and chronic ischemic stroke. There are over 40 bioactive compounds identified in SHD, but few experimental studies have examined their individual molecular mechanisms. As an extract of SHD, it improves neurological functions through suppressing inflammation, protecting the blood brain barrier from degradation, restoring the number of neural stem cells, inhibiting apoptosis and brain edema, scavenging oxygen free radicals, and regulating the brain-gut axis. These will lay the theoretical foundation for future studies on this prescription and its clinical application. Future research may need to confirm its clinical efficacy in large-scale clinical trials and to disentangle its bioactive compounds and their potential mechanisms.
Collapse
Affiliation(s)
- Lanlan Zheng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai, China
| | - Linglei Meng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai, China
| | - Huazheng Liang
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu, China
- Huazheng Liang,
| | - Jiandao Yang
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai, China
- *Correspondence: Jiandao Yang,
| |
Collapse
|
4
|
Zhang W, Zhang L, Wang WJ, Ma S, Wang M, Yao M, Li R, Li WW, Zhao X, Hu D, Ding Y, Wang J. Network pharmacology and in vitro experimental verification to explore the mechanism of Sanhua decoction in the treatment of ischaemic stroke. PHARMACEUTICAL BIOLOGY 2022; 60:119-130. [PMID: 34985385 PMCID: PMC8741256 DOI: 10.1080/13880209.2021.2019281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Stroke is an illness with high morbidity, disability and mortality that presents a major clinical challenge. Sanhua decoction (SHD) has been widely used to treat ischaemic stroke in the clinic. However, the potential mechanism of SHD remains unknown. OBJECTIVE To elucidate the multitarget mechanism of SHD in ischaemic stroke through network pharmacology and bioinformatics analyses. MATERIALS AND METHODS Network pharmacology and experimental validation approach was used to investigate the bioactive ingredients, critical targets and potential mechanisms of SHD against ischaemic stroke. Four herbal names of SHD, 'ischemic stroke' or 'stroke' was used as a keyword to search the relevant databases. SH-SY5Y cells were treated with various concentrations of SHD (12.5, 25, 50 or 100 μg/mL) for 4 h, exposed to oxygen and glucose deprivation (OGD) for 1 h, then reoxygenation for 24 h. The cell viability was detected by MTT, the lactate dehydrogenase (LDH) was evaluated by ELISA, and protein expression was detected by western blots. RESULTS SHD treatment increased the survival rate from 65.9 ± 4.3 to 85.56 ± 5.7%. The median effective dose (ED50) was 47.1 μg/mL, the LDH decreased from 288.0 ± 12.0 to 122.8 ± 9.1 U/L and the cell apoptosis rate decreased from 33.6 ± 1.8 to 16.3 ± 1.2%. Western blot analysis revealed that SHD increased the levels of p-PI3k, p-Akt and p-CREB1, and decreased the expression of TNF-α and IL-6. DISCUSSION AND CONCLUSIONS This study suggests that SHD protects against cerebral ischaemic injury via regulation of the PI3K/Akt/CREB1 and TNF pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen jun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei wei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongmei Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Yi Ding Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an710032, Shaanxi Province, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- CONTACT Jingwen Wang
| |
Collapse
|
5
|
Li J, Huang Z, Li K, Jian X, Liang B. Study on the Effect of Self-Made Lifei Dingchuan Decoction Combined with Western Medicine on Cough Variant Asthma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9803552. [PMID: 36132547 PMCID: PMC9484939 DOI: 10.1155/2022/9803552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
Abstract
Aims To observe the clinical efficacy of self-made Lifei Dingchuan decoction combined with western medicine in the treatment of cough variant asthma (phlegm-heat accumulation in the lung syndrome). Materials and Methods The clinical data of 90 patients with cough variant asthma who were hospitalized in the Department of Respiratory Medicine of our hospital from January 2020 to April 2022 were selected as the research objects, and they were equally divided into the observation group and the reference group according to different treatment methods, 45 cases in each group. The group was treated with traditional montelukast sodium chewable tablet and salmeterol fluticasone mixed powder inhalation, and the observation group was treated with self-made Lifei Dingchuan decoction on the basis of the control group, saturation, pH, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide, length of stay, and hospitalization costs. Results After the patients underwent self-made Lifei Dingchuan decoction, there were significant differences between the observation group and the reference group in terms of heart rate, respiratory rate, blood oxygen saturation, pH value, arterial blood oxygen partial pressure, carbon dioxide partial pressure, and within the group. There was a statistical difference (P < 0.05). The adverse reactions in patients with cough variant asthma after treatment showed that the red throat, shortness of breath, chest tightness, and dry mouth in the observation group were significantly different from those in the control group (P < 0.05). After investigation, follow-up, and statistics, the hospitalization time, hospitalization cost, asthma exacerbation control time, effective rate, and recurrence rate were compared between the two groups, and the differences between the two groups were statistically significant (P < 0.05). Conclusion The study on the clinical efficacy and low hospitalization cost of the self-prepared lung and asthma-restorative soup in patients with cough variant asthma significantly improved the patients' arterial oxygen saturation, acid-base value, arterial partial pressure of oxygen, and partial pressure of carbon dioxide and effectively controlled the heart rate and respiratory rate with high safety, which is worth further promotion.
Collapse
Affiliation(s)
- Jiachun Li
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Ziliang Huang
- The Third School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510145, China
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| | - Keying Li
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, China
| | - Xiaoyun Jian
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Binghui Liang
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, China
| |
Collapse
|
6
|
Mechanism of Sanhua Decoction in the Treatment of Ischemic Stroke Based on Network Pharmacology Methods and Experimental Verification. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7759402. [PMID: 35097126 PMCID: PMC8799339 DOI: 10.1155/2022/7759402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022]
Abstract
Objective The mechanism of action of Sanhua Decoction (SHD) in the treatment of ischemic stroke (IS) was analyzed based on the network pharmacology technology, and the pharmacodynamics and key targets were verified using the rat middle cerebral artery occlusion (MCAO) model. Methods The GEO database was used to collect IS-related gene set SD, and DrugBank and TTD databases were used to obtain the therapeutic drug target set ST. IS disease gene set SI was collected from DisGeNET, GeneCards, and OMIM databases. These three different gene sets obtained from various sources were merged, duplicates were removed, and the resulting IS disease gene set SIS was imported into the STRING database to establish the protein-protein interaction (PPI) network. Two methods were used to screen the key targets of IS disease based on the PPI network analysis. The TCMSP database and PubChem were applied to retrieve the main chemical components of SHD, and the ACD/Labs software and the SwissADME online system were utilized for ADMET screening. HitPick, SEA, and SwissTarget Prediction online systems were used to predict the set of potential targets for SHD to treat IS. The predicted set of potential targets and the IS disease gene set were intersected. Subsequently, the set of potential targets for SHD treatment of IS was identified, the target information was confirmed through the UniProt database, and finally, the component-target data set for SHD treatment of IS was obtained. clusterProfiler was used for GO function annotation and KEGG pathway enrichment analysis on the target set of SHD active ingredients. A rat MCAO model was established to evaluate the pharmacodynamics of SHD in the treatment of IS, and Western blot analysis assessed the level of proteins in the related pathways. Results This study obtained 1,009 IS disease gene sets. PPI network analysis identified 12 key targets: AGT, SAA1, KNG1, APP, GNB3, C3, CXCR4, CXCL12, CXCL8, CXCL1, F2, and EDN1. Database analyses retrieved 40 active ingredients and 47 target genes in SHD. The network proximity algorithm was used to optimize the six key components in SHD. KEGG enrichment showed that the signaling pathways related to IS were endocrine resistance, estrogen, TNF signal pathway, and AGEs/RAGE. Compound-disease-target regulatory network analysis showed that AKT1, IL-6, TNF-α, TP53, VEGFA, and APP were related to the treatment of IS with SHD. Animal experiments demonstrated that SHD significantly reduces the neurological function of rat defect symptoms (P < 0.05), the area of cerebral avascular necrosis, and neuronal necrosis while increasing the levels of IL-6 and APP proteins (P < 0.05) and reducing the levels of AKT1 and VEGFA proteins (P < 0.05). Conclusion The effective components of SHD may regulate multiple signaling pathways through IL-6, APP, AKT1, and VEGFA to reduce brain damage and inflammatory damage and exert a neuroprotective role in the treatment of IS diseases. Thus, this study provides a feasible method to study the pharmacological mechanism of traditional Chinese medicine compound prescriptions and a theoretical basis for the development of SHD into a new drug for IS treatment.
Collapse
|
7
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|
8
|
Shi YH, Zhang XL, Ying PJ, Wu ZQ, Lin LL, Chen W, Zheng GQ, Zhu WZ. Neuroprotective Effect of Astragaloside IV on Cerebral Ischemia/Reperfusion Injury Rats Through Sirt1/Mapt Pathway. Front Pharmacol 2021; 12:639898. [PMID: 33841157 PMCID: PMC8033022 DOI: 10.3389/fphar.2021.639898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a common disease with poor prognosis, which has become one of the leading causes of morbidity and mortality worldwide. Astragaloside IV (AS-IV) is the main bioactive ingredient of Astragali Radix (which has been used for ischemic stroke for thousands of years) and has been found to have multiple bioactivities in the nervous system. In the present study, we aimed to explore the neuroprotective effects of AS-IV in rats with cerebral ischemia/reperfusion (CIR) injury targeting the Sirt1/Mapt pathway. Methods: Sprague-Dawley rats (male, 250-280 g) were randomly divided into the Sham group, middle cerebral artery occlusion/reperfusion (MCAO/R) group, AS-IV group, MCAO/R + EX527 (SIRT1-specific inhibitor) group, and AS-IV + EX527 group. Each group was further assigned into several subgroups according to ischemic time (6 h, 1 d, 3 d, and 7 days). The CIR injury was induced in MCAO/R group, AS-IV group, MCAO/R + EX527 group, and AS-IV + EX527 group by MCAO surgery in accordance with the modified Zea Longa criteria. Modified Neurological Severity Scores (mNSS) were used to evaluate the neurological deficits; TTC (2,3,5-triphenyltetrazolium chloride) staining was used to detect cerebral infarction area; Western Blot was used to assess the protein levels of SIRT1, acetylated MAPT (ac-MAPT), phosphorylated MAPT (p-MAPT), and total MAPT (t-MAPT); Real-time Quantitative Polymerase Chain Reaction (qRT-PCR) was used in the detection of Sirt1 and Mapt transcriptions. Results: Compared with the MCAO/R group, AS-IV can significantly improve the neurological dysfunction (p < 0.05), reduce the infarction area (p < 0.05), raise the expression of SIRT1 (p < 0.05), and alleviate the abnormal hyperacetylation and hyperphosphorylation of MAPT (p < 0.05). While compared with the AS-IV group, AS-IV + EX527 group showed higher mNSS scores (p < 0.05), more severe cerebral infarction (p < 0.05), lower SIRT1 expression (p < 0.01), and higher ac-MAPT and p-MAPT levels (p < 0.05). Conclusion: AS-IV can improve the neurological deficit after CIR injury in rats and reduce the cerebral infarction area, which exerts neuroprotective effects probably through the Sirt1/Mapt pathway.
Collapse
Affiliation(s)
- Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Qian Wu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| | - Le-Le Lin
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| | - Wei Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Zong Zhu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated toZhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
9
|
Wu L, Chen C, Li Y, Guo C, Fan Y, Yu D, Zhang T, Wen B, Yan Z, Liu A. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals the Anti-Ischemic Stroke Mechanism of Nuciferine in MCAO Rats. ACS OMEGA 2020; 5:33433-33444. [PMID: 33403305 PMCID: PMC7774285 DOI: 10.1021/acsomega.0c05388] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Nuciferine is an aporphine alkaloid monomer that is extracted from the leaves of the lotus species Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine was reported to treat cerebrovascular diseases. However, the potential mechanism of the neuroprotective effects of nuciferine at the metabolomics level is still not unclear. The present research used neurological score, infarct volume, cerebral water content, and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based serum metabolomics to elucidate the anti-ischemic stroke effect and mechanisms of nuciferine. The results showed that nuciferine significantly improved neurological deficit scores and ameliorated cerebral edema and infarction. Multivariate data analysis methods were used to examine the differences in serum endogenous metabolism between groups, and the biomarkers of nuciferine on ischemic stroke were identified. Approximately 19 metabolites and 7 metabolic pathways associated with nuciferine on treatment of stroke were found, which indicated that nuciferine exerted a positive therapeutic action on cerebral ischemic by regulating metabolism. These results provided some data support for the study of anti-stroke effect of nuciferine from the perspective of metabolomics.
Collapse
Affiliation(s)
- Lanlan Wu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Chang Chen
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yongbiao Li
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Cong Guo
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yuqing Fan
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Dingrong Yu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Tinglan Zhang
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6, District
1, Fangxingyuan, Fangzhuang, Fengtai, Beijing 100078, P. R. China
- . Tel/Fax: +010-67689634
| | - Zhiyong Yan
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
- . Tel: +86-28-87601838. Fax: +86-28-87603202
| | - An Liu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- . Tel: +86-10-64093381. Fax: +86-10-64013996
| |
Collapse
|
10
|
Fu DL, Li JH, Shi YH, Zhang XL, Lin Y, Zheng GQ. Sanhua Decoction, a Classic Herbal Prescription, Exerts Neuroprotection Through Regulating Phosphorylated Tau Level and Promoting Adult Endogenous Neurogenesis After Cerebral Ischemia/Reperfusion Injury. Front Physiol 2020; 11:57. [PMID: 32116767 PMCID: PMC7026024 DOI: 10.3389/fphys.2020.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Ischemia stroke is the leading cause of death and long-term disability. Sanhua Decoction (SHD), a classic Chinese herbal prescription, has been used for ischemic stroke for about thousands of years. Here, we aim to investigate the neuroprotective effects of SHD on cerebral ischemia/reperfusion (CIR) injury rat models. Methods: The male Sprague-Dawley rats (body weight, 250-280 g; age, 7-8 weeks) were randomly divided into sham group, CIR group, and SHD group and were further divided into subgroups according to different time points at 6 h, 1, 3, 7, 14, 21, and 28 d, respectively. The SHD group received intragastric administration of SHD at 10 g kg-1 d-1. The focal CIR models were induced by middle cerebral artery occlusion according to Longa's method, while sham group had the same operation without suture insertion. Neurological deficit score (NDS) was evaluated using the Longa's scale. BrdU, doublecortin (DCX), and glial fibrillary acidic protein (GFAP) were used to label proliferation, migration, and differentiation of nerve cells before being observed by immunofluorescence. The expression of reelin, total tau (t-tau), and phosphorylated tau (p-tau) were evaluated by western blot and RT-qPCR. Results: SHD can significantly improve NDS at 1, 3, 7, and 14 d (p < 0.05), increase the number of BrdU positive and BrdU/DCX positive cells in subventricular zone at 3, 7, and 14 d (p < 0.05), upregulate BrdU/GFAP positive cells in the ischemic penumbra at 28 d after CIR (p < 0.05), and reduce p-tau level at 1, 3, 7, and 14 d (p < 0.05). There was no significant difference on reelin and t-tau level between three groups at each time points after CIR. Conclusions: SHD exerts neuroprotection probably by regulating p-tau level and promoting the proliferation, migration, and differentiation of endogenous neural stem cells, accompanying with neurobehavioral recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Magnesium lithospermate B promotes proliferation and differentiation of neural stem cells in vitro and enhances neurogenesis in vivo. Tissue Cell 2018; 53:8-14. [PMID: 30060831 DOI: 10.1016/j.tice.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
Abstract
Multipotent neural stem cells could generate neurons and glial cells. Wide studies have been conducted to disclose the mechanism underlying neural stem cell differentiation and multiple factors have been identified in this field, one of which is bioactive components including natural herbal medicine. In this study, we found that magnesium lithospermate B is able to promote proliferation of neural stem cell in vitro. Besides, magnesium lithospermate B also induces generation of more neuronal cells and less glial cells. The in vivo studies indicates that magnesium lithospermate B enhances local neurogenesis since more Ki67+ and Thy1+ cells are observed in hippocampal region with injection of magnesium lithospermate B. Interestingly, enhancing proliferation and neurogenesis occurs in medial forebrain bundle of Parkinson's Disease model and behavioral studies demonstrates that motor function is significantly improved in magnesium lithospermate B-treated disease models. Furthermore, we also found that effect of MLB on proliferation and differentiation of NSCs was mediated by PI3K/Akt signaling. Collectively, our study shows the important role of magnesium lithospermate B in neural stem cell proliferation and differentiation, accordingly providing a simple and efficient method to induce the neuronal cell generation in neurodegenerative disease model.
Collapse
|
12
|
Hang Y, Qin X, Ren T, Cao J. Baicalin reduces blood lipids and inflammation in patients with coronary artery disease and rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2018; 17:146. [PMID: 29935544 PMCID: PMC6015450 DOI: 10.1186/s12944-018-0797-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 01/01/2023] Open
Abstract
Background Patients with rheumatoid arthritis (RA) have an increased risk of coronary artery disease (CAD) above the baseline. Baicalin possesses beneficial effects against both RA and CAD, but little is know on its clincial efficacy among patients manifesting both CAD and RA. Methods Three hundred seventy four patients with CAD and RA were randomized to receive either 500 mg baicalin or placebo orally everyday for 12 weeks. Lipid profile, cardiotrophin-1 (CT-1), high sensitivity C-reactive protein (hs-CRP), European League Against Rheumatism (EULAR) response were analyzed at the end of study period. Results After 12 week treatment, levels of triglycerides, total cholesterol, LDL-cholesterol and apolipoproteins, as well as CT-1 and hs-CRP, were all significantly improved in the baicalin group compared to the placebo group (1.12 ± 0.36 vs 1.87 ± 0.46 mmol/L, 2.87 ± 1.23 vs 3.22 ± 1.07 mmol/L, 1.38 ± 0.41 vs 1.16 ± 0.32 mmol/L, 1.31 ± 0.41 vs 1.23 ± 0.29 g/L, 42.9 ± 13.7 vs 128.4 ± 24.3 ng/mL, 1.64 ± 0.38 vs 3.9 ± 1.4 mg/dL, respectively). Significantly higher proportion of patients in the baicalin group (71%) reported good/moderate EULAR response than the placebo group (53%). Conclusion Baicalin reduces blood lipids and inflammation in patients with both CAD and RA, supporting its further clinical application.
Collapse
Affiliation(s)
- Yuanxing Hang
- Wuxi No.2 People's Hospital, 68 Zhongshan Road, Wuxi, 214000, Jiangsu, China
| | - Xian Qin
- Wuxi No.2 People's Hospital, 68 Zhongshan Road, Wuxi, 214000, Jiangsu, China.
| | - Tianli Ren
- Wuxi No.2 People's Hospital, 68 Zhongshan Road, Wuxi, 214000, Jiangsu, China
| | - Jianing Cao
- Wuxi No.2 People's Hospital, 68 Zhongshan Road, Wuxi, 214000, Jiangsu, China
| |
Collapse
|
13
|
Wen SH, Chang WC, Hong MK, Wu HC. Concurrent use of Chinese herbal medicine among hormone users and its association with ischemic stroke risk: A population-based study. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:274-282. [PMID: 29366767 DOI: 10.1016/j.jep.2018.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 12/11/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous studies had indicated that hormone therapy (HT) may increase the risk of ischemic stroke (IS) in menopausal women. However, little is known about the benefits and risks of use of Chinese herbal medicine (CHM) in conditions related to hormone use. The aim of this study is to explore the risk of IS in menopausal women treated with HT and CHM. MATERIALS AND METHODS A total of 32,441 menopausal women without surgical menopause aged 40-65 years were selected from 2003 to 2010 using the 2-million random samples of the National Health Insurance Research Database in Taiwan. According to the medication usage of HT and CHM, we divided the current and recent users into two groups: an HT use-only group (n = 4989) and an HT/CHM group (n = 9265). Propensity-score matching samples (4079 pairs) were further created to deal with confounding by indication. The adjusted hazard ratios (HR) of IS were estimated by the robust Cox proportional hazards model. RESULTS The incidence rate of IS in the HT/CHM group was significantly lower than in the HT group (4.5 vs. 12.8 per 1000 person-year, p < 0.001). Multivariate analysis results indicated that additional CHM use had a lower risk of IS compared to the HT group (HR = 0.3; 95% confidence interval [CI], 0.21-0.43). Further subgroup analyses and sensitivity analyses had similar findings. CONCLUSION We found that combined use of HT and CHM was associated with a lower risk of IS. Further study is needed to examine possible mechanism underlying this association.
Collapse
Affiliation(s)
- Shu-Hui Wen
- Department of Public Health, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chuan Chang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Mun-Kun Hong
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsien-Chang Wu
- Division of Chinese Gynecology and Pediatrics, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
14
|
Protocol for Systematic Review of Controlled Trials of Korean and Chinese Herbal Treatments for Stroke. JOURNAL OF ACUPUNCTURE RESEARCH 2017. [DOI: 10.13045/jar.2017.02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Zhao Y, Peng R, Zhao W, Liu Q, Guo Y, Zhao S, Xu D. Zhibitai and low-dose atorvastatin reduce blood lipids and inflammation in patients with coronary artery disease. Medicine (Baltimore) 2017; 96:e6104. [PMID: 28207527 PMCID: PMC5319516 DOI: 10.1097/md.0000000000006104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Atorvastatin decreases blood lipids but is associated with side effects. Zhibitai is a traditional Chinese medicine used to treat blood lipid disorders. The objective of this study is to evaluate the lipid-lowering effect, antiinflammatory effect, and adverse events of zhibitai combined to atorvastatin in patients with coronary heart diseases (CHDs). METHODS Patients with CHD (n = 150) were randomized to: zhibitai 480 mg + atorvastatin 10 mg (ZA10 group), atorvastatin 20 mg (A20 group), and atorvastatin 40 mg (A40 group). Lipid profile, cardiotrophin-1 (CT-1), and C-reactive protein (CRP) were measured after 4 and 8 weeks of treatment. Self-reported side effects, liver function, kidney function, and creatine kinase levels were monitored. RESULTS After 8 weeks, triglycerides, total cholesterol (TC), LDL-cholesterol (LDL-C), and apolipoprotein B100 (ApoB100) levels were decreased in the ZA10 group (-64%, -37%, -46%, and -54%, respectively, compared with baseline), and these changes were similar to those of the A40 group (P > 0.05). CT-1 and high sensitivity-C reactive protein (hs-CRP) levels were significantly decreased in the ZA10 group after 4 and 8 weeks (4 weeks: -73% and 96%; 8 weeks: -89% and -98%; all P < 0.01), without differences among the 3 groups (P > 0.05). After 8 weeks of treatment, adverse events (abdominal distention, nausea, vomiting, and hunger) were found in 4, 5, and 7 patients in the ZA10, A20, and A40 groups, respectively. CONCLUSION ZA10 significantly reduced triglycerides, TC, LDL-C, ApoB, CT-1, and hs-CRP levels in patients with CHD, similar to the effects of A40 and A20, but ZA10 lead to fewer adverse events.
Collapse
Affiliation(s)
- Yuhong Zhao
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
- Affiliated Peace Changzhi Medical College Hospital, Changzhi, Shanxi, China
| | - Ran Peng
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Wang Zhao
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Qiong Liu
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Yuan Guo
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Shuiping Zhao
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Danyan Xu
- Internal Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan
| |
Collapse
|